aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c')
-rw-r--r--target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c1185
1 files changed, 1185 insertions, 0 deletions
diff --git a/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c b/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c
new file mode 100644
index 000000000..a608d74cf
--- /dev/null
+++ b/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c
@@ -0,0 +1,1185 @@
+/*
+ * arch/ubicom32/kernel/ldsr.c
+ * Ubicom32 architecture Linux Device Services Driver Interface
+ *
+ * (C) Copyright 2009, Ubicom, Inc.
+ *
+ * This file is part of the Ubicom32 Linux Kernel Port.
+ *
+ * The Ubicom32 Linux Kernel Port is free software: you can redistribute
+ * it and/or modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * The Ubicom32 Linux Kernel Port is distributed in the hope that it
+ * will be useful, but WITHOUT ANY WARRANTY; without even the implied
+ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
+ * the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with the Ubicom32 Linux Kernel Port. If not,
+ * see <http://www.gnu.org/licenses/>.
+ *
+ * Ubicom32 implementation derived from (with many thanks):
+ * arch/m68knommu
+ * arch/blackfin
+ * arch/parisc
+ *
+ * NOTES:
+ *
+ * The LDSR is a programmable interrupt controller that is written in software.
+ * It emulates the behavior of an pic by fielding the interrupts, choosing a
+ * victim thread to take the interrupt and forcing that thread to take a context
+ * switch to the appropriate interrupt handler.
+ *
+ * Because traps are treated as just a special class of interrupts, the LDSR
+ * also handles the processing of traps.
+ *
+ * Because we compile Linux both UP and SMP, we need the LDSR to use
+ * architectural locking that is not "compiled out" when compiling UP. For now,
+ * we use the single atomic bit lock.
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/profile.h>
+#include <linux/clocksource.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/cpumask.h>
+#include <linux/bug.h>
+#include <linux/delay.h>
+#include <asm/ip5000.h>
+#include <asm/atomic.h>
+#include <asm/machdep.h>
+#include <asm/asm-offsets.h>
+#include <asm/traps.h>
+#include <asm/thread.h>
+#include <asm/range-protect.h>
+
+/*
+ * One can not print from the LDSR so the best we can do is
+ * check a condition and stall all of the threads.
+ */
+
+// #define DEBUG_LDSR 1
+#if defined(DEBUG_LDSR)
+#define DEBUG_ASSERT(cond) \
+ if (!(cond)) { \
+ THREAD_STALL; \
+ }
+#else
+#define DEBUG_ASSERT(cond)
+#endif
+
+/*
+ * Make global so that we can use it in the RFI code in assembly.
+ */
+unsigned int ldsr_soft_irq_mask;
+EXPORT_SYMBOL(ldsr_soft_irq_mask);
+
+static unsigned int ldsr_suspend_mask;
+static unsigned int ldsr_soft_irq;
+static unsigned int ldsr_stack_space[1024];
+
+static struct ldsr_register_bank {
+ volatile unsigned int enabled0;
+ volatile unsigned int enabled1;
+ volatile unsigned int mask0;
+ volatile unsigned int mask1;
+ unsigned int total;
+ unsigned int retry;
+ unsigned int backout;
+} ldsr_interrupt;
+
+/*
+ * Which thread/cpu are we?
+ */
+static int ldsr_tid = -1;
+
+#if defined(CONFIG_IRQSTACKS)
+/*
+ * per-CPU IRQ stacks (thread information and stack)
+ *
+ * NOTE: Do not use DEFINE_PER_CPU() as it makes it harder
+ * to find the location of ctx from assembly language.
+ */
+union irq_ctx {
+ struct thread_info tinfo;
+ u32 stack[THREAD_SIZE/sizeof(u32)];
+};
+static union irq_ctx *percpu_irq_ctxs[NR_CPUS];
+
+/*
+ * Storage for the interrupt stack.
+ */
+#if !defined(CONFIG_IRQSTACKS_USEOCM)
+static char percpu_irq_stacks[(NR_CPUS * THREAD_SIZE) + (THREAD_SIZE - 1)];
+#else
+/*
+ * For OCM, the linker will ensure that space is allocated for the stack
+ * see (vmlinux.lds.S)
+ */
+static char percpu_irq_stacks[];
+#endif
+
+#endif
+
+/*
+ * Save trap IRQ because we need to un-suspend if it gets set.
+ */
+static unsigned int ldsr_trap_irq_mask;
+static unsigned int ldsr_trap_irq;
+
+/*
+ * ret_from_interrupt_to_kernel
+ * Just restore the context and do nothing else.
+ */
+asmlinkage void ret_from_interrupt_to_kernel(void)__attribute__((naked));
+
+/*
+ * ret_from_interrupt_to_user
+ * Call scheduler if needed. Just restore the context.
