/* ========================================================================== * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $ * $Revision: 1.1.1.1 $ * $Date: 2009-04-17 06:15:34 $ * $Change: 537387 $ * * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless * otherwise expressly agreed to in writing between Synopsys and you. * * The Software IS NOT an item of Licensed Software or Licensed Product under * any End User Software License Agreement or Agreement for Licensed Product * with Synopsys or any supplement thereto. You are permitted to use and * redistribute this Software in source and binary forms, with or without * modification, provided that redistributions of source code must retain this * notice. You may not view, use, disclose, copy or distribute this file or * any information contained herein except pursuant to this license grant from * Synopsys. If you do not agree with this notice, including the disclaimer * below, then you are not authorized to use the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * ========================================================================== */ #ifndef DWC_DEVICE_ONLY #if !defined(__DWC_HCD_H__) #define __DWC_HCD_H__ #include #include #include struct lm_device; struct dwc_otg_device; #include "dwc_otg_cil.h" //#include "dwc_otg_ifx.h" // winder /** * @file * * This file contains the structures, constants, and interfaces for * the Host Contoller Driver (HCD). * * The Host Controller Driver (HCD) is responsible for translating requests * from the USB Driver into the appropriate actions on the DWC_otg controller. * It isolates the USBD from the specifics of the controller by providing an * API to the USBD. */ /** * Phases for control transfers. */ typedef enum dwc_otg_control_phase { DWC_OTG_CONTROL_SETUP, DWC_OTG_CONTROL_DATA, DWC_OTG_CONTROL_STATUS } dwc_otg_control_phase_e; /** Transaction types. */ typedef enum dwc_otg_transaction_type { DWC_OTG_TRANSACTION_NONE, DWC_OTG_TRANSACTION_PERIODIC, DWC_OTG_TRANSACTION_NON_PERIODIC, DWC_OTG_TRANSACTION_ALL } dwc_otg_transaction_type_e; /** * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, * interrupt, or isochronous transfer. A single QTD is created for each URB * (of one of these types) submitted to the HCD. The transfer associated with * a QTD may require one or multiple transactions. * * A QTD is linked to a Queue Head, which is entered in either the * non-periodic or periodic schedule for execution. When a QTD is chosen for * execution, some or all of its transactions may be executed. After * execution, the state of the QTD is updated. The QTD may be retired if all * its transactions are complete or if an error occurred. Otherwise, it * remains in the schedule so more transactions can be executed later. */ struct dwc_otg_qh; typedef struct dwc_otg_qtd { /** * Determines the PID of the next data packet for the data phase of * control transfers. Ignored for other transfer types.
* One of the following values: * - DWC_OTG_HC_PID_DATA0 * - DWC_OTG_HC_PID_DATA1 */ uint8_t data_toggle; /** Current phase for control transfers (Setup, Data, or Status). */ dwc_otg_control_phase_e control_phase; /** Keep track of the current split type * for FS/LS endpoints on a HS Hub */ uint8_t complete_split; /** How many bytes transferred during SSPLIT OUT */ uint32_t ssplit_out_xfer_count; /** * Holds the number of bus errors that have occurred for a transaction * within this transfer. */ uint8_t error_count; /** * Index of the next frame descriptor for an isochronous transfer. A * frame descriptor describes the buffer position and length of the * data to be transferred in the next scheduled (micro)frame of an * isochronous transfer. It also holds status for that transaction. * The frame index starts at 0. */ int isoc_frame_index; /** Position of the ISOC split on full/low speed */ uint8_t isoc_split_pos; /** Position of the ISOC split in the buffer for the current frame */ uint16_t isoc_split_offset; /** URB for this transfer */ struct urb *urb; /** This list of QTDs */ struct list_head qtd_list_entry; /* Field to track the qh pointer */ struct dwc_otg_qh *qtd_qh_ptr; } dwc_otg_qtd_t; /** * A Queue Head (QH) holds the static characteristics of an endpoint and * maintains a list of transfers (QTDs) for that endpoint. A QH structure may * be entered in either the non-periodic or periodic schedule. */ typedef struct dwc_otg_qh { /** * Endpoint type. * One of the following values: * - USB_ENDPOINT_XFER_CONTROL * - USB_ENDPOINT_XFER_ISOC * - USB_ENDPOINT_XFER_BULK * - USB_ENDPOINT_XFER_INT */ uint8_t ep_type; uint8_t ep_is_in; /** wMaxPacketSize Field of Endpoint Descriptor. */ uint16_t maxp; /** * Determines the PID of the next data packet for non-control * transfers. Ignored for control transfers.
