diff options
author | blogic <blogic@3c298f89-4303-0410-b956-a3cf2f4a3e73> | 2012-10-05 10:12:53 +0000 |
---|---|---|
committer | blogic <blogic@3c298f89-4303-0410-b956-a3cf2f4a3e73> | 2012-10-05 10:12:53 +0000 |
commit | 5c105d9f3fd086aff195d3849dcf847d6b0bd927 (patch) | |
tree | 1229a11f725bfa58aa7c57a76898553bb5f6654a /target/linux/ubicom32/files/drivers/mtd/devices | |
download | openwrt-5c105d9f3fd086aff195d3849dcf847d6b0bd927.tar.gz openwrt-5c105d9f3fd086aff195d3849dcf847d6b0bd927.zip |
branch Attitude Adjustment
git-svn-id: svn://svn.openwrt.org/openwrt/branches/attitude_adjustment@33625 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'target/linux/ubicom32/files/drivers/mtd/devices')
3 files changed, 3271 insertions, 0 deletions
diff --git a/target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c b/target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c new file mode 100644 index 000000000..73938c882 --- /dev/null +++ b/target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c @@ -0,0 +1,1017 @@ +/* + * Micron SPI-ER NAND Flash Memory + * + * (C) Copyright 2009, Ubicom, Inc. + * + * This file is part of the Ubicom32 Linux Kernel Port. + * + * The Ubicom32 Linux Kernel Port is free software: you can redistribute + * it and/or modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, either version 2 of the + * License, or (at your option) any later version. + * + * The Ubicom32 Linux Kernel Port is distributed in the hope that it + * will be useful, but WITHOUT ANY WARRANTY; without even the implied + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with the Ubicom32 Linux Kernel Port. If not, + * see <http://www.gnu.org/licenses/>. +*/ +#include <linux/module.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/mutex.h> +#include <linux/err.h> + +#include <linux/spi/spi.h> +#include <linux/spi/flash.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#define NAND_SPI_ER_BLOCK_FROM_ROW(row) (row >> 6) + +#define NAND_SPI_ER_STATUS_P_FAIL (1 << 3) +#define NAND_SPI_ER_STATUS_E_FAIL (1 << 2) +#define NAND_SPI_ER_STATUS_OIP (1 << 0) + +#define NAND_SPI_ER_LAST_ROW_INVALID 0xFFFFFFFF +#define NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET 0x08 + +struct nand_spi_er_device { + const char *name; + + uint8_t id0; + uint8_t id1; + + unsigned int blocks; + unsigned int pages_per_block; + unsigned int page_size; + unsigned int write_size; + unsigned int erase_size; +}; + +struct nand_spi_er { + char name[24]; + + const struct nand_spi_er_device *device; + + struct mutex lock; + struct spi_device *spi; + + struct mtd_info mtd; + + unsigned int last_row; /* the last row we fetched */ + + /* + * Bad block table (MUST be last in strcuture) + */ + unsigned long nbb; + unsigned long bbt[0]; +}; + +const struct nand_spi_er_device nand_spi_er_devices[] = { + { + name: "MT29F1G01ZDC", + id0: 0x2C, + id1: 0x12, + blocks: 1024, + pages_per_block: 64, + page_size: 2048, + write_size: 512, + erase_size: 64 * 2048, + }, + { + name: "MT29F1G01ZDC", + id0: 0x2C, + id1: 0x13, + blocks: 1024, + pages_per_block: 64, + page_size: 2048, + write_size: 512, + erase_size: 64 * 2048, + }, +}; + +static int read_only = 0; +module_param(read_only, int, 0); +MODULE_PARM_DESC(read_only, "Leave device locked"); + +/* + * nand_spi_er_get_feature + * Get Feature register + */ +static int nand_spi_er_get_feature(struct nand_spi_er *chip, int reg, uint8_t *data) +{ + uint8_t txbuf[2]; + uint8_t rxbuf[1]; + int res; + + txbuf[0] = 0x0F; + txbuf[1] = reg; + res = spi_write_then_read(chip->spi, txbuf, 2, rxbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed get feature res=%d\n", chip->name, res); + return res; + } + *data = rxbuf[0]; + return 0; +} + +/* + * nand_spi_er_busywait + * Wait until the chip is not busy + */ +static int nand_spi_er_busywait(struct nand_spi_er *chip, uint8_t *data) +{ + int i; + + for (i = 0; i < 100; i++) { + int res = nand_spi_er_get_feature(chip, 0xC0, data); + if (res) { + return res; + } + if (!(*data & NAND_SPI_ER_STATUS_OIP)) { + break; + } + } + + return 0; +} + +/* + * nand_spi_er_erase + * Erase a block, parameters must be block aligned + */ +static int nand_spi_er_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct nand_spi_er *chip = mtd->priv; + struct spi_device *spi = chip->spi; + uint8_t txbuf[4]; + int res; + + DEBUG(MTD_DEBUG_LEVEL3, "%s: erase addr:%x len:%x\n", chip->name, instr->addr, instr->len); + + if ((instr->addr + instr->len) > mtd->size) { + return -EINVAL; + } + + if (instr->addr & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: erase address is not aligned %x\n", chip->name, instr->addr); + return -EINVAL; + } + + if (instr->len & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: erase len is not aligned %x\n", chip->name, instr->len); + return -EINVAL; + } + + mutex_lock(&chip->lock); + chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID; + + while (instr->len) { + uint32_t block = instr->addr >> 17; + uint32_t row = block << 6; + uint8_t stat; + DEBUG(MTD_DEBUG_LEVEL3, "%s: block erase row:%x block:%x addr:%x rem:%x\n", chip->name, row, block, instr->addr, instr->len); + + /* + * Write enable + */ + txbuf[0] = 0x06; + res = spi_write(spi, txbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write enable res=%d\n", chip->name, res); + mutex_unlock(&chip->lock); + return res; + } + + /* + * Test for bad block + */ + if (test_bit(block, chip->bbt)) { + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + res = -EBADMSG; + goto done; + } + + /* + * Block erase + */ + txbuf[0] = 0xD8; + txbuf[1] = 0x00; + txbuf[2] = row >> 8; + txbuf[3] = row & 0xFF; + res = spi_write(spi, txbuf, 4); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed block erase res=%d\n", chip->name, res); + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + goto done; + } + + /* + * Wait + */ + res = nand_spi_er_busywait(chip, &stat); + if (res || (stat & NAND_SPI_ER_STATUS_OIP)) { + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat); + if (res) { + goto done; + } + + /* + * Chip is stuck? + */ + res = -EIO; + goto done; + } + + /* + * Check the status register + */ + if (stat & NAND_SPI_ER_STATUS_E_FAIL) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: E_FAIL signalled (%02x)\n", chip->name, stat); + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + goto done; + } + + /* + * Next + */ + block++; + instr->len -= chip->device->erase_size; + instr->addr += chip->device->erase_size; + } + + instr->state = MTD_ERASE_DONE; + + mutex_unlock(&chip->lock); + return 0; + +done: + /* + * Write disable + */ + txbuf[0] = 0x04; + res = spi_write(spi, txbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write disable res=%d\n", chip->name, res); + } + + mutex_unlock(&chip->lock); + + mtd_erase_callback(instr); + return 0; +} + +/* + * nand_spi_er_read + * + * return -EUCLEAN: ecc error recovered + * return -EBADMSG: ecc error not recovered +*/ +static int nand_spi_er_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct nand_spi_er *chip = mtd->priv; + struct spi_device *spi = chip->spi; + + uint32_t row; + uint32_t column; + int retval = 0; + + *retlen = 0; + DEBUG(MTD_DEBUG_LEVEL2, "%s: read block from %llx len %d into %p\n", chip->name, from, len, buf); + + /* + * Zero length reads, nothing to do + */ + if (len == 0) { + return 0; + } + + /* + * Reject reads which go over the end of the flash + */ + if ((from + len) > mtd->size) { + return -EINVAL; + } + + /* + * Get the row and column address to start at + */ + row = from >> 11; + column = from & 0x7FF; + DEBUG(MTD_DEBUG_LEVEL3, "%s: row=%x %d column=%x %d last_row=%x %d\n", chip->name, row, row, column, column, chip->last_row, chip->last_row); + + /* + * Read the data from the chip + */ + mutex_lock(&chip->lock); + while (len) { + uint8_t stat; + uint8_t txbuf[4]; + struct spi_message message; + struct spi_transfer x[2]; + int res; + size_t toread; + + /* + * Figure out how much to read + * + * If we are reading from the middle of a page then the most we + * can read is to the end of the page + */ + toread = len; + if (toread > (chip->device->page_size - column)) { + toread = chip->device->page_size - column; + } + + DEBUG(MTD_DEBUG_LEVEL3, "%s: buf=%p toread=%x row=%x column=%x last_row=%x\n", chip->name, buf, toread, row, column, chip->last_row); + + if (chip->last_row != row) { + /* + * Check if the block is bad + */ + if (test_bit(NAND_SPI_ER_BLOCK_FROM_ROW(row), chip->bbt)) { + mutex_unlock(&chip->lock); + return -EBADMSG; + } + + /* + * Load the appropriate page + */ + txbuf[0] = 