+ */
+asmlinkage void ret_from_interrupt_to_user(void)__attribute__((naked));
+
+#ifdef DEBUG_LDSR
+u32_t old_sp, old_pc, old_a0, old_a5, old_a3;
+struct pt_regs copy_regs, *copy_save_area;
+#endif
+
+int __user_mode(unsigned long sp)
+{
+
+ u32_t saved_stack_base = sp & ~(ASM_THREAD_SIZE - 1);
+#if defined(CONFIG_IRQSTACKS_USEOCM)
+ if ((union irq_ctx *)saved_stack_base == percpu_irq_ctxs[smp_processor_id()]) {
+ /*
+ * On the interrupt stack.
+ */
+ return 0;
+ }
+#endif
+
+ if (!(u32_t)current) {
+ return 0;
+ }
+ return saved_stack_base != ((u32_t)current->stack);
+}
+
+/*
+ * ldsr_lock_release()
+ * Release the LDSR lock.
+ */
+static void ldsr_lock_release(void)
+{
+ UBICOM32_UNLOCK(LDSR_LOCK_BIT);
+}
+
+/*
+ * ldsr_lock_acquire()
+ * Acquire the LDSR lock, spin if not available.
+ */
+static void ldsr_lock_acquire(void)
+{
+ UBICOM32_LOCK(LDSR_LOCK_BIT);
+}
+
+/*
+ * ldsr_thread_irq_disable()
+ * Disable interrupts for the specified thread.
+ */
+static void ldsr_thread_irq_disable(unsigned int tid)
+{
+ unsigned int mask = (1 << tid);
+
+ asm volatile (
+ " or.4 scratchpad1, scratchpad1, %0 \n\t"
+ :
+ : "d"(mask)
+ : "cc"
+ );
+}
+
+/*
+ * ldsr_thread_get_interrupts()
+ * Get the interrupt state for all threads.
+ */
+static unsigned long ldsr_thread_get_interrupts(void)
+{
+ unsigned long ret = 0;
+ asm volatile (
+ " move.4 %0, scratchpad1 \n\t"
+ : "=r" (ret)
+ :
+ );
+ return ret;
+}
+
+/*
+ * ldsr_emulate_and_run()
+ * Emulate the instruction and then set the thread to run.
+ */
+static void ldsr_emulate_and_run(unsigned int tid)
+{
+ unsigned int thread_mask = (1 << tid);
+ u32_t write_csr = (tid << 15) | (1 << 14);
+
+ /*
+ * Emulate the unaligned access.
+ */
+ unaligned_emulate(tid);
+
+ /*
+ * Get the thread back in a running state.
+ */
+ asm volatile (
+ " setcsr %0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " move.4 trap_cause, #0 \n\t" /* Clear the trap cause
+ * register */
+ " setcsr #0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " move.4 mt_dbg_active_set, %1 \n\t" /* Activate thread even if
+ * in dbg/fault state */
+ " move.4 mt_active_set, %1 \n\t" /* Restart target
+ * thread. */
+ :
+ : "r" (write_csr), "d" (thread_mask)
+ : "cc"
+ );
+ thread_enable_mask(thread_mask);
+}
+
+/*
+ * ldsr_preemptive_context_save()
+ * save thread context from another hardware thread. The other thread must
+ * be stalled.
+ */
+static inline void ldsr_preemptive_context_save(u32_t thread,
+ struct pt_regs *regs)
+{
+ /*
+ * Save the current state of the specified thread
+ */
+ asm volatile (
+ " move.4 a3, %0 \n\t"
+
+ /* set src1 from the target thread */
+ " move.4 csr, %1 \n\t"
+ " setcsr_flush 0 \n\t"
+ " setcsr_flush 0 \n\t"
+
+ /* copy state from the other thread */
+ " move.4 "D(PT_D0)"(a3), d0 \n\t"
+ " move.4 "D(PT_D1)"(a3), d1 \n\t"
+ " move.4 "D(PT_D2)"(a3), d2 \n\t"
+ " move.4 "D(PT_D3)"(a3), d3 \n\t"
+ " move.4 "D(PT_D4)"(a3), d4 \n\t"
+ " move.4 "D(PT_D5)"(a3), d5 \n\t"
+ " move.4 "D(PT_D6)"(a3), d6 \n\t"
+ " move.4 "D(PT_D7)"(a3), d7 \n\t"
+ " move.4 "D(PT_D8)"(a3), d8 \n\t"
+ " move.4 "D(PT_D9)"(a3), d9 \n\t"
+ " move.4 "D(PT_D10)"(a3), d10 \n\t"
+ " move.4 "D(PT_D11)"(a3), d11 \n\t"
+ " move.4 "D(PT_D12)"(a3), d12 \n\t"
+ " move.4 "D(PT_D13)"(a3), d13 \n\t"
+ " move.4 "D(PT_D14)"(a3), d14 \n\t"
+ " move.4 "D(PT_D15)"(a3), d15 \n\t"
+ " move.4 "D(PT_A0)"(a3), a0 \n\t"
+ " move.4 "D(PT_A1)"(a3), a1 \n\t"
+ " move.4 "D(PT_A2)"(a3), a2 \n\t"