* One of the following values: * - DWC_OTG_HC_PID_DATA0 * - DWC_OTG_HC_PID_DATA1 */ uint8_t data_toggle; /** Ping state if 1. */ uint8_t ping_state; /** * List of QTDs for this QH. */ struct list_head qtd_list; /** Host channel currently processing transfers for this QH. */ dwc_hc_t *channel; /** QTD currently assigned to a host channel for this QH. */ dwc_otg_qtd_t *qtd_in_process; /** Full/low speed endpoint on high-speed hub requires split. */ uint8_t do_split; /** @name Periodic schedule information */ /** @{ */ /** Bandwidth in microseconds per (micro)frame. */ uint8_t usecs; /** Interval between transfers in (micro)frames. */ uint16_t interval; /** * (micro)frame to initialize a periodic transfer. The transfer * executes in the following (micro)frame. */ uint16_t sched_frame; /** (micro)frame at which last start split was initialized. */ uint16_t start_split_frame; /** @} */ uint16_t speed; uint16_t frame_usecs[8]; /** Entry for QH in either the periodic or non-periodic schedule. */ struct list_head qh_list_entry; } dwc_otg_qh_t; /** * This structure holds the state of the HCD, including the non-periodic and * periodic schedules. */ typedef struct dwc_otg_hcd { spinlock_t lock; /** DWC OTG Core Interface Layer */ dwc_otg_core_if_t *core_if; /** Internal DWC HCD Flags */ volatile union dwc_otg_hcd_internal_flags { uint32_t d32; struct { unsigned port_connect_status_change : 1; unsigned port_connect_status : 1; unsigned port_reset_change : 1; unsigned port_enable_change : 1; unsigned port_suspend_change : 1; unsigned port_over_current_change : 1; unsigned reserved : 27; } b; } flags; /** * Inactive items in the non-periodic schedule. This is a list of * Queue Heads. Transfers associated with these Queue Heads are not * currently assigned to a host channel. */ struct list_head non_periodic_sched_inactive; /** * Deferred items in the non-periodic schedule. This is a list of * Queue Heads. Transfers associated with these Queue Heads are not * currently assigned to a host channel. * When we get an NAK, the QH goes here. */ struct list_head non_periodic_sched_deferred; /** * Active items in the non-periodic schedule. This is a list of * Queue Heads. Transfers associated with these Queue Heads are * currently assigned to a host channel. */ struct list_head non_periodic_sched_active; /** * Pointer to the next Queue Head to process in the active * non-periodic schedule. */ struct list_head *non_periodic_qh_ptr; /** * Inactive items in the periodic schedule. This is a list of QHs for * periodic transfers that are _not_ scheduled for the next frame. * Each QH in the list has an interval counter that determines when it * needs to be scheduled for execution. This scheduling mechanism * allows only a simple calculation for periodic bandwidth used (i.e. * must assume that all periodic transfers may need to execute in the * same frame). However, it greatly simplifies scheduling and should * be sufficient for the vast majority of OTG hosts, which need to * connect to a small number of peripherals at one time. * * Items move from this list to periodic_sched_ready when the QH * interval counter is 0 at SOF. */ struct list_head periodic_sched_inactive; /** * List of periodic QHs that are ready for execution in the next * frame, but have not yet been assigned to host channels. * * Items move from this list to periodic_sched_assigned as host * channels become available during the current frame. */ struct list_head periodic_sched_ready; /** * List of periodic QHs to be executed in the next frame that are * assigned to host channels. * * Items move from this list to periodic_sched_queued as the * transactions for the QH are queued to the DWC_otg controller. */ struct list_head periodic_sched_assigned; /** * List of periodic QHs that have been queued for execution. * * Items move from this list to either periodic_sched_inactive or * periodic_sched_ready when the channel associated with the transfer * is released. If the interval for the QH is 1, the item moves to * periodic_sched_ready because it must be rescheduled for the next * frame. Otherwise, the item moves to periodic_sched_inactive. */ struct list_head periodic_sched_queued; /** * Total bandwidth claimed so far for periodic transfers. This value * is in microseconds per (micro)frame. The assumption is that all * periodic transfers may occur in the same (micro)frame. */ uint16_t periodic_usecs; /** * Total