0x13; + txbuf[1] = 0x00; + txbuf[2] = row >> 8; + txbuf[3] = row & 0xFF; + res = spi_write(spi, txbuf, 4); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed page load res=%d\n", chip->name, res); + mutex_unlock(&chip->lock); + return res; + } + + /* + * Wait + */ + res = nand_spi_er_busywait(chip, &stat); + if (res || (stat & NAND_SPI_ER_STATUS_OIP)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat); + if (res) { + mutex_unlock(&chip->lock); + return res; + } + + /* + * Chip is stuck? + */ + mutex_unlock(&chip->lock); + return -EIO; + } + + /* + * Check the ECC bits + */ + stat >>= 4; + if (stat == 1) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: ECC recovered, row=%x\n", chip->name, row); + retval = -EUCLEAN; + } + if (stat == 2) { + DEBUG(MTD_DEBUG_LEVEL0, "%s: failed ECC, row=%x\n", chip->name, row); + chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID; + mutex_unlock(&chip->lock); + return -EBADMSG; + } + + } + + chip->last_row = row; + + /* + * Read out the data + */ + spi_message_init(&message); + memset(x, 0, sizeof(x)); + + txbuf[0] = 0x03; + txbuf[1] = column >> 8; + txbuf[2] = column & 0xFF; + txbuf[3] = 0; + x[0].tx_buf = txbuf; + x[0].len = 4; + spi_message_add_tail(&x[0], &message); + + x[1].rx_buf = buf; + x[1].len = toread; + spi_message_add_tail(&x[1], &message); + + res = spi_sync(spi, &message); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed data read res=%d\n", chip->name, res); + mutex_unlock(&chip->lock); + return res; + } + buf += toread; + len -= toread; + *retlen += toread; + + /* + * For the next page, increment the row and always start at column 0 + */ + column = 0; + row++; + } + + mutex_unlock(&chip->lock); + return retval; +} + +/* + * nand_spi_er_write + */ +#define NOT_ALIGNED(x) ((x & (device->write_size - 1)) != 0) +static int nand_spi_er_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct nand_spi_er *chip = mtd->priv; + struct spi_device *spi = chip->spi; + const struct nand_spi_er_device *device = chip->device; + uint32_t row; + uint32_t col; + uint8_t txbuf[4]; + int res; + size_t towrite; + + DEBUG(MTD_DEBUG_LEVEL2, "%s: write block to %llx len %d from %p\n", chip->name, to, len, buf); + + *retlen = 0; + + /* + * nothing to write + */ + if (!len) { + return 0; + } + + /* + * Reject writes which go over the end of the flash + */ + if ((to + len) > mtd->size) { + return -EINVAL; + } + + /* + * Check to see if everything is page aligned + */ + if (NOT_ALIGNED(to) || NOT_ALIGNED(len)) { + printk(KERN_NOTICE "nand_spi_er_write: Attempt to write non page aligned data\n"); + return -EINVAL; + } + + mutex_lock(&chip->lock); + chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID; + + /* + * If the first write is a partial write then write at most the number of + * bytes to get us page aligned and then the remainder will be + * page aligned. The last bit may be a partial page as well. + */ + col = to & (device->page_size - 1); + towrite = device->page_size - col; + if (towrite > len) { + towrite = len; + } + + /* + * Write the data + */ + row = to >> 11; + while (len) { + struct spi_message message; + struct spi_transfer x[2]; + uint8_t stat; + + DEBUG(MTD_DEBUG_LEVEL3, "%s: write %p to row:%x col:%x len:%x rem:%x\n", chip->name, buf, row, col, towrite, len); + + /* + * Write enable + */ + txbuf[0] = 0x06; + res = spi_write(spi, txbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write enable res=%d\n", chip->name, res); + mutex_unlock(&chip->lock); + return res; + } + + /* + * Write the data into the cache + */ + spi_message_init(&message); + memset(x, 0, sizeof(x)); + txbuf[0] = 0x02; + txbuf[1] = col >> 8; + txbuf[2] = col & 0xFF; + x[0].tx_buf = txbuf; + x[0].len = 3; + spi_message_add_tail(&x[0], &message); + x[1].tx_buf = buf; + x[1].len = towrite; + spi_message_add_tail(&x[1], &message); + res = spi_sync(spi, &message); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed cache write res=%d\n", chip->name, res); + goto done; + } + + /* + * Program execute + */ + txbuf[0] = 0x10; + txbuf[1] = 0x00; + txbuf[2] = row >> 8; + txbuf[3] = row & 0xFF; + res = spi_write(spi, txbuf, 4); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed prog execute res=%d\n", chip->name, res); + goto done; + } + + /* + * Wait + */ + res = nand_spi_er_busywait(chip, &stat); + if (res || (stat & NAND_SPI_ER_STATUS_OIP)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat); + if (res) { + goto done; + } + + /* + * Chip is stuck? + */ + res = -EIO; + goto done; + } + + if (stat & (1 << 3)) { + res = -EBADMSG; + goto done; + } + + row++; + buf += towrite; + len -= towrite; + *retlen += towrite; + + /* + * At this point, we are always page aligned so start at column 0. + * Note we may not have a full page to write at the end, hence the + * check if towrite > len. + */ + col = 0; + towrite = device->page_size; + if (towrite > len) { + towrite = len; + } + } + + mutex_unlock(&chip->lock); + return res; + +done: + /* + * Write disable + */ + txbuf[0] = 0x04; + res = spi_write(spi, txbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write disable res=%d\n", chip->name, res); + } + + mutex_unlock(&chip->lock); + + return res; +} + +/* + * nand_spi_er_isbad + */ +static int nand_spi_er_isbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_spi_er *chip = mtd->priv; + uint32_t block; + + if (ofs & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs); + return -EINVAL; + } + + block = ofs >> 17; + + return test_bit(block, chip->bbt); +} + +/* + * nand_spi_er_markbad + */ +static int nand_spi_er_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_spi_er *chip = mtd->priv; + struct spi_device *spi = chip->spi; + uint32_t block; + uint32_t row; + uint8_t txbuf[7]; + int res; + uint8_t stat; + + if (ofs & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs); + return -EINVAL; + } + + block = ofs >> 17; + + /* + * If it's already marked bad, no need to mark it + */ + if (test_bit(block, chip->bbt)) { + return 0; + } + + /* + * Mark it in our cache + */ + __set_bit(block, chip->bbt); + + /* + * Write the user bad block mark. If it fails, then we really + * can't do anything about it. + */ + mutex_lock(&chip->lock); + chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID; + + /* + * Write enable + */ + txbuf[0] = 0x06; + res = spi_write(spi, txbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write enable res=%d\n", chip->name, res); + mutex_unlock(&chip->lock); + return res; + } + + /* + * Write the mark + */ + txbuf[0] = 0x84; + txbuf[1] = 0x08; + txbuf[2] = NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET; + txbuf[3] = 0xde; + txbuf[4] = 0xad; + txbuf[5] = 0xbe; + txbuf[6] = 0xef; + res = spi_write(spi, txbuf, 7); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write mark res=%d\n", chip->name, res); + goto done; + } + + /* + * Program execute + */ + row = ofs >> 11; + txbuf[0] = 0x10; + txbuf[1] = 0x00; + txbuf[2] = row >> 8; + txbuf[3] = row & 0xFF; + res = spi_write(spi, txbuf, 4); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed program execute res=%d\n", chip->name, res); + goto done; + } + + /* + * Wait + */ + res = nand_spi_er_busywait(chip, &stat); + if (res || (stat & NAND_SPI_ER_STATUS_OIP)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat); + if (res) { + goto done; + } + + /* + * Chip is stuck? + */ + res = -EIO; + goto done; + } + + if (stat & (1 << 3)) { + res = -EBADMSG; + } + +done: + /* + * Write disable + */ + txbuf[0] = 0x04; + res = spi_write(spi, txbuf, 1); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write disable res=%d\n", chip->name, res); + } + + mutex_unlock(&chip->lock); + + return res; +} + +/* + * nand_spi_er_read_bbt + */ +static int nand_spi_er_read_bbt(struct nand_spi_er *chip) +{ + int j; + for (j = 0; j < chip->device->blocks; j++) { + uint8_t txbuf[4]; + uint8_t rxbuf[16]; + uint32_t bbmark; + int res; + unsigned short row = j << 6; + uint8_t stat; + + /* + * Read Page + */ + txbuf[0] = 0x13; + txbuf[1] = 0x00; + txbuf[2] = row >> 8; + txbuf[3] = row & 0xFF; + res = spi_write(chip->spi, txbuf, 4); + if (res) { + return res; + } + + /* + * Wait + */ + res = nand_spi_er_busywait(chip, &stat); + if (res || (stat & NAND_SPI_ER_STATUS_OIP)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat); + if (res) { + return res; + } + + /* + * Chip is stuck? + */ + return -EIO; + } + + /* + * Check factory bad block mark + */ + txbuf[0] = 0x03; + txbuf[1] = 0x08; + txbuf[2] = 0x00; + txbuf[3] = 0x00; + res = spi_write_then_read(chip->spi, txbuf, 4, rxbuf, 16); + if (res) { + return res; + } + if (rxbuf[0] != 0xFF) { + chip->nbb++; + __set_bit(j, chip->bbt); + continue; + } + + memcpy(&bbmark, &rxbuf[8], 4); + if (bbmark == 0xdeadbeef) { + chip->nbb++; + __set_bit(j, chip->bbt); + } + } + +#if defined(CONFIG_MTD_DEBUG) && (MTD_DEBUG_LEVEL3 <= CONFIG_MTD_DEBUG_VERBOSE) + printk("%s: Bad Block Table:", chip->name); + for (j = 0; j < chip->device->blocks; j++) { + if ((j % 64) == 0) { + printk("\n%s: block %03x: ", chip->name, j); + } + printk("%c", test_bit(j, chip->bbt) ? 