+ " move.4 "D(PT_A3)"(a3), a3 \n\t"
+ " move.4 "D(PT_A4)"(a3), a4 \n\t"
+ " move.4 "D(PT_A5)"(a3), a5 \n\t"
+ " move.4 "D(PT_A6)"(a3), a6 \n\t"
+ " move.4 "D(PT_SP)"(a3), a7 \n\t"
+ " move.4 "D(PT_ACC0HI)"(a3), acc0_hi \n\t"
+ " move.4 "D(PT_ACC0LO)"(a3), acc0_lo \n\t"
+ " move.4 "D(PT_MAC_RC16)"(a3), mac_rc16 \n\t"
+ " move.4 "D(PT_ACC1HI)"(a3), acc1_hi \n\t"
+ " move.4 "D(PT_ACC1LO)"(a3), acc1_lo \n\t"
+ " move.4 "D(PT_SOURCE3)"(a3), source3 \n\t"
+ " move.4 "D(PT_INST_CNT)"(a3), inst_cnt \n\t"
+ " move.4 "D(PT_CSR)"(a3), csr \n\t"
+ " move.4 "D(PT_DUMMY_UNUSED)"(a3), #0 \n\t"
+ " move.4 "D(PT_INT_MASK0)"(a3), int_mask0 \n\t"
+ " move.4 "D(PT_INT_MASK1)"(a3), int_mask1 \n\t"
+ " move.4 "D(PT_TRAP_CAUSE)"(a3), trap_cause \n\t"
+ " move.4 "D(PT_PC)"(a3), pc \n\t"
+ " move.4 "D(PT_PREVIOUS_PC)"(a3), previous_pc \n\t"
+ /* disable csr thread select */
+ " movei csr, #0 \n\t"
+ " setcsr_flush 0 \n\t"
+ :
+ : "r" (regs->dn), "d" ((thread << 9) | (1 << 8))
+ : "a3"
+ );
+}
+
+/*
+ * ldsr_rotate_threads()
+ * Simple round robin algorithm for choosing the next cpu
+ */
+static int ldsr_rotate_threads(unsigned long cpus)
+{
+ static unsigned char ldsr_bits[8] = {
+ 3, 0, 1, 0, 2, 0, 1, 0
+ };
+
+ static int nextbit;
+ int thisbit;
+
+ /*
+ * Move the interrupts down so that we consider interrupts from where
+ * we left off, then take the interrupts we would lose and move them
+ * to the top half of the interrupts value.
+ */
+ cpus = (cpus >> nextbit) | (cpus << ((sizeof(cpus) * 8) - nextbit));
+
+ /*
+ * 50% of the time we won't take this at all and then of the cases where
+ * we do about 50% of those we only execute once.
+ */
+ if (!(cpus & 0xffff)) {
+ nextbit += 16;
+ cpus >>= 16;
+ }
+
+ if (!(cpus & 0xff)) {
+ nextbit += 8;
+ cpus >>= 8;
+ }
+
+ if (!(cpus & 0xf)) {
+ nextbit += 4;
+ cpus >>= 4;
+ }
+
+ nextbit += ldsr_bits[cpus & 0x7];
+ thisbit = (nextbit & ((sizeof(cpus) * 8) - 1));
+ nextbit = (thisbit + 1) & ((sizeof(cpus) * 8) - 1);
+ DEBUG_ASSERT(thisbit < THREAD_ARCHITECTURAL_MAX);
+ return thisbit;
+}
+
+/*
+ * ldsr_rotate_interrupts()
+ * Get rotating next set bit value.
+ */
+static int ldsr_rotate_interrupts(unsigned long long interrupts)
+{
+ static unsigned char ldsr_bits[8] = {
+ 3, 0, 1, 0, 2, 0, 1, 0
+ };
+
+ static int nextbit;
+ int thisbit;
+
+ /*
+ * Move the interrupts down so that we consider interrupts from where
+ * we left off, then take the interrupts we would lose and move them
+ * to the top half of the interrupts value.
+ */
+ interrupts = (interrupts >> nextbit) |
+ (interrupts << ((sizeof(interrupts) * 8) - nextbit));
+
+ /*
+ * 50% of the time we won't take this at all and then of the cases where
+ * we do about 50% of those we only execute once.
+ */
+ if (!(interrupts & 0xffffffff)) {
+ nextbit += 32;
+ interrupts >>= 32;
+ }
+
+ if (!(interrupts & 0xffff)) {
+ nextbit += 16;
+ interrupts >>= 16;
+ }
+
+ if (!(interrupts & 0xff)) {
+ nextbit += 8;
+ interrupts >>= 8;
+ }
+
+ if (!(interrupts & 0xf)) {
+ nextbit += 4;
+ interrupts >>= 4;
+ }
+
+ nextbit += ldsr_bits[interrupts & 0x7];
+ thisbit = (nextbit & ((sizeof(interrupts) * 8) - 1));
+ nextbit = (thisbit + 1) & ((sizeof(interrupts) * 8) - 1);
+
+ DEBUG_ASSERT(thisbit < (sizeof(interrupts) * 8));
+ return thisbit;
+}
+
+/*
+ * ldsr_backout_or_irq()
+ *
+ * One way or the other this interrupt is not being
+ * processed, make sure that it is reset. We are
+ * not going to call irq_end_vector() so unmask the
+ * interrupt.