bandwidth claimed so far for all periodic transfers * in a frame. * This will include a mixture of HS and FS transfers. * Units are microseconds per (micro)frame. * We have a budget per frame and have to schedule * transactions accordingly. * Watch out for the fact that things are actually scheduled for the * "next frame". */ uint16_t frame_usecs[8]; /** * Frame number read from the core at SOF. The value ranges from 0 to * DWC_HFNUM_MAX_FRNUM. */ uint16_t frame_number; /** * Free host channels in the controller. This is a list of * dwc_hc_t items. */ struct list_head free_hc_list; /** * Number of available host channels. */ int available_host_channels; /** * Array of pointers to the host channel descriptors. Allows accessing * a host channel descriptor given the host channel number. This is * useful in interrupt handlers. */ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS]; /** * Buffer to use for any data received during the status phase of a * control transfer. Normally no data is transferred during the status * phase. This buffer is used as a bit bucket. */ uint8_t *status_buf; /** * DMA address for status_buf. */ dma_addr_t status_buf_dma; #define DWC_OTG_HCD_STATUS_BUF_SIZE 64 /** * Structure to allow starting the HCD in a non-interrupt context * during an OTG role change. */ struct work_struct start_work; struct usb_hcd *_p; /** * Connection timer. An OTG host must display a message if the device * does not connect. Started when the VBus power is turned on via * sysfs attribute "buspower". */ struct timer_list conn_timer; /* Tasket to do a reset */ struct tasklet_struct *reset_tasklet; #ifdef DEBUG uint32_t frrem_samples; uint64_t frrem_accum; uint32_t hfnum_7_samples_a; uint64_t hfnum_7_frrem_accum_a; uint32_t hfnum_0_samples_a; uint64_t hfnum_0_frrem_accum_a; uint32_t hfnum_other_samples_a; uint64_t hfnum_other_frrem_accum_a; uint32_t hfnum_7_samples_b; uint64_t hfnum_7_frrem_accum_b; uint32_t hfnum_0_samples_b; uint64_t hfnum_0_frrem_accum_b; uint32_t hfnum_other_samples_b; uint64_t hfnum_other_frrem_accum_b; #endif } dwc_otg_hcd_t; /** Gets the dwc_otg_hcd from a struct usb_hcd */ static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) { return (dwc_otg_hcd_t *)(hcd->hcd_priv); } /** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */ static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd) { return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); } /** @name HCD Create/Destroy Functions */ /** @{ */ extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device); extern void dwc_otg_hcd_remove(struct device *_dev); /** @} */ /** @name Linux HC Driver API Functions */ /** @{ */ extern int dwc_otg_hcd_start(struct usb_hcd *hcd); extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); extern void dwc_otg_hcd_free(struct usb_hcd *hcd); extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags); extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status); extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep); extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf); extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength); /** @} */ /** @name Transaction Execution Functions */ /** @{ */ extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd); extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd, dwc_otg_transaction_type_e _tr_type); extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb, int _status); /** @} */ /** @name Interrupt Handler Functions */ /** @{ */ extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num); extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd); extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd); /** @} */ /** @name Schedule Queue Functions */ /** @{ */ /* Implemented in dwc_otg_hcd_queue.c */ extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb); extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb); extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh); extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit); extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay); /** Remove and free a QH */ static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) { dwc_otg_hcd_qh_remove (_hcd, _qh); dwc_otg_hcd_qh_free (_qh); } /** Allocates memory for a QH structure. * @return Returns the memory allocate or NULL on error. */ static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void) { #ifdef _SC_BUILD_ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC); #else return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL); #endif } extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb); extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb); extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd); /** Allocates memory for a QTD structure. * @return Returns the memory allocate or NULL on error. */ static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void) { #ifdef _SC_BUILD_ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC); #else return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL); #endif } /** Frees the memory for a QTD structure. QTD should already be removed from * list. * @param[in] _qtd QTD to free.