'X' : '.'); + } + printk("\n%s: Bad Block Numbers: ", chip->name); + for (j = 0; j < chip->device->blocks; j++) { + if (test_bit(j, chip->bbt)) { + printk("%x ", j); + } + } + printk("\n"); +#endif + + return 0; +} + +#ifndef MODULE +/* + * Called at boot time: + * + * nand_spi_er=read_only + * if read_only specified then do not unlock device + */ +static int __init nand_spi_er_setup(char *str) +{ + if (str && (strncasecmp(str, "read_only", 9) == 0)) { + read_only = 1; + } + return 0; +} + +__setup("nand_spi_er=", nand_spi_er_setup); +#endif + +/* + * nand_spi_er_probe + * Detect and initialize nand_spi_er device. + */ +static int __devinit nand_spi_er_probe(struct spi_device *spi) +{ + uint8_t txbuf[3]; + uint8_t rxbuf[2]; + int i; + int res; + size_t bbt_bytes; + struct nand_spi_er *chip; + const struct nand_spi_er_device *device; + + res = spi_setup(spi); + if (res) { + return res; + } + + /* + * Reset + */ + for (i = 0; i < 2; i++) { + txbuf[0] = 0xFF; + res = spi_write(spi, txbuf, 1); + if (res) { + return res; + } + udelay(250); + } + udelay(1000); + + /* + * Read ID + */ + txbuf[0] = 0x9F; + txbuf[1] = 0x00; + res = spi_write_then_read(spi, txbuf, 2, rxbuf, 2); + if (res) { + return res; + } + + device = nand_spi_er_devices; + for (i = 0; i < ARRAY_SIZE(nand_spi_er_devices); i++) { + if ((device->id0 == rxbuf[0]) && (device->id1 == rxbuf[1])) { + break; + } + device++; + } + if (i == ARRAY_SIZE(nand_spi_er_devices)) { + return -ENODEV; + } + + /* + * Initialize our chip structure + */ + bbt_bytes = DIV_ROUND_UP(device->blocks, BITS_PER_BYTE); + chip = kzalloc(sizeof(struct nand_spi_er) + bbt_bytes, GFP_KERNEL); + if (!chip) { + return -ENOMEM; + } + snprintf(chip->name, sizeof(chip->name), "%s.%d.%d", device->name, spi->master->bus_num, spi->chip_select); + + chip->spi = spi; + chip->device = device; + chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID; + + mutex_init(&chip->lock); + + chip->mtd.type = MTD_NANDFLASH; + chip->mtd.flags = MTD_WRITEABLE; + + /* + * #blocks * block size * n blocks + */ + chip->mtd.size = device->blocks * device->pages_per_block * device->page_size; + chip->mtd.erasesize = device->erase_size; + + /* + * 1 page, optionally we can support partial write (512) + */ + chip->mtd.writesize = device->write_size; + chip->mtd.name = device->name; + chip->mtd.erase = nand_spi_er_erase; + chip->mtd.read = nand_spi_er_read; + chip->mtd.write = nand_spi_er_write; + chip->mtd.block_isbad = nand_spi_er_isbad; + chip->mtd.block_markbad = nand_spi_er_markbad; + chip->mtd.priv = chip; + + /* + * Cache the bad block table + */ + res = nand_spi_er_read_bbt(chip); + if (res) { + kfree(chip); + return res; + } + + /* + * Un/lock the chip + */ + txbuf[0] = 0x1F; + txbuf[1] = 0xA0; + if (read_only) { + txbuf[2] = 0x38; + } else { + txbuf[2] = 0x00; + } + res = spi_write(spi, txbuf, 3); + if (res) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: failed lock operation res=%d\n", chip->name, res); + mutex_unlock(&chip->lock); + return res; + } + + spi_set_drvdata(spi, chip); + + printk(KERN_INFO "%s: added device %s size: %u KBytes %u bad blocks %s\n", spi->dev.bus_id, chip->mtd.name, DIV_ROUND_UP(chip->mtd.size, 1024), chip->nbb, read_only ? "[read only]" : ""); + return add_mtd_device(&chip->mtd); +} + +/* + * nand_spi_er_remove + */ +static int __devexit nand_spi_er_remove(struct spi_device *spi) +{ + struct nand_spi_er *chip = spi_get_drvdata(spi); + int status = 0; + + DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", spi->dev.bus_id); + status = del_mtd_device(&chip->mtd); + if (status == 0) + kfree(chip); + return status; +} + +static struct spi_driver nand_spi_er_driver = { + .driver = { + .name = "nand-spi-er", + .bus = &spi_bus_type, + .owner = THIS_MODULE, + }, + + .probe = nand_spi_er_probe, + .remove = __devexit_p(nand_spi_er_remove), + + /* FIXME: investigate suspend and resume... */ +}; + +/* + * nand_spi_er_init + */ +static int __init nand_spi_er_init(void) +{ + return spi_register_driver(&nand_spi_er_driver); +} +module_init(nand_spi_er_init); + +/* + * nand_spi_er_exit + */ +static void __exit nand_spi_er_exit(void) +{ + spi_unregister_driver(&nand_spi_er_driver); +} +module_exit(nand_spi_er_exit); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Patrick Tjin"); +MODULE_DESCRIPTION("MTD nand_spi_er driver"); diff --git a/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c new file mode 100644 index 000000000..405491cc4 --- /dev/null +++ b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c @@ -0,0 +1,1066 @@ +/* + * drivers/mtd/devices/ubi32-m25p80.c + * NOR flash driver, Ubicom processor internal SPI flash interface. + * + * This code instantiates the serial flash that contains the + * original bootcode. The serial flash start at address 0x60000000 + * in both Ubicom32V3 and Ubicom32V4 ISAs. + * + * This piece of flash is made to appear as a Memory Technology + * Device (MTD) with this driver to allow Read/Write/Erase operations. + * + * (C) Copyright 2009, Ubicom, Inc. + * + * This file is part of the Ubicom32 Linux Kernel Port. + * + * The Ubicom32 Linux Kernel Port is free software: you can redistribute + * it and/or modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, either version 2 of the + * License, or (at your option) any later version. + * + * The Ubicom32 Linux Kernel Port is distributed in the hope that it + * will be useful, but WITHOUT ANY WARRANTY; without even the implied + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with the Ubicom32 Linux Kernel Port. If not, + * see <http://www.gnu.org/licenses/>. + * + * Ubicom32 implementation derived from (with many thanks): + * arch/m68knommu + * arch/blackfin + * arch/parisc + */ +#include <linux/types.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/physmap.h> +#include <linux/spi/spi.h> +#include <linux/spi/flash.h> + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/mutex.h> + +#include <asm/ip5000.h> +#include <asm/devtree.h> + +#define UBICOM32_FLASH_BASE 0x60000000 +#define UBICOM32_FLASH_MAX_SIZE 0x01000000 +#define UBICOM32_FLASH_START 0x00000000 +#define UBICOM32_KERNEL_OFFSET 0x00010000 /* The kernel starts after Ubicom + * .protect section. */ + +static struct mtd_partition ubicom32_flash_partitions[] = { + { + .name = "Bootloader", /* Protected Section + * Partition */ + .size = 0x10000, + .offset = UBICOM32_FLASH_START, +// .mask_flags = MTD_WRITEABLE /* Mark Read-only */ + }, + { + .name = "Kernel", /* Kernel Partition. */ + .size = 0, /* this will be set up during + * probe stage. At that time we + * will know end of linux image + * in flash. */ + .offset = MTDPART_OFS_APPEND, /* Starts right after Protected + * section. */ +// .mask_flags = MTD_WRITEABLE /* Mark Read-only */ + }, + { + .name = "Rest", /* Rest of the flash. */ + .size = 0x200000, /* Use up what remains in the + * flash. */ + .offset = MTDPART_OFS_NXTBLK, /* Starts right after Protected + * section. */ + } +}; + +static struct flash_platform_data ubicom32_flash_data = { + .name = "ubicom32_boot_flash", + .parts = ubicom32_flash_partitions, + .nr_parts = ARRAY_SIZE(ubicom32_flash_partitions), +}; + +static struct resource ubicom32_flash_resource[] = { + { + .start = UBICOM32_FLASH_BASE, + .end = UBICOM32_FLASH_BASE + + UBICOM32_FLASH_MAX_SIZE - 1, + .flags = IORESOURCE_MEM, + }, +}; + +static struct platform_device ubicom32_flash_device = { + .name = "ubicom32flashdriver", + .id = 0, /* Bus number */ + .num_resources = ARRAY_SIZE(ubicom32_flash_resource), + .resource = ubicom32_flash_resource, + .dev = { + .platform_data = &ubicom32_flash_data, + }, +}; + +static struct platform_device *ubicom32_flash_devices[] = { + &ubicom32_flash_device, +}; + +static int __init ubicom32_flash_init(void) +{ + printk(KERN_INFO "%s(): registering device resources\n", + __FUNCTION__); + platform_add_devices(ubicom32_flash_devices, + ARRAY_SIZE(ubicom32_flash_devices)); + return 0; +} + +arch_initcall(ubicom32_flash_init); + +/* + * MTD SPI driver for ST M25Pxx (and similar) serial flash chips through + * Ubicom32 SPI controller. + * + * Author: Mike Lavender, mike@steroidmicros.com + * + * Copyright (c) 2005, Intec Automation Inc. + * + * Some parts are based on lart.c by Abraham Van Der Merwe + * + * Cleaned up and generalized based on mtd_dataflash.c + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#define FLASH_PAGESIZE 256 + +/* Flash opcodes. */ +#define OPCODE_WREN 0x06 /* Write enable */ +#define OPCODE_RDSR 0x05 /* Read status register */ +#define OPCODE_READ 0x03 /* Read data bytes (low frequency) */ +#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ +#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ +#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ +#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ +#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ +#define OPCODE_RDID 0x9f /* Read JEDEC ID */ + +/* Status Register bits. */ +#define SR_WIP 1 /* Write in progress */ +#define SR_WEL 2 /* Write enable latch */ +/* meaning of other SR_* bits may differ between vendors */ +#define SR_BP0 4 /* Block protect 0 */ +#define SR_BP1 8 /* Block protect 1 */ +#define SR_BP2 0x10 /* Block protect 2 */ +#define SR_SRWD 0x80 /* SR write protect */ + +/* Define max times to check status register before we give up. */ +#define MAX_READY_WAIT_COUNT 100000 + + +#ifdef CONFIG_MTD_PARTITIONS +#define mtd_has_partitions() (1) +#else +#define mtd_has_partitions() (0) +#endif + +/* + * Ubicom32 FLASH Command Set + */ +#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */ +#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */ +#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */ + +#define ALIGN_DOWN(v, a) ((v) & ~((a) - 1)) +#define ALIGN_UP(v, a) (((v) + ((a) - 1)) & ~((a) - 1)) + +#define FLASH_COMMAND_KICK_OFF(io) \ + asm volatile( \ + " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ + " jmpt.t .+4 \n\t" \ + " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \ + : \ + : "a" (io) \ + : "memory", "cc" \ + ); + +#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \ + asm volatile( \ + " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ + " jmpeq.f .-4 \n\t" \ + : \ + : "a" (io) \ + : "memory", "cc" \ + ); + +#define FLASH_COMMAND_EXEC(io) \ + FLASH_COMMAND_KICK_OFF(io) \ + FLASH_COMMAND_WAIT_FOR_COMPLETION(io) + + +#define OSC1_FREQ 12000000 +#define TEN_MICRO_SECONDS (OSC1_FREQ * 10 / 1000000) + +/* + * We will have to eventually replace this null definition with the real thing. + */ +#define WATCHDOG_RESET() + +#define EXTFLASH_WRITE_FIFO_SIZE 32 +#define EXTFLASH_WRITE_BLOCK_SIZE EXTFLASH_WRITE_FIFO_SIZE /* limit the size to + * FIFO capacity, so + * the thread can be + * suspended. */ + +#define JFFS2_FILESYSTEM_SIZE 0x100000 + +/****************************************************************************/ + +struct m25p { + struct platform_device *plt_dev; + struct mutex lock; + struct mtd_info mtd; + unsigned partitioned:1; + u8 erase_opcode; + u8 command[4]; +}; + +static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) +{ + return container_of(mtd, struct m25p, mtd); +} + +/****************************************************************************/ + +/* + * Internal helper functions + */ + +/* + * Read the status register, returning its value in the location + * Return the status register value. + * Returns negative if error occurred. + */ +static int read_sr(struct m25p *flash) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; + + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | + IO_XFL_CTL1_FC_DATA(1); + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR); + FLASH_COMMAND_EXEC(io); + + return io->status1 & 0xff; +} + +/* + * mem_flash_io_read_u32() + */ +static u32 mem_flash_io_read_u32(u32 addr) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | + IO_XFL_CTL1_FC_DATA(4) | IO_XFL_CTL1_FC_DUMMY(1) | + IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_FAST_READ) | + IO_XFL_CTL2_FC_ADDR(addr); + FLASH_COMMAND_EXEC(io); + return io->status1; +} + +/* + * mem_flash_read_u8() + */ +static u8 mem_flash_read_u8(u32 addr) +{ + u32 tmp_addr = ALIGN_DOWN(addr, 4); + u32 tmp_data = mem_flash_io_read_u32(tmp_addr); + u8 *ptr = (u8 *)&tmp_data; + return ptr[addr & 0x3]; +} + +/* + * mem_flash_read() + * No need to lock as read is implemented with ireads (same as normal flash + * execution). + */ +static void mem_flash_read(u32 addr, void *dst, size_t length) +{ + /* + * Range check + */ + /* + * Fix source alignment. + */ + while (addr & 0x03) { + if (length == 0) { + return; + } + *((u8 *)dst) = mem_flash_read_u8(addr++); + dst++; + length--; + } + + while (length >= 4) { + u32 tmp_data = mem_flash_io_read_u32(addr); + addr += 4; + length -= 4; + + /* + * Send the data to the destination. + */ + memcpy((void *)dst, (void *)&tmp_data, 4); + dst += 4; + } + + while (length--) { + *((u8 *)dst) = mem_flash_read_u8(addr++); + dst++; + } +} + +/* + * mem_flash_wait_until_complete() + */ +static void mem_flash_wait_until_complete(void) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; + + do { + /* + * Put a delay here to deal with flash programming problem. + */ + u32 mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS; + while (UBICOM32_IO_TIMER->mptval < mptval) + ; + + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | + IO_XFL_CTL1_FC_DATA(1); + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR); + FLASH_COMMAND_EXEC(io); + } while (io->status1 & SR_WIP); +} + +/* + * mem_flash_write_next() + */ +static size_t mem_flash_write_next(u32 addr, u8 *buf, size_t length) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; + u32 data_start = addr; + u32 data_end = addr + length; + size_t count; + u32 i, j; + + /* + * Top limit address. + */ + u32 block_start = ALIGN_DOWN(data_start, 4); + u32 block_end = block_start + EXTFLASH_WRITE_BLOCK_SIZE; + + union { + u8 byte[EXTFLASH_WRITE_BLOCK_SIZE]; + u32 word[EXTFLASH_WRITE_BLOCK_SIZE / 4]; + } write_buf; + + u32 *flash_addr = (u32 *)block_start; + + /* + * The write block must be limited by FLASH internal buffer. + */ + u32 block_end_align = ALIGN_DOWN(block_end, 256); + bool write_needed; + + block_end = (block_end_align > block_start) + ? block_end_align : block_end; + data_end = (data_end <= block_end) ? data_end : block_end; + block_end = ALIGN_UP(data_end, 4); + count = data_end - data_start; + + /* + * Transfer data to a buffer. + */ + for (i = 0; i < (block_end - block_start) / 4; i++) { + /* + * The FLASH read can hold D-cache for a long time. + * Use I/O operation to read FLASH to avoid starving other + * threads, especially HRT. (Do this for application only) + */ + write_buf.word[i] = mem_flash_io_read_u32( + (u32)(&flash_addr[i])); + } + + write_needed = false; + for (i = 0, j = (data_start - block_start); + i < (data_end - data_start); i++, j++) { + write_needed = write_needed || (write_buf.byte[j] != buf[i]); + write_buf.byte[j] &= buf[i]; + } + + + /* + * If the data in FLASH is identical to what to be written. Then skip + * it. + */ + if (write_needed) { + /* + * Write to flash. + */ + void *tmp __attribute__((unused)); + s32 extra_words; + + asm volatile( + " move.4 %0, %2 \n\t" + " bset "D(IO_INT_SET)"(%1), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" + " pipe_flush 0 \n\t" + " .rept "D(EXTFLASH_WRITE_FIFO_SIZE / 4)" \n\t" + " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t" + " .endr \n\t" + : "=&a" (tmp) + : "a" (io), "r" (&write_buf.word[0]) + : "memory", "cc" + ); + + /* Lock FLASH for write access. */ + io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; + + /* Command: WREN */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN); + FLASH_COMMAND_EXEC(io); + + /* Command: BYTE PROGRAM */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | + IO_XFL_CTL1_FC_DATA(block_end - block_start) | + IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_PP) | + IO_XFL_CTL2_FC_ADDR(block_start); + FLASH_COMMAND_KICK_OFF(io); + + extra_words = (s32)(block_end - block_start - + EXTFLASH_WRITE_FIFO_SIZE) / 4; + if (extra_words > 0) { + asm volatile( + " move.4 %0, %3 \n\t" + "1: cmpi "D(IO_FIFO_LEVEL)"(%1), #4 \n\t" + " jmpgt.s.t 1b \n\t" + " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t" + " add.4 %2, #-1, %2 \n\t" + " jmpgt.t 1b \n\t" + : "=&a" (tmp) + : "a" (io), "d" (extra_words), + "r" (&write_buf.word[EXTFLASH_WRITE_FIFO_SIZE / 4]) + : "memory", "cc" + ); + } + FLASH_COMMAND_WAIT_FOR_COMPLETION(io); + + mem_flash_wait_until_complete(); + + + /* Unlock FLASH for cache access. */ + io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; + } + + /* + * Complete. + */ + return count; +} + +/* + * mem_flash_write() + */ +static void mem_flash_write(u32 addr, const void *src, size_t length) +{ + /* + * Write data + */ + u8_t *ptr = (u8_t *)src; + while (length) { + size_t count = mem_flash_write_next(addr, ptr, length); + addr += count; + ptr += count; + length -= count; + } +} + +/* + * Service routine to read status register until ready, or timeout occurs. + * Returns non-zero if error. + */ +static int wait_till_ready(struct m25p *flash) +{ + int count; + int sr; + + /* one chip guarantees max 5 msec wait here after page writes, + * but potentially three seconds (!) after page erase. + */ + for (count = 0; count < MAX_READY_WAIT_COUNT; count++) { + u32 mptval; + sr = read_sr(flash); + if (sr < 0) + break; + else if (!