+ */
+static void ldsr_backout_of_irq(int vector, unsigned long tid_mask)
+{
+#if defined(CONFIG_SMP)
+ if (unlikely(vector == smp_ipi_irq)) {
+ smp_reset_ipi(tid_mask);
+ }
+#endif
+ ldsr_unmask_vector(vector);
+ ldsr_interrupt.backout++;
+}
+
+#if defined(CONFIG_IRQSTACKS)
+/*
+ * ldsr_choose_savearea_and_returnvec()
+ * Test our current state (user, kernel, interrupt) and set things up.
+ *
+ * This version of the function uses 3 stacks and nests interrupts
+ * on the interrupt stack.
+ */
+static struct pt_regs *ldsr_choose_savearea_and_returnvec(thread_t tid, u32_t linux_sp, u32_t *pvec)
+{
+ struct pt_regs *save_area;
+ u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1);
+ struct thread_info * ti= (struct thread_info *)sw_ksp[tid];
+
+#if defined(CONFIG_SMP)
+ union irq_ctx *icp = percpu_irq_ctxs[tid];
+#else
+ union irq_ctx *icp = percpu_irq_ctxs[0];
+#endif
+
+ if (masked_linux_sp == (u32_t)icp) {
+ /*
+ * Fault/Interrupt occurred while on the interrupt stack.
+ */
+ save_area = (struct pt_regs *)((char *)linux_sp - sizeof(struct pt_regs) - 8);
+ *pvec = (u32_t)(&ret_from_interrupt_to_kernel);
+ } else {
+ /*
+ * Fault/Interrupt occurred while on user/kernel stack. This is a new
+ * first use of the interrupt stack.
+ */
+ save_area = (struct pt_regs *) ((char *)icp + sizeof(icp->stack) - sizeof(struct pt_regs) - 8);
+ if (masked_linux_sp == (u32_t)ti) {
+ *pvec = (u32_t)(&ret_from_interrupt_to_kernel);
+ } else {
+ *pvec = (u32_t)(&ret_from_interrupt_to_user);
+ }
+
+ /*
+ * Because the softirq code will execute on the "interrupt" stack, we
+ * need to maintain the knowledge of what "task" was executing on the
+ * cpu. This is done by copying the thread_info->task from the cpu
+ * we are about to context switch into the interrupt contexts thread_info
+ * structure.
+ */
+ icp->tinfo.task = ti->task;
+ icp->tinfo.preempt_count =
+ (icp->tinfo.preempt_count & ~SOFTIRQ_MASK) |
+ (ti->preempt_count & SOFTIRQ_MASK);
+ icp->tinfo.interrupt_nesting = 0;
+ }
+ save_area->nesting_level = icp->tinfo.interrupt_nesting;
+ return save_area;
+}
+
+#else
+/*
+ * ldsr_choose_savearea_and_returnvec()
+ * Test our current state (user, kernel, interrupt) and set things up.
+ *
+ * The version of the function uses just the user & kernel stack and
+ * nests interrupts on the existing kernel stack.
+ */
+static struct pt_regs *ldsr_choose_savearea_and_returnvec(thread_t tid, u32_t linux_sp, u32_t *pvec)
+{
+ struct pt_regs *save_area;
+ u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1);
+ struct thread_info *ti = (struct thread_info *)sw_ksp[tid];
+
+ if (masked_linux_sp == (u32_t)ti) {
+ /*
+ * Fault/Interrupt occurred while on the kernel stack.
+ */
+ save_area = (struct pt_regs *)((char *)linux_sp - sizeof(struct pt_regs) - 8);
+ *pvec = (u32_t) (&ret_from_interrupt_to_kernel);
+ } else {
+ /*
+ * Fault/Interrupt occurred while on user stack.
+ */
+ ti->interrupt_nesting = 0;
+ save_area = (struct pt_regs *)((u32_t)ti + THREAD_SIZE - sizeof(struct pt_regs) - 8);
+ *pvec = (u32_t) (&ret_from_interrupt_to_user);
+ }
+ save_area->nesting_level = ti->interrupt_nesting;
+ return save_area;
+}
+#endif
+
+/*
+ * ldsr_ctxsw_thread()
+ * Context switch a mainline thread to execute do_IRQ() for the specified
+ * vector.
+ */
+static void ldsr_ctxsw_thread(int vector, thread_t tid)
+{
+ u32_t linux_sp;
+ u32_t return_vector;
+ struct pt_regs *save_area, *regs;
+ u32_t thread_mask = (1 << tid);
+ u32_t read_csr = ((tid << 9) | (1 << 8));
+ u32_t write_csr = (tid << 15) | (1 << 14);
+ u32_t interrupt_vector = (u32_t)(&do_IRQ);
+
+ unsigned int frame_type = UBICOM32_FRAME_TYPE_INTERRUPT;
+
+
+ DEBUG_ASSERT(!thread_is_enabled(tid));
+
+ /*
+ * Acquire the necessary global and per thread locks for tid.
+ * As a side effect, we ensure that the thread has not trapped
+ * and return true if it has.
