/* * arch/ubicom32/kernel/module.c * Ubicom32 architecture loadable module support. * * (C) Copyright 2009, Ubicom, Inc. * * This file is part of the Ubicom32 Linux Kernel Port. * * The Ubicom32 Linux Kernel Port is free software: you can redistribute * it and/or modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, either version 2 of the * License, or (at your option) any later version. * * The Ubicom32 Linux Kernel Port is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Ubicom32 Linux Kernel Port. If not, * see . * * Ubicom32 implementation derived from (with many thanks): * arch/m68knommu * arch/blackfin * arch/parisc */ #include #include #include #include #include #include #include #include #if 0 #define DEBUGP printk #else #define DEBUGP(fmt...) #endif static void _module_free_ocm(struct module *mod) { printk(KERN_INFO "module arch cleanup %s: OCM instruction memory free " " of %d @%p\n", mod->name, mod->arch.ocm_inst_size, mod->arch.ocm_inst); if (mod->arch.ocm_inst) { ocm_inst_free(mod->arch.ocm_inst); mod->arch.ocm_inst = 0; mod->arch.ocm_inst_size = 0; } } void *module_alloc(unsigned long size) { if (size == 0) return NULL; return vmalloc(size); } /* Free memory returned from module_alloc */ void module_free(struct module *mod, void *module_region) { vfree(module_region); /* FIXME: If module_region == mod->init_region, trim exception table entries. */ /* * This is expected to be final module free, use this to prune the * ocm */ if (module_region && module_region == mod->module_core) _module_free_ocm(mod); } /* * module_frob_arch_sections() * Called from kernel/module.c allowing arch specific handling of * sections/headers. */ int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { Elf_Shdr *s, *sechdrs_end; void *ocm_inst = NULL; int ocm_inst_size = 0; /* * Ubicom32 v3 and v4 are almost binary compatible but not completely. * To be safe check that the module was compiled with the correct -march * which is flags. */ #ifdef CONFIG_UBICOM32_V4 if ((hdr->e_flags & 0xFFFF) != EF_UBICOM32_V4) { printk(KERN_WARNING "Module %s was not compiled for " "ubicom32v4, elf_flags:%x,\n", mod->name, hdr->e_flags); return -ENOEXEC; } #elif defined CONFIG_UBICOM32_V3 if ((hdr->e_flags & 0xFFFF) != EF_UBICOM32_V3) { printk(KERN_WARNING "Module %s was not compiled for " "ubicom32v3, elf_flags:%x\n", mod->name, hdr->e_flags); return -ENOEXEC; } #else #error Unknown/Unsupported ubicom32 architecture. #endif /* * XXX: sechdrs are vmalloced in kernel/module.c * and would be vfreed just after module is loaded, * so we hack to keep the only information we needed * in mod->arch to correctly free L1 I/D sram later. * NOTE: this breaks the semantic of mod->arch structure. */ sechdrs_end = sechdrs + hdr->e_shnum; for (s = sechdrs; s < sechdrs_end; ++s) { if (strncmp(".ocm_text", secstrings + s->sh_name, 9) == 0) ocm_inst_size += s->sh_size; } if (!ocm_inst_size) return 0; ocm_inst = ocm_inst_alloc(ocm_inst_size, 0 /* internal */); if (ocm_inst == NULL) { #ifdef CONFIG_OCM_MODULES_FALLBACK_TO_DDR printk(KERN_WARNING "module %s: OCM instruction memory allocation of %d" "failed, fallback to DDR\n", mod->name, ocm_inst_size); return 0; #else printk(KERN_ERR "module %s: OCM instruction memory allocation of %d" "failed.\n", mod->name, ocm_inst_size); return -ENOMEM; #endif } mod->arch.ocm_inst = ocm_inst; mod->arch.ocm_inst_size = ocm_inst_size; printk(KERN_INFO "module %s: OCM instruction memory allocation of %d @%p\n", mod->name, mod->arch.ocm_inst_size, mod->arch.ocm_inst); for (s = sechdrs; s < sechdrs_end; ++s) { if (strncmp(".ocm_text", secstrings + s->sh_name, 9) == 0) { memcpy(ocm_inst, (void *)s->sh_addr, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)ocm_inst; ocm_inst += s->sh_size; } } return 0; } int apply_relocate(Elf32_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { DEBUGP("Invalid Applying relocate section %u to %u\n", relsec, sechdrs[relsec].sh_info); return -EINVAL; } int apply_relocate_add(Elf32_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { unsigned int i; Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; Elf32_Sym *sym; uint32_t *location; uint32_t insn; DEBUGP("Applying relocate_add section %u to %u\n", relsec, sechdrs[relsec].sh_info); for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { uint32_t v; const int elf32_rtype = ELF32_R_TYPE(rel[i].r_info); /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* This is the symbol it is referring to. Note that all undefined symbols have been resolved. */ sym = (Elf32_Sym *)sechdrs[symindex].sh_addr + ELF32_R_SYM(rel[i].r_info); v = rel[i].r_addend + sym->st_value; switch (elf32_rtype) { case R_UBICOM32_32: { /* * Store the 32 bit relocation as is. */ *location = v; break; } case R_UBICOM32_HI24: { /* * 24 bit relocation that is part of the MOVEAI * instruction. The 24 bits come from bits 7 - 30 of the * relocation. Theses bits eventually