(sr & SR_WIP)) + return 0; + + /* + * Put a 10us delay here to deal with flash programming problem. + */ + mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS; + while ((s32)(mptval - UBICOM32_IO_TIMER->mptval) > 0) { + WATCHDOG_RESET(); + } + /* REVISIT sometimes sleeping would be best */ + } + + return 1; +} + +/* + * mem_flash_erase_page() + */ +static void mem_flash_erase_page(u32 addr) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; + + /* Lock FLASH for write access. */ + io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; + + /* Command: WREN */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN); + FLASH_COMMAND_EXEC(io); + + /* Command: ERASE */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | + IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_SE) | + IO_XFL_CTL2_FC_ADDR(addr); + FLASH_COMMAND_EXEC(io); + + mem_flash_wait_until_complete(); + + /* Unlock FLASH for cache access. */ + io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; +} + +/* + * mem_flash_erase() + */ +static u32 mem_flash_erase(u32 addr, u32 length) +{ + /* + * Calculate the endaddress to be the first address of the page + * just beyond this erase section of pages. + */ + u32 endaddr = addr + length; + + /* + * Erase. + */ + while (addr < endaddr) { + u32 test_addr = addr; + mem_flash_erase_page(addr); + + /* + * Test how much was erased as actual flash page at this address + * may be smaller than the expected page size. + */ + while (test_addr < endaddr) { + /* + * The FLASH read can hold D-cache for a long time. Use + * I/O operation to read FLASH to avoid starving other + * threads, especially HRT. (Do this for application + * only) + */ + if (mem_flash_io_read_u32(test_addr) != 0xFFFFFFFF) { + break; + } + test_addr += 4; + } + if (test_addr == addr) { + printk("erase failed at address 0x%x, skipping", + test_addr); + test_addr += 4; + return 1; + } + addr = test_addr; + } + return 0; +} + + +/****************************************************************************/ + +/* + * MTD implementation + */ + +/* + * Erase an address range on the flash chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int ubicom32_flash_driver_erase(struct mtd_info *mtd, + struct erase_info *instr) +{ + struct m25p *flash = mtd_to_m25p(mtd); + u32 addr, len; + + DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %lld\n", + dev_name(&flash->plt_dev->dev), __FUNCTION__, "at", + (u32)instr->addr, instr->len); + + /* sanity checks */ + if (instr->addr + instr->len > flash->mtd.size) + return -EINVAL; + if ((instr->addr % mtd->erasesize) != 0 + || (instr->len % mtd->erasesize) != 0) { + return -EINVAL; + } + + addr = instr->addr + UBICOM32_FLASH_BASE; + len = instr->len; + + mutex_lock(&flash->lock); + + /* REVISIT in some cases we could speed up erasing large regions + * by using OPCODE_SE instead of OPCODE_BE_4K + */ + + /* now erase those sectors */ + if (mem_flash_erase(addr, len)) { + instr->state = MTD_ERASE_FAILED; + mutex_unlock(&flash->lock); + return -EIO; + } + + mutex_unlock(&flash->lock); + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + return 0; +} + +/* + * Read an address range from the flash chip. The address range + * may be any size provided it is within the physical boundaries. + */ +static int ubicom32_flash_driver_read(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + struct m25p *flash = mtd_to_m25p(mtd); + u32 base_addr = UBICOM32_FLASH_BASE + from; + + DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", + dev_name(&flash->plt_dev->dev), __FUNCTION__, "from", + (u32)from, len); + + /* sanity checks */ + if (!len) + return 0; + + if (from + len > flash->mtd.size) + return -EINVAL; + + /* Byte count starts at zero. */ + if (retlen) + *retlen = 0; + + mutex_lock(&flash->lock); + + /* Wait till previous write/erase is done. */ + if (wait_till_ready(flash)) { + /* REVISIT status return?? */ + mutex_unlock(&flash->lock); + return 1; + } + + mem_flash_read(base_addr, (void *)buf, len); + + if (retlen) + *retlen = len; + + mutex_unlock(&flash->lock); + + return 0; +} + +/* + * Write an address range to the flash chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int ubicom32_flash_driver_write(struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, + const u_char *buf) +{ + struct m25p *flash = mtd_to_m25p(mtd); + u32 base_addr = UBICOM32_FLASH_BASE + to; + DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", + dev_name(&flash->plt_dev->dev), __FUNCTION__, "to", + (u32)to, len); + + if (retlen) + *retlen = 0; + + /* sanity checks */ + if (!len) + return 0; + + if (to + len > flash->mtd.size) + return -EINVAL; + + mutex_lock(&flash->lock); + + mem_flash_write(base_addr, (void *) buf, len); + + /* Wait until finished previous write command. */ + if (wait_till_ready(flash)) { + mutex_unlock(&flash->lock); + return 1; + } + + if (retlen) + *retlen = len; + + mutex_unlock(&flash->lock); + return 0; +} + + +/****************************************************************************/ + +/* + * SPI device driver setup and teardown + */ + +struct flash_info { + char *name; + + /* JEDEC id zero means "no ID" (most older chips); otherwise it has + * a high byte of zero plus three data bytes: the manufacturer id, + * then a two byte device id. + */ + u32 jedec_id; + + /* The size listed here is what works with OPCODE_SE, which isn't + * necessarily called a "sector" by the vendor. + */ + unsigned sector_size; + u16 n_sectors; + + u16 flags; +#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ +}; + + +/* NOTE: double check command sets and memory organization when you add + * more flash chips. This current list focusses on newer chips, which + * have been converging on command sets which including JEDEC ID. + */ +static struct flash_info __devinitdata m25p_data[] = { + + /* Atmel -- some are (confusingly) marketed as "DataFlash" */ + { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, }, + { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, }, + + { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, }, + + { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, }, + { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, }, + { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, }, + { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, }, + + /* Spansion -- single (large) sector size only, at least + * for the chips listed here (without boot sectors). + */ + { "s25sl004a", 0x010212, 64 * 1024, 8, }, + { "s25sl008a", 0x010213, 64 * 1024, 16, }, + { "s25sl016a", 0x010214, 64 * 1024, 32, }, + { "s25sl032a", 0x010215, 64 * 1024, 64, }, + { "s25sl064a", 0x010216, 64 * 1024, 128, }, + + /* SST -- large erase sizes are "overlays", "sectors" are 4K */ + { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, }, + { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, }, + { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, }, + { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, }, + + /* ST Microelectronics -- newer production may have feature updates */ + { "m25p05", 0x202010, 32 * 1024, 2, }, + { "m25p10", 0x202011, 32 * 1024, 4, }, + { "m25p20", 0x202012, 64 * 1024, 4, }, + { "m25p40", 0x202013, 64 * 1024, 8, }, + { "m25p80", 0, 64 * 1024, 16, }, + { "m25p16", 0x202015, 64 * 1024, 32, }, + { "m25p32", 0x202016, 64 * 1024, 64, }, + { "m25p64", 0x202017, 64 * 1024, 128, }, + { "m25p128", 0x202018, 256 * 1024, 64, }, + + { "m45pe80", 0x204014, 64 * 1024, 16, }, + { "m45pe16", 0x204015, 64 * 1024, 32, }, + + { "m25pe80", 0x208014, 64 * 1024, 16, }, + { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, }, + + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ + { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, }, + { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, }, + { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, }, + { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, }, + { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, }, + { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, }, + { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, }, + + /* Macronix -- mx25lxxx */ + { "mx25l32", 0xc22016, 64 * 1024, 64, }, + { "mx25l64", 0xc22017, 64 * 1024, 128, }, + { "mx25l128", 0xc22018, 64 * 1024, 256, }, + +}; + +struct flash_info *__devinit jedec_probe(struct platform_device *spi) +{ + int tmp; + u32 jedec; + struct flash_info *info; + struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; + + /* + * Setup and run RDID command on the flash. + */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | + IO_XFL_CTL1_FC_DATA(3); + io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDID); + FLASH_COMMAND_EXEC(io); + + jedec = io->status1 & 0x00ffffff; + + for (tmp = 0, info = m25p_data; + tmp < ARRAY_SIZE(m25p_data); + tmp++, info++) { + if (info->jedec_id == jedec) + return info; + } + dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); + return NULL; +} + + +/* + * board specific setup should have ensured the SPI clock used here + * matches what the READ command supports, at least until this driver + * understands FAST_READ (for clocks over 25 MHz). + */ +static int __devinit ubicom32_flash_probe(struct platform_device *spi) +{ + struct flash_platform_data *data; + struct m25p *flash; + struct flash_info *info; + unsigned i; + + /* Platform data helps sort out which chip type we have, as + * well as how this board partitions it. If we don't have + * a chip ID, try the JEDEC id commands; they'll work for most + * newer chips, even if we don't recognize the particular chip. + */ + data = spi->dev.platform_data; + if (data && data->type) { + for (i = 0, info = m25p_data; + i < ARRAY_SIZE(m25p_data); + i++, info++) { + if (strcmp(data->type, info->name) == 0) + break; + } + + /* unrecognized chip? */ + if (i == ARRAY_SIZE(m25p_data)) { + DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n", + dev_name(&spi->dev), data->type); + info = NULL; + + /* recognized; is that chip really what's there? */ + } else if (info->jedec_id) { + struct flash_info *chip = jedec_probe(spi); + + if (!chip || chip != info) { + dev_warn(&spi->dev, "found %s, expected %s\n", + chip ? chip->name : "UNKNOWN", + info->name); + info = NULL; + } + } + } else + info = jedec_probe(spi); + + if (!info) + return -ENODEV; + + flash = kzalloc(sizeof *flash, GFP_KERNEL); + if (!flash) + return -ENOMEM; + + flash->plt_dev = spi; + mutex_init(&flash->lock); + dev_set_drvdata(&spi->dev, flash); + + if (data && data->name) + flash->mtd.name = data->name; + else + flash->mtd.name = dev_name(&spi->dev); + + flash->mtd.type = MTD_NORFLASH; + flash->mtd.writesize = 1; + flash->mtd.flags = MTD_CAP_NORFLASH; + flash->mtd.size = info->sector_size * info->n_sectors; + flash->mtd.erase = ubicom32_flash_driver_erase; + flash->mtd.read = ubicom32_flash_driver_read; + flash->mtd.write = ubicom32_flash_driver_write; + + /* prefer "small sector" erase if possible */ + /* + * The Ubicom erase code does not use the opcode for smaller sectors, + * so disable that functionality and keep erasesize == sector_size + * so that the test in ubicom32_flash_driver_erase works properly. + * + * This was: `if (info->flags & SECT_4K) {' instead of `if (0) {' + */ + if (0) { + flash->erase_opcode = OPCODE_BE_4K; + flash->mtd.erasesize = 4096; + } else { + flash->erase_opcode = OPCODE_SE; + flash->mtd.erasesize = info->sector_size; + } + + dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name, + flash->mtd.size / 1024); + + DEBUG(MTD_DEBUG_LEVEL2, + "mtd .name = %s, .size = 0x%.8llx (%lluMiB) " + ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", + flash->mtd.name, + flash->mtd.size, flash->mtd.size / (1024*1024), + flash->mtd.erasesize, flash->mtd.erasesize / 1024, + flash->mtd.numeraseregions); + + if (flash->mtd.numeraseregions) + for (i = 0; i < flash->mtd.numeraseregions; i++) + DEBUG(MTD_DEBUG_LEVEL2, + "mtd.eraseregions[%d] = { .offset = 0x%.8llx, " + ".erasesize = 0x%.8x (%uKiB), " + ".numblocks = %d }\n", + i, flash->mtd.eraseregions[i].offset, + flash->mtd.eraseregions[i].erasesize, + flash->mtd.eraseregions[i].erasesize / 1024, + flash->mtd.eraseregions[i].numblocks); + + + /* partitions should match sector boundaries; and it may be good to + * use readonly partitions for writeprotected sectors (BP2..BP0). + */ + if (mtd_has_partitions()) { + struct mtd_partition *parts = NULL; + int nr_parts = 0; + +#ifdef CONFIG_MTD_CMDLINE_PARTS + static const char *part_probes[] = { "cmdlinepart", NULL, }; + + nr_parts = parse_mtd_partitions(&flash->mtd, + part_probes, &parts, 0); +#endif + + if (nr_parts <= 0 && data && data->parts) { + parts = data->parts; + nr_parts = data->nr_parts; + if (nr_parts >= 2) { + /* + * Set last partition size to be 1M. + */ + parts[1].size = flash->mtd.size - + parts[0].size - JFFS2_FILESYSTEM_SIZE; + parts[2].size = JFFS2_FILESYSTEM_SIZE; + } + } + + if (nr_parts > 0) { + for (i = 0; i < nr_parts; i++) { + DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " + "{.name = %s, .offset = 0x%.8llx, " + ".size = 0x%.8llx (%lluKiB) }\n", + i, parts[i].name, + parts[i].offset, + parts[i].size, + parts[i].size / 1024); + } + flash->partitioned = 1; + return add_mtd_partitions(&flash->mtd, parts, nr_parts); + } + } else if (data->nr_parts) + dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", + data->nr_parts, data->name); + + return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; +} + + +static int __devexit ubicom32_flash_remove(struct spi_device *spi) +{ + struct m25p *flash = dev_get_drvdata(&spi->dev); + int status; + + /* Clean up MTD stuff. */ + if (mtd_has_partitions() && flash->partitioned) + status = del_mtd_partitions(&flash->mtd); + else + status = del_mtd_device(&flash->mtd); + if (status == 0) + kfree(flash); + return 0; +} + +static struct platform_driver ubicom32_flash_driver = { + .driver = { + .name = "ubicom32flashdriver", + .bus = &platform_bus_type, + .owner = THIS_MODULE, + }, + .probe = ubicom32_flash_probe, + .remove = NULL, +}; + +static int ubicom32_flash_driver_init(void) +{ + return platform_driver_register(&ubicom32_flash_driver); +} + + +static void ubicom32_flash_driver_exit(void) +{ + platform_driver_unregister(&ubicom32_flash_driver); +} + + +module_init(ubicom32_flash_driver_init); +module_exit(ubicom32_flash_driver_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mike Lavender"); +MODULE_DESCRIPTION("Ubicom32 MTD SPI driver for ST M25Pxx flash chips"); diff --git a/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c new file mode 100644 index 000000000..897bed787 --- /dev/null +++ b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c @@ -0,0 +1,1188 @@ +/* + * Micron SPI-ER NAND Flash Memory + * This code uses the built in Ubicom flash controller + * + * (C) Copyright 2009, Ubicom, Inc. + * + * This file is part of the Ubicom32 Linux Kernel Port. + * + * The Ubicom32 Linux Kernel Port is free software: you can redistribute + * it and/or modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, either version 2 of the + * License, or (at your option) any later version. + * + * The Ubicom32 Linux Kernel Port is distributed in the hope that it + * will be useful, but WITHOUT ANY WARRANTY; without even the implied + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with the Ubicom32 Linux Kernel Port. If not, + * see <http://www.gnu.org/licenses/>. +*/ +#include <linux/module.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/mutex.h> +#include <linux/err.