+ */
+ if (unlikely(thread_is_trapped(tid))) {
+ /*
+ * Read the trap cause, the sp and clear the MT_TRAP bits.
+ */
+ unsigned int cause;
+ asm volatile (
+ " setcsr %3 \n\t"
+ " setcsr_flush 0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " move.4 %0, TRAP_CAUSE \n\t"
+ " move.4 %1, SP \n\t"
+ " setcsr #0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " move.4 MT_BREAK_CLR, %2\n\t"
+ " move.4 MT_TRAP_CLR, %2 \n\t"
+ : "=&r" (cause), "=&r" (linux_sp)
+ : "r" (thread_mask), "m" (read_csr)
+ );
+
+ ldsr_backout_of_irq(vector, (1 << tid));
+
+#if !defined(CONFIG_UNALIGNED_ACCESS_DISABLED)
+ /*
+ * See if the unaligned trap handler can deal with this.
+ * If so, emulate the instruction and then just restart
+ * the thread.
+ */
+ if (unaligned_only(cause)) {
+#if defined(CONFIG_UNALIGNED_ACCESS_USERSPACE_ONLY)
+ /*
+ * Check if this is a kernel stack if so we will not
+ * handle the trap
+ */
+ u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1);
+ if ((masked_linux_sp != (u32_t)sw_ksp[tid]) &&
+ unaligned_only(cause)) {
+ ldsr_emulate_and_run(tid);
+ return;
+ }
+#else
+ ldsr_emulate_and_run(tid);
+ return;
+#endif
+
+ }
+#endif
+
+ interrupt_vector = (u32_t)(&trap_handler);
+ frame_type = UBICOM32_FRAME_TYPE_TRAP;
+ } else {
+ /*
+ * Read the target thread's SP
+ */
+ asm volatile (
+ " setcsr %1 \n\t"
+ " setcsr_flush 0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " move.4 %0, SP \n\t"
+ " setcsr #0 \n\t"
+ " setcsr_flush 0 \n\t"
+ : "=m" (linux_sp)
+ : "m" (read_csr)
+ );
+ }
+
+ /*
+ * We are delivering an interrupt, count it.
+ */
+ ldsr_interrupt.total++;
+
+ /*
+ * At this point, we will definitely force this thread to
+ * a new context, show its interrupts as disabled.
+ */
+ ldsr_thread_irq_disable(tid);
+
+ /*
+ * Test our current state (user, kernel, interrupt). Save the
+ * appropriate data and setup for the return.
+ */
+ save_area = ldsr_choose_savearea_and_returnvec(tid, linux_sp, &return_vector);
+
+ /*
+ * The pt_regs (save_area) contains the type of thread that we are dealing
+ * with (KERNEL/NORMAL) and is copied into each pt_regs area. We get this
+ * from the current tasks kernel pt_regs area that always exists at the
+ * top of the kernel stack.
+ */
+ regs = (struct pt_regs *)((u32_t)sw_ksp[tid] + THREAD_SIZE - sizeof(struct pt_regs) - 8);
+ save_area->thread_type = regs->thread_type;
+
+ /*
+ * Preserve the context of the Linux thread.
+ */
+ ldsr_preemptive_context_save(tid, save_area);
+
+ /*
+ * Load the fram_type into the save_area.
+ */
+ save_area->frame_type = frame_type;
+
+#ifdef CONFIG_STOP_ON_TRAP
+ /*
+ * Before we get backtrace and showing stacks working well, it sometimes
+ * helps to enter the debugger when a trap occurs before we change the
+ * thread to handle the fault. This optional code causes all threads to
+ * stop on every trap frame. One assumes that GDB connected via the
+ * mailbox interface will be used to recover from this state.
+ */
+ if (frame_type == UBICOM32_FRAME_TYPE_TRAP) {
+ THREAD_STALL;
+ }
+#endif
+
+#ifdef DEBUG_LDSR
+ copy_regs = *save_area;
+ copy_save_area = save_area;
+
+ old_a0 = save_area->an[0];
+ old_a3 = save_area->an[3];
+ old_sp = save_area->an[7];
+ old_a5 = save_area->an[5];
+ old_pc = save_area->pc;
+#endif
+
+ /*
+ * Now we have to switch the kernel thread to run do_IRQ function.
+ * Set pc to do_IRQ
+ * Set d0 to vector
+ * Set d1 to save_area.
+ * Set a5 to the proper return vector.
+ */
+ asm volatile (
+ " setcsr %0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " move.4 d0, %5 \n\t" /* d0 = 0 vector # */
+ " move.4 d1, %1 \n\t" /* d1 = save_area */
+ " move.4 sp, %1 \n\t" /* sp = save_area */
+ " move.4 a5, %2 \n\t" /* a5 = return_vector */
+ " move.4 pc, %3 \n\t" /* pc = do_IRQ routine. */
+ " move.4 trap_cause, #0 \n\t" /* Clear the trap cause
+ * register */
+ " setcsr #0 \n\t"
+ " setcsr_flush 0 \n\t"
+ " enable_kernel_ranges %4 \n\t"
+ " move.4 mt_dbg_active_set, %4 \n\t" /* Activate thread even if
+ * in dbg/fault state */
+ " move.4 mt_active_set, %4 \n\t" /* Restart target
+ * thread. */
+ :
+ : "r" (write_csr), "r" (save_area),
+ "r" (return_vector), "r" (interrupt_vector),
+ "d" (thread_mask), "r" (vector)
+ : "cc"
+ );
+ thread_enable_mask(thread_mask);
+}
+
+/*
+ * ldsr_deliver_interrupt()
+ * Deliver the interrupt to one of the threads or all of the threads.