*/ static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd) { kfree (_qtd); } /** Removes a QTD from list. * @param[in] _qtd QTD to remove from list. */ static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd) { unsigned long flags; local_irq_save (flags); list_del (&_qtd->qtd_list_entry); local_irq_restore (flags); } /** Remove and free a QTD */ static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd) { dwc_otg_hcd_qtd_remove (_qtd); dwc_otg_hcd_qtd_free (_qtd); } /** @} */ /** @name Internal Functions */ /** @{ */ dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb); void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd); void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd); /** @} */ /** Gets the usb_host_endpoint associated with an URB. */ static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb) { struct usb_device *dev = _urb->dev; int ep_num = usb_pipeendpoint(_urb->pipe); if (usb_pipein(_urb->pipe)) return dev->ep_in[ep_num]; else return dev->ep_out[ep_num]; } /** * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is * qualified with its direction (possible 32 endpoints per device). */ #define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) /** Gets the QH that contains the list_head */ #define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry)) /** Gets the QTD that contains the list_head */ #define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry)) /** Check if QH is non-periodic */ #define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) /** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ #define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) /** Packet size for any kind of endpoint descriptor */ #define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) /** * Returns true if _frame1 is less than or equal to _frame2. The comparison is * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the * frame number when the max frame number is reached. */ static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2) { return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <= (DWC_HFNUM_MAX_FRNUM >> 1); } /** * Returns true if _frame1 is greater than _frame2. The comparison is done * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame * number when the max frame number is reached. */ static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2) { return (_frame1 != _frame2) && (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) < (DWC_HFNUM_MAX_FRNUM >> 1)); } /** * Increments _frame by the amount specified by _inc. The addition is done * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. */ static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc) { return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM; } static inline uint16_t dwc_full_frame_num (uint16_t _frame) { return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3; } static inline uint16_t dwc_micro_frame_num (uint16_t _frame) { return (_frame) & 0x7; } #ifdef DEBUG /** * Macro to sample the remaining PHY clocks left in the current frame. This * may be used during debugging to determine the average time it takes to * execute sections of code. There are two possible sample points, "a" and * "b", so the _letter argument must be one of these values. * * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For * example, "cat /sys/devices/lm0/hcd_frrem". */ #define dwc_sample_frrem(_hcd, _qh, _letter) \ { \ hfnum_data_t hfnum; \ dwc_otg_qtd_t *qtd; \ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ switch (hfnum.b.frnum & 0x7) { \ case 7: \ _hcd->hfnum_7_samples_##_letter++; \ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ break; \ case 0: \ _hcd->hfnum_0_samples_##_letter++; \ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ break; \ default: \ _hcd->hfnum_other_samples_##_letter++; \ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \ break; \ } \ } \ } #else // DEBUG #define dwc_sample_frrem(_hcd, _qh, _letter) #endif // DEBUG #endif // __DWC_HCD_H__ #endif /* DWC_DEVICE_ONLY */