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +#define DRIVER_NAME "ubi32-nand-spi-er" +#define UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row) (row >> 6) + +#define UBI32_NAND_SPI_ER_STATUS_P_FAIL (1 << 3) +#define UBI32_NAND_SPI_ER_STATUS_E_FAIL (1 << 2) +#define UBI32_NAND_SPI_ER_STATUS_OIP (1 << 0) + +#define UBI32_NAND_SPI_ER_LAST_ROW_INVALID 0xFFFFFFFF +#define UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET 0x08 + +struct ubi32_nand_spi_er_device { + const char *name; + + uint16_t id; + + unsigned int blocks; + unsigned int pages_per_block; + unsigned int page_size; + unsigned int write_size; + unsigned int erase_size; +}; + +struct ubi32_nand_spi_er { + char name[24]; + + const struct ubi32_nand_spi_er_device *device; + + struct mutex lock; + struct platform_device *pdev; + + struct mtd_info mtd; + + unsigned int last_row; /* the last row we fetched */ + + /* + * Bad block table (MUST be last in strcuture) + */ + unsigned long nbb; + unsigned long bbt[0]; +}; + +/* + * Chip supports a write_size of 512, but we cannot do partial + * page with command 0x84. + * + * We need to use command 0x84 because we cannot fill the FIFO fast + * enough to transfer the whole 512 bytes at a time. (maybe through + * OCM?) + */ +const struct ubi32_nand_spi_er_device ubi32_nand_spi_er_devices[] = { + { + name: "MT29F1G01ZDC", + id: 0x2C12, + blocks: 1024, + pages_per_block: 64, + page_size: 2048, + write_size: 2048, + erase_size: 64 * 2048, + }, + { + name: "MT29F1G01ZDC", + id: 0x2C13, + blocks: 1024, + pages_per_block: 64, + page_size: 2048, + write_size: 2048, + erase_size: 64 * 2048, + }, +}; + +static int read_only = 0; +module_param(read_only, int, 0); +MODULE_PARM_DESC(read_only, "Leave device locked"); + +/* + * Ubicom32 FLASH Command Set + */ +#define FLASH_PORT RA + +#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */ +#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */ +#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */ + +#define FLASH_COMMAND_KICK_OFF(io) \ + asm volatile( \ + " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ + " jmpt.t .+4 \n\t" \ + " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \ + : \ + : "a" (io) \ + : "cc" \ + ); + +#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \ + asm volatile( \ + " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ + " jmpeq.f .-4 \n\t" \ + : \ + : "a" (io) \ + : "cc" \ + ); + +#define FLASH_COMMAND_EXEC(io) \ + FLASH_COMMAND_KICK_OFF(io) \ + FLASH_COMMAND_WAIT_FOR_COMPLETION(io) + +/* + * ubi32_nand_spi_er_get_feature + * Get Feature register + */ +static uint8_t ubi32_nand_spi_er_get_feature(uint32_t reg) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + /* + * Note that this will produce the sequence: + * SI [0F][REG][00][00] + * SO ---------[SR][SR][SR] + * Since the flash controller can only output 24 bits of address, this is + * ok for this command since the data will just repeat as long as the CS + * is asserted and the clock is running. + */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(1) | + IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x0F) | IO_XFL_CTL2_FC_ADDR(reg << 16); + FLASH_COMMAND_EXEC(io); + + return io->status1 & 0xFF; +} + +/* + * ubi32_nand_spi_er_write_buf + * writes a buffer to the bus + * + * Writes 511 + 1 bytes to the bus, we have to stuff one data byte into the address. + */ +static void ubi32_nand_spi_er_write_buf(const uint8_t *buf, uint32_t col) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + uint32_t tmp; + + asm volatile ( + " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" + " pipe_flush 0 \n\t" + : + : [port] "a" (FLASH_PORT) + : "cc" + ); + + /* + * Write the data into the cache + */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; +#ifdef SUPPORT_512_FIFO + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(511) | +#endif + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(31) | + IO_XFL_CTL1_FC_ADDR; + + /* + * Construct the address with the first byte of data + */ + tmp = (col << 8) | *buf++; + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84) | IO_XFL_CTL2_FC_ADDR(tmp); + + asm volatile ( + + /* + * Move 32 bytes + * + * The first word needs to be [11][22][33][33] to work around a flash + * controller bug. + */ + " move.2 %[tmp], (%[data])2++ \n\t" + " shmrg.1 %[tmp], (%[data]), %[tmp] \n\t" + " shmrg.1 %[tmp], (%[data])1++, %[tmp] \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), %[tmp] \n\t" + + /* + * We're aligned again! + */ + " .rept 7 \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" + " .endr \n\t" + + /* + * Kick off the flash command + */ + " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" + " jmpt.t .+4 \n\t" + " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" + +#ifdef SUPPORT_512_FIFO + /* + * Fill the remaining 120 words as space becomes available + */ + "1: \n\t" + " cmpi "D(IO_FIFO_LEVEL)"(%[port]), #4 \n\t" + " jmpgt.s.t 1b \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t" + " add.4 %[cnt], #-4, %[cnt] \n\t" + " jmpgt.t 1b \n\t" +#endif + /* + * Wait for the transaction to finish + */ + " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t" + " jmpeq.f .-4 \n\t" + + : [tmp] "=&d" (tmp), + [data] "+&a" (buf) + : [column] "d" (col), + [port] "a" (FLASH_PORT), + [cnt] "d" (120) // see above comment + : "cc" + ); +} + +/* + * ubi32_nand_spi_er_send_rd_addr + * perform FC_RD: CMD + address + */ +static void ubi32_nand_spi_er_send_rd_addr(uint8_t command, uint32_t address) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(4) | + IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address); + FLASH_COMMAND_EXEC(io); +} + +/* + * ubi32_nand_spi_er_send_cmd_addr + * perform FC_(xxx): CMD + address + */ +static void ubi32_nand_spi_er_send_cmd_addr(uint8_t command, uint32_t address) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address); + FLASH_COMMAND_EXEC(io); +} + +/* + * ubi32_nand_spi_er_write_disable + * clear the write enable bit + */ +static void ubi32_nand_spi_er_write_disable(void) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x04); + FLASH_COMMAND_EXEC(io); +} + +/* + * ubi32_nand_spi_er_write_enable + * set the write enable bit + */ +static void ubi32_nand_spi_er_write_enable(void) +{ + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x06); + FLASH_COMMAND_EXEC(io); +} + +/* + * ubi32_nand_spi_er_busywait + * Wait until the chip is not busy + */ +static uint8_t ubi32_nand_spi_er_busywait(void) +{ + int i; + uint8_t data; + + /* + * tRD is 100us, so don't delay too long, however, tERS is + * 10ms so you'd better loop enough. + */ + for (i = 0; i < 200; i++) { + data = ubi32_nand_spi_er_get_feature(0xC0); + if (!(data & UBI32_NAND_SPI_ER_STATUS_OIP)) { + break; + } + + udelay(50); + } + + return data; +} + +/* + * ubi32_nand_spi_er_erase + * Erase a block, parameters must be block aligned + */ +static int ubi32_nand_spi_er_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct ubi32_nand_spi_er *chip = mtd->priv; + int res; + + DEBUG(MTD_DEBUG_LEVEL3, "%s: erase addr:%x len:%x\n", chip->name, instr->addr, instr->len); + + if ((instr->addr + instr->len) > mtd->size) { + return -EINVAL; + } + + if (instr->addr & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: erase address is not aligned %x\n", chip->name, instr->addr); + return -EINVAL; + } + + if (instr->len & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: erase len is not aligned %x\n", chip->name, instr->len); + return -EINVAL; + } + + mutex_lock(&chip->lock); + chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; + + while (instr->len) { + uint32_t block = instr->addr >> 17; + uint32_t row = block << 6; + uint8_t stat; + DEBUG(MTD_DEBUG_LEVEL3, "%s: block erase row:%x block:%x addr:%x rem:%x\n", chip->name, row, block, instr->addr, instr->len); + + /* + * Test for bad block + */ + if (test_bit(block, chip->bbt)) { + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + res = -EBADMSG; + goto done; + } + + ubi32_nand_spi_er_write_enable(); + + /* + * Block erase + */ + ubi32_nand_spi_er_send_cmd_addr(0xD8, row); + + /* + * Wait + */ + stat = ubi32_nand_spi_er_busywait(); + if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); + + /* + * Chip is stuck? + */ + res = -EIO; + goto done; + } + + /* + * Check the status register + */ + if (stat & UBI32_NAND_SPI_ER_STATUS_E_FAIL) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: E_FAIL signalled (%02x)\n", chip->name, stat); + instr->fail_addr = block << 17; + instr->state = MTD_ERASE_FAILED; + goto done; + } + + /* + * Next + */ + block++; + instr->len -= chip->device->erase_size; + instr->addr += chip->device->erase_size; + } + + instr->state = MTD_ERASE_DONE; + + mutex_unlock(&chip->lock); + return 0; + +done: + ubi32_nand_spi_er_write_disable(); + + mutex_unlock(&chip->lock); + + mtd_erase_callback(instr); + return 0; +} + +/* + * ubi32_nand_spi_er_read + * + * return -EUCLEAN: ecc error recovered + * return -EBADMSG: ecc error not recovered +*/ +static int ubi32_nand_spi_er_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct ubi32_nand_spi_er *chip = mtd->priv; + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + uint32_t row; + uint32_t column; + int retval = 0; + uint32_t *pbuf = (uint32_t *)buf; + + *retlen = 0; + DEBUG(MTD_DEBUG_LEVEL2, "%s: read block from %llx len %d into %p\n", chip->name, from, len, buf); + + /* + * buf