+ */
+static void ldsr_deliver_interrupt(int vector,
+ unsigned long deliver_to,
+ int all)
+{
+ unsigned long disabled_threads;
+ unsigned long possible_threads;
+ unsigned long trapped_threads;
+ unsigned long global_locks;
+
+ /*
+ * Disable all of the threads that we might want to send
+ * this interrupt to.
+ */
+retry:
+ DEBUG_ASSERT(deliver_to);
+ thread_disable_mask(deliver_to);
+
+ /*
+ * If any threads are in the trap state, we have to service the
+ * trap for those threads first.
+ */
+ asm volatile (
+ "move.4 %0, MT_TRAP \n\t"
+ : "=r" (trapped_threads)
+ :
+ );
+
+ trapped_threads &= deliver_to;
+ if (unlikely(trapped_threads)) {
+ /*
+ * all traps will be handled, so clear the trap bit before restarting any threads
+ */
+ ubicom32_clear_interrupt(ldsr_trap_irq);
+
+ /*
+ * Let the remaining untrapped threads, continue.
+ */
+ deliver_to &= ~trapped_threads;
+ if (deliver_to) {
+ thread_enable_mask(deliver_to);
+ }
+
+ /*
+ * For the trapped threads force them to handle
+ * a trap.
+ */
+ while (trapped_threads) {
+ unsigned long which = ffz(~trapped_threads);
+ trapped_threads &= ~(1 << which);
+ ldsr_ctxsw_thread(vector, which);
+ }
+ return;
+ }
+
+ /*
+ * Can we deliver an interrupt to any of the threads?
+ */
+ disabled_threads = ldsr_thread_get_interrupts();
+ possible_threads = deliver_to & ~disabled_threads;
+ if (unlikely(!possible_threads)) {
+#if defined(CONFIG_SMP)
+ /*
+ * In the SMP case, we can not wait because 1 cpu might be
+ * sending an IPI to another cpu which is currently blocked.
+ * The only way to ensure IPI delivery is to backout and
+ * keep trying. For SMP, we don't sleep until the interrupts
+ * are delivered.
+ */
+ thread_enable_mask(deliver_to);
+ ldsr_backout_of_irq(vector, deliver_to);
+ return;
+#else
+ /*
+ * In the UP case, we have nothing to do so we should wait.
+ *
+ * Since the INT_MASK0 and INT_MASK1 are "re-loaded" before we
+ * suspend in the outer loop, we do not need to save them here.
+ *
+ * We test that we were awakened for our specific interrupts
+ * because the ldsr mask/unmask operations will force the ldsr
+ * awake even if the interrupt on the mainline thread is not
+ * completed.
+ */
+ unsigned int scratch = 0;
+ thread_enable_mask(deliver_to);
+ asm volatile (
+ " move.4 INT_MASK0, %1 \n\t"
+ " move.4 INT_MASK1, #0 \n\t"
+
+ "1: suspend \n\t"
+ " move.4 %0, INT_STAT0 \n\t"
+ " and.4 %0, %0, %1 \n\t"
+ " jmpeq.f 1b \n\t"
+
+ " move.4 INT_CLR0, %2 \n\t"
+ : "+r" (scratch)
+ : "d" (ldsr_suspend_mask), "r" (ldsr_soft_irq_mask)
+ : "cc"
+ );
+
+ /*
+ * This delay is sized to coincide with the time it takes a
+ * thread to complete the exit (see return_from_interrupt).
+ */
+ ldsr_interrupt.retry++;
+ __delay(10);
+ goto retry;
+#endif
+ }
+
+ /*
+ * If any of the global locks are held, we can not deliver any
+ * interrupts, we spin delay(10) and then try again. If our
+ * spinning becomes a bottle neck, we will need to suspend but for
+ * now lets just spin.
+ */
+ asm volatile (
+ "move.4 %0, scratchpad1 \n\t"
+ : "=r" (global_locks)
+ :
+ );
+ if (unlikely(global_locks & 0xffff0000)) {
+ thread_enable_mask(deliver_to);
+
+ /*
+ * This delay is sized to coincide with the average time it
+ * takes a thread to release a global lock.
+ */
+ ldsr_interrupt.retry++;
+ __delay(10);
+ goto retry;
+ }
+
+ /*
+ * Deliver to one cpu.
+ */
+ if (!all) {
+ /*
+ * Find our victim and then enable everyone else.