get split into 2 * fields in the instruction encoding. * * - Bits 7 - 27 of the relocation are encoded into bits * 0 - 20 of the instruction. * * - Bits 28 - 30 of the relocation are encoded into * bit 24 - 26 of the instruction. */ uint32_t valid24 = (v >> 7) & 0xffffff; insn = *location; insn &= ~(0x1fffff | (0x7 << 24)); insn |= (valid24 & 0x1fffff); insn |= ((valid24 & 0xe00000) << 3); *location = insn; } break; case R_UBICOM32_LO7_S: case R_UBICOM32_LO7_2_S: case R_UBICOM32_LO7_4_S: { /* * Bits 0 - 6 of the relocation are encoded into the * 7bit unsigned immediate fields of the SOURCE-1 field * of the instruction. The immediate value is left * shifted by (0, 1, 2) based on the operand size. */ uint32_t valid7 = v & 0x7f; insn = *location; if (elf32_rtype == R_UBICOM32_LO7_2_S) { valid7 >>= 1; } else if (elf32_rtype == R_UBICOM32_LO7_4_S) { valid7 >>= 2; } insn &= ~(0x1f | (0x3 << 8)); insn |= (valid7 & 0x1f); insn |= ((valid7 & 0x60) << 3); *location = insn; } break; case R_UBICOM32_LO7_D: case R_UBICOM32_LO7_2_D: case R_UBICOM32_LO7_4_D: { /* * Bits 0 - 6 of the relocation are encoded into the * 7bit unsigned immediate fields of the DESTINATION * field of the instruction. The immediate value is * left shifted by (0, 1, 2) based on the operand size. */ uint32_t valid7 = v & 0x7f; insn = *location; if (elf32_rtype == R_UBICOM32_LO7_2_D) { valid7 >>= 1; } else if (elf32_rtype == R_UBICOM32_LO7_4_D) { valid7 >>= 2; } insn &= ~((0x1f | (0x3 << 8)) << 16); insn |= ((valid7 & 0x1f) << 16); insn |= ((valid7 & 0x60) << 19); *location = insn; } break; case R_UBICOM32_LO7_CALLI: case R_UBICOM32_LO16_CALLI: { /* * Extract the offset for a CALLI instruction. The * offsets can be either 7 bits or 18 bits. Since all * instructions in ubicom32 architecture are at work * aligned addresses the truncated offset is right * shifted by 2 before being encoded in the instruction. */ uint32_t val; if (elf32_rtype == R_UBICOM32_LO7_CALLI) { val = v & 0x7f; } else { val = v & 0x3ffff; } val >>= 2; insn = *location; insn &= ~0x071f071f; insn |= (val & 0x1f) << 0; val >>= 5; insn |= (val & 0x07) << 8; val >>= 3; insn |= (val & 0x1f) << 16; val >>= 5; insn |= (val & 0x07) << 24; *location = insn; } break; case R_UBICOM32_24_PCREL: { /* * Extract 26 bit signed PC relative offset for CALL * instructions. Since instruction addresses are word * aligned the offset is right shited by 2 before * encoding into instruction. */ int32_t val = v - (int32_t)location; /* * Check that the top 7 bits are all equal to the sign * bit (26), i.e all 0's or all 1's. If they are not then * the absolute difference is greater than 25 bits. */ if (((uint32_t)val & 0xFE000000) != 0xFE000000 && ((uint32_t)val & 0xFE000000) != 0x0) { /* * The relocation is beyond our addressable * range with a 26 bit call. */ printk(KERN_ERR "module %s: PC Relative " "relocation out of range: " "%u (%x->%x, %x)\n", me->name, elf32_rtype, v, (uint32_t) location, val); return -ENOEXEC; } val = (val & 0x3ffffff) >> 2; insn = *location; insn = insn & 0xf8e00000; insn |= (val >> 21) << 24; insn |= (val & 0x1fffff); *location = insn; } break; case R_UBICOM32_LO16: case R_UBICOM32_HI16: { /* * 16 bit immediate value that is encoded into bit 0 - * 15 of the instruction. */ uint32_t val; if (elf32_rtype == R_UBICOM32_LO16) { val = v & 0xffff; } else { val = (v >> 16) & 0xffff; } insn = *location; insn &= 0xffff0000; insn |= val; *location = insn; } break; case R_UBICOM32_21_PCREL: { /* * Extract 23 bit signed PC relative offset for JMP * instructions. Since instruction addresses are word * aligned the offset is right shited by 2 before * encoding into instruction. */ int32_t val = v - (int32_t)location; val = (val & 0x7fffff) >> 2; insn = *location; insn = insn & 0xffe00000; insn |= (val >> 21) << 24; insn |= val; *location = insn; } break; default: BUG(); printk(KERN_ERR "module %s: Unknown relocation: %u\n", me->name, elf32_rtype); return -ENOEXEC; } } return 0; } int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod) { unsigned int i, strindex = 0, symindex = 0; char *secstrings; int err; err = module_bug_finalize(hdr, sechdrs, mod); if (err) return err; if (!mod->arch.ocm_inst) { /* * No OCM code, so nothing more to do. */ return 0; } secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; for (i = 1; i < hdr->e_shnum; i++) { /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; } } for (i = 1; i < hdr->e_shnum; i++) { const char *strtab = (char *)sechdrs[strindex].sh_addr; unsigned int info = sechdrs[i].sh_info; /* Not a valid relocation section? */ if (info >= hdr->e_shnum) continue; if ((sechdrs[i].sh_type == SHT_RELA) && (strncmp(".rela.ocm_text", secstrings + sechdrs[i].sh_name, 5 + 9) == 0)) { err = apply_relocate_add((Elf_Shdr *) sechdrs, strtab, symindex, i, mod); if (err) return err; } } return 0; } void module_arch_cleanup(struct module *mod) { module_bug_cleanup(mod); }