+ */
+ unsigned long victim = ldsr_rotate_threads(possible_threads);
+ DEBUG_ASSERT((deliver_to & (1 << victim)));
+ DEBUG_ASSERT((possible_threads & (1 << victim)));
+
+ deliver_to &= ~(1 << victim);
+ if (deliver_to) {
+ thread_enable_mask(deliver_to);
+ }
+ ldsr_ctxsw_thread(vector, victim);
+ return;
+ }
+
+ /*
+ * If we can't deliver to some threads, wake them
+ * back up and reset things to deliver to them.
+ */
+ deliver_to &= ~possible_threads;
+ if (unlikely(deliver_to)) {
+ thread_enable_mask(deliver_to);
+ ldsr_backout_of_irq(vector, deliver_to);
+ }
+
+ /*
+ * Deliver to all possible threads(s).
+ */
+ while (possible_threads) {
+ unsigned long victim = ffz(~possible_threads);
+ possible_threads &= ~(1 << victim);
+ ldsr_ctxsw_thread(vector, victim);
+ }
+}
+
+/*
+ * ldsr_thread()
+ * This thread acts as the interrupt controller for Linux.
+ */
+static void ldsr_thread(void *arg)
+{
+ int stat0;
+ int stat1;
+ int interrupt0;
+ int interrupt1;
+ long long interrupts;
+ unsigned long cpus;
+
+#if !defined(CONFIG_SMP)
+ /*
+ * In a non-smp configuration, we can not use the cpu(s) arrays because
+ * there is not a 1-1 correspondence between cpus(s) and our threads.
+ * Thus we must get a local idea of the mainline threads and use the
+ * one and only 1 set as the victim. We do this once before the ldsr
+ * loop.
+ *
+ * In the SMP case, we will use the cpu(s) map to determine which cpu(s)
+ * are valid to send interrupts to.
+ */
+ int victim = 0;
+ unsigned int mainline = thread_get_mainline();
+ if (mainline == 0) {
+ panic("no mainline Linux threads to interrupt");
+ return;
+ }
+ victim = ffz(~mainline);
+ cpus = (1 << victim);
+#endif
+
+ while (1) {
+ /*
+ * If one changes this code not to reload the INT_MASK(s), you
+ * need to know that code in the lock waiting above does not
+ * reset the MASK registers back; so that code will need to be
+ * changed.
+ */
+ ldsr_lock_acquire();
+ asm volatile (
+ " move.4 INT_MASK0, %0 \n\t"
+ " move.4 INT_MASK1, %1 \n\t"
+ :
+ : "U4" (ldsr_interrupt.mask0), "U4" (ldsr_interrupt.mask1)
+ );
+ ldsr_lock_release();
+ thread_suspend();
+
+ /*
+ * Read the interrupt status registers
+ */
+ asm volatile (
+ "move.4 %0, INT_STAT0 \n\t"
+ "move.4 %1, INT_STAT1 \n\t"
+ : "=r" (stat0), "=r" (stat1)
+ :
+ );
+
+ /*
+ * We only care about interrupts that we have been told to care
+ * about. The interrupt must be enabled, unmasked, and have
+ * occurred in the hardware.
+ */
+ ldsr_lock_acquire();
+ interrupt0 = ldsr_interrupt.enabled0 &
+ ldsr_interrupt.mask0 & stat0;
+ interrupt1 = ldsr_interrupt.enabled1 &
+ ldsr_interrupt.mask1 & stat1;
+ ldsr_lock_release();
+
+ /*
+ * For each interrupt in the "snapshot" we will mask the
+ * interrupt handle the interrupt (typically calling do_IRQ()).
+ *
+ * The interrupt is unmasked by desc->chip->end() function in
+ * the per chip generic interrupt handling code
+ * (arch/ubicom32/kernel/irq.c).8
+ */
+ interrupts = ((unsigned long long)interrupt1 << 32) |
+ interrupt0;
+ while (interrupts) {
+ int all = 0;
+ int vector = ldsr_rotate_interrupts(interrupts);
+ interrupts &= ~((unsigned long long)1 << vector);
+
+ /*
+ * Now mask off this vector so that the LDSR ignores
+ * it until it is acknowledged.
+ */
+ ldsr_mask_vector(vector);
+#if !defined(CONFIG_SMP)
+ ldsr_deliver_interrupt(vector, cpus, all);
+#else
+ cpus = smp_get_affinity(vector, &all);
+ if (!cpus) {
+ /*
+ * No CPU to deliver to so just leave
+ * the interrupt unmasked and increase
+ * the backout count. We will eventually
+ * return and deliver it again.
+ */
+ ldsr_unmask_vector(vector);
+ ldsr_interrupt.backout++;
+ continue;
+ }
+ ldsr_deliver_interrupt(vector, cpus, all);
+#endif
+ }
+ }
+
+ /* NOTREACHED */
+}
+
+/*
+ * ldsr_mask_vector()
+ * Temporarily mask the interrupt vector, turn off the bit in the mask
+ * register.
+ */
+void ldsr_mask_vector(unsigned int vector)
+{
+ unsigned int mask;
+ if (vector < 32) {
+ mask = ~(1 << vector);
+ ldsr_lock_acquire();
+ ldsr_interrupt.mask0 &= mask;
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+ return;
+ }
+
+ mask = ~(1 << (vector - 32));
+ ldsr_lock_acquire();
+ ldsr_interrupt.mask1 &= mask;
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+}
+
+/*
+ * ldsr_unmask_vector()
+ * Unmask the interrupt vector so that it can be used, turn on the bit in
+ * the mask register.
+ *
+ * Because it is legal for the interrupt path to disable an interrupt,
+ * the unmasking code must ensure that disabled interrupts are not
+ * unmasked.
+ */
+void ldsr_unmask_vector(unsigned int vector)
+{
+ unsigned int mask;
+ if (vector < 32) {
+ mask = (1 << vector);
+ ldsr_lock_acquire();
+ ldsr_interrupt.mask0 |= (mask & ldsr_interrupt.enabled0);
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+ return;
+ }
+
+ mask = (1 << (vector - 32));
+ ldsr_lock_acquire();
+ ldsr_interrupt.mask1 |= (mask & ldsr_interrupt.enabled1);
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+}
+
+/*
+ * ldsr_enable_vector()
+ * The LDSR implements an interrupt controller and has a local (to the
+ * LDSR) copy of its interrupt mask.
+ */
+void ldsr_enable_vector(unsigned int vector)
+{
+ unsigned int mask;
+ if (vector < 32) {
+ mask = (1 << vector);
+ ldsr_lock_acquire();
+ ldsr_interrupt.enabled0 |= mask;
+ ldsr_interrupt.mask0 |= mask;
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+ return;
+ }
+
+ mask = (1 << (vector - 32));
+ ldsr_lock_acquire();
+ ldsr_interrupt.enabled1 |= mask;
+ ldsr_interrupt.mask1 |= mask;
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+}
+
+/*
+ * ldsr_disable_vector()
+ * The LDSR implements an interrupt controller and has a local (to the
+ * LDSR) copy of its interrupt mask.
+ */
+void ldsr_disable_vector(unsigned int vector)
+{
+ unsigned int mask;
+
+ if (vector < 32) {
+ mask = ~(1 << vector);
+ ldsr_lock_acquire();
+ ldsr_interrupt.enabled0 &= mask;
+ ldsr_interrupt.mask0 &= mask;
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+ return;
+ }
+
+ mask = ~(1 << (vector - 32));
+ ldsr_lock_acquire();
+ ldsr_interrupt.enabled1 &= mask;
+ ldsr_interrupt.mask1 &= mask;
+ ldsr_lock_release();
+ thread_resume(ldsr_tid);
+}
+
+/*
+ * ldsr_get_threadid()
+ * Return the threadid of the LDSR thread.
+ */
+thread_t ldsr_get_threadid(void)
+{
+ return ldsr_tid;
+}
+
+/*
+ * ldsr_set_trap_irq()
+ * Save away the trap Soft IRQ
+ *
+ * See the per thread lock suspend code above for an explination.
+ */
+void ldsr_set_trap_irq(unsigned int irq)
+{
+ ldsr_trap_irq = irq;
+ ldsr_trap_irq_mask = (1 << irq);
+ ldsr_suspend_mask |= ldsr_trap_irq_mask;
+}
+
+/*
+ * ldsr_init()
+ * Initialize the LDSR (Interrupt Controller)
+ */
+void ldsr_init(void)
+{
+#if defined(CONFIG_IRQSTACKS)
+ int i;
+ union irq_ctx *icp;
+#endif
+
+ void *stack_high = (void *)ldsr_stack_space;
+ stack_high += sizeof(ldsr_stack_space);
+ stack_high -= 8;
+
+
+ /*
+ * Obtain a soft IRQ to use
+ */
+ if (irq_soft_alloc(&ldsr_soft_irq) < 0) {
+ panic("no software IRQ is available\n");
+ return;
+ }
+ ldsr_soft_irq_mask |= (1 << ldsr_soft_irq);
+ ldsr_suspend_mask |= ldsr_soft_irq_mask;
+
+ /*
+ * Now allocate and start the LDSR thread.
+ */
+ ldsr_tid = thread_alloc();
+ if (ldsr_tid < 0) {
+ panic("no thread available to run LDSR");
+ return;
+ }
+
+#if defined(CONFIG_IRQSTACKS)
+ /*
+ * Initialize the per-cpu irq thread_info structure that
+ * is at the top of each per-cpu irq stack.
+ */
+ icp = (union irq_ctx *)
+ (((unsigned long)percpu_irq_stacks + (THREAD_SIZE - 1)) & ~(THREAD_SIZE - 1));
+ for (i = 0; i < NR_CPUS; i++) {
+ struct thread_info *ti = &(icp->tinfo);
+ ti->task = NULL;
+ ti->exec_domain = NULL;
+ ti->cpu = i;
+ ti->preempt_count = 0;
+ ti->interrupt_nesting = 0;
+ percpu_irq_ctxs[i] = icp++;
+ }
+#endif
+ thread_start(ldsr_tid, ldsr_thread, NULL,
+ stack_high, THREAD_TYPE_NORMAL);
+}