should be aligned + */ + if ((uint32_t)buf & 0x03) { + return -EINVAL; + } + + /* + * Zero length reads, nothing to do + */ + if (len == 0) { + return 0; + } + + /* + * Reject reads which go over the end of the flash + */ + if ((from + len) > mtd->size) { + return -EINVAL; + } + + /* + * Get the row and column address to start at + */ + row = from >> 11; + column = from & 0x7FF; + DEBUG(MTD_DEBUG_LEVEL3, "%s: row=%x %d column=%x %d last_row=%x %d\n", chip->name, row, row, column, column, chip->last_row, chip->last_row); + + /* + * Read the data from the chip + */ + mutex_lock(&chip->lock); + while (len) { + uint8_t stat; + size_t toread; + int i; + int tmp; + + /* + * Figure out how much to read + * + * If we are reading from the middle of a page then the most we + * can read is to the end of the page + */ + toread = len; + if (toread > (chip->device->page_size - column)) { + toread = chip->device->page_size - column; + } + + DEBUG(MTD_DEBUG_LEVEL3, "%s: buf=%p toread=%x row=%x column=%x last_row=%x\n", chip->name, pbuf, toread, row, column, chip->last_row); + + if (chip->last_row != row) { + /* + * Check if the block is bad + */ + if (test_bit(UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row), chip->bbt)) { + mutex_unlock(&chip->lock); + return -EBADMSG; + } + + /* + * Load the appropriate page + */ + ubi32_nand_spi_er_send_cmd_addr(0x13, row); + + /* + * Wait + */ + stat = ubi32_nand_spi_er_busywait(); + if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); + + /* + * Chip is stuck? + */ + mutex_unlock(&chip->lock); + return -EIO; + } + + /* + * Check the ECC bits + */ + stat >>= 4; + if (stat == 1) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: ECC recovered, row=%x\n", chip->name, row); + retval = -EUCLEAN; + } + if (stat == 2) { + DEBUG(MTD_DEBUG_LEVEL0, "%s: failed ECC, row=%x\n", chip->name, row); + chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; + mutex_unlock(&chip->lock); + return -EBADMSG; + } + + } + + chip->last_row = row; + + /* + * Read out the data: + * We can always read a little too much since there is the + * OOB after byte addr 2047. The most we'll overread is 3 bytes. + */ + if (((uint32_t)pbuf & 0x03) == 0) { + /* + * Aligned read + */ + tmp = toread & (~0x03); + for (i = 0; i < tmp; i += 4) { + ubi32_nand_spi_er_send_rd_addr(0x03, column << 8); + *pbuf++ = io->status1; + column += 4; + } + } else { + /* + * Unaligned read + */ + tmp = toread & (~0x03); + for (i = 0; i < tmp; i += 4) { + ubi32_nand_spi_er_send_rd_addr(0x03, column << 8); + memcpy(pbuf, &io->status1, 4); + column += 4; + } + } + + /* + * Fill in any single bytes + */ + tmp = toread & 0x03; + if (tmp) { + uint8_t *bbuf = pbuf; + uint32_t val; + ubi32_nand_spi_er_send_rd_addr(0x03, column << 8); + val = io->status1; + for (i = 0; i < tmp; i++) { + *bbuf++ = val >> 24; + val <<= 8; + } + } + + len -= toread; + *retlen += toread; + + /* + * For the next page, increment the row and always start at column 0 + */ + column = 0; + row++; + } + + mutex_unlock(&chip->lock); + return retval; +} + +/* + * ubi32_nand_spi_er_write + */ +#define WRITE_NOT_ALIGNED(x) ((x & (device->write_size - 1)) != 0) +static int ubi32_nand_spi_er_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct ubi32_nand_spi_er *chip = mtd->priv; + const struct ubi32_nand_spi_er_device *device = chip->device; + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + uint32_t row; + uint32_t col; + int res = 0; + size_t towrite; + + DEBUG(MTD_DEBUG_LEVEL2, "%s: write block to %llx len %d from %p\n", chip->name, to, len, buf); + + *retlen = 0; + + /* + * nothing to write + */ + if (!len) { + return 0; + } + + /* + * Reject writes which go over the end of the flash + */ + if ((to + len) > mtd->size) { + return -EINVAL; + } + + /* + * buf should be aligned to 16 bits + */ + if ((uint32_t)buf & 0x01) { + return -EINVAL; + } + + /* + * Check to see if everything is page aligned + */ + if (WRITE_NOT_ALIGNED(to) || WRITE_NOT_ALIGNED(len)) { + printk(KERN_NOTICE "ubi32_nand_spi_er_write: Attempt to write non page aligned data\n"); + return -EINVAL; + } + + mutex_lock(&chip->lock); + + io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; + + chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; + + /* + * If the first write is a partial write then write at most the number of + * bytes to get us page aligned and then the remainder will be + * page aligned. The last bit may be a partial page as well. + */ + col = to & (device->page_size - 1); + towrite = device->page_size - col; + if (towrite > len) { + towrite = len; + } + + /* + * Write the data + */ + row = to >> 11; + while (len) { + uint8_t stat; + uint32_t my_towrite; + + DEBUG(MTD_DEBUG_LEVEL3, "%s: write %p to row:%x col:%x len:%x rem:%x\n", chip->name, buf, row, col, towrite, len); + + ubi32_nand_spi_er_write_enable(); + + /* + * Move the data into the cache + */ + my_towrite = towrite; + while (my_towrite) { + uint32_t len = my_towrite; + if (len > 32) { + len = 32; + } + + ubi32_nand_spi_er_write_buf(buf, col); + buf += len; + col += len; + my_towrite -= len; + } + + /* + * Program execute + */ + ubi32_nand_spi_er_send_cmd_addr(0x10, row); + + /* + * Wait + */ + stat = ubi32_nand_spi_er_busywait(); + if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); + + /* + * Chip is stuck? + */ + res = -EIO; + goto done; + } + + if (stat & (1 << 3)) { + res = -EBADMSG; + goto done; + } + + row++; + len -= towrite; + *retlen += towrite; + + /* + * At this point, we are always page aligned so start at column 0. + * Note we may not have a full page to write at the end, hence the + * check if towrite > len. + */ + col = 0; + towrite = device->page_size; + if (towrite > len) { + towrite = len; + } + } + + io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; + + mutex_unlock(&chip->lock); + return res; + +done: + ubi32_nand_spi_er_write_disable(); + + io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; + + mutex_unlock(&chip->lock); + + return res; +} + +/* + * ubi32_nand_spi_er_isbad + */ +static int ubi32_nand_spi_er_isbad(struct mtd_info *mtd, loff_t ofs) +{ + struct ubi32_nand_spi_er *chip = mtd->priv; + uint32_t block; + + if (ofs & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs); + return -EINVAL; + } + + block = ofs >> 17; + + return test_bit(block, chip->bbt); +} + +/* + * ubi32_nand_spi_er_markbad + */ +static int ubi32_nand_spi_er_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct ubi32_nand_spi_er *chip = mtd->priv; + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + uint32_t block; + uint32_t row; + int res = 0; + uint8_t stat; + + if (ofs & (chip->device->erase_size - 1)) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs); + return -EINVAL; + } + + block = ofs >> 17; + + /* + * If it's already marked bad, no need to mark it + */ + if (test_bit(block, chip->bbt)) { + return 0; + } + + /* + * Mark it in our cache + */ + __set_bit(block, chip->bbt); + + /* + * Write the user bad block mark. If it fails, then we really + * can't do anything about it. + */ + mutex_lock(&chip->lock); + chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; + + ubi32_nand_spi_er_write_enable(); + + /* + * Write the mark + */ + io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(6); + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84); + + asm volatile ( + " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" + " pipe_flush 0 \n\t" + + /* + * Move the data into the FIFO + */ + " move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t" + " move.4 "D(IO_TX_FIFO)"(%[port]), %[word2] \n\t" + + /* + * Kick off the flash command + */ + " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" + " jmpt.t .+4 \n\t" + " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" + + /* + * Wait for the transaction to finish + */ + " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t" + " jmpeq.f .-4 \n\t" + + : + : [word1] "d" (0x0800dead | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 16)), + [word2] "d" (0xbeef0000), + [port] "a" (FLASH_PORT) + : "cc" + ); + + io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; + + /* + * Program execute + */ + row = block << 6; + ubi32_nand_spi_er_send_cmd_addr(0x10, row); + + /* + * Wait + */ + stat = ubi32_nand_spi_er_busywait(); + if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); + + /* + * Chip is stuck? + */ + res = -EIO; + goto done; + } + + if (stat & (1 << 3)) { + res = -EBADMSG; + } + +done: + ubi32_nand_spi_er_write_disable(); + + mutex_unlock(&chip->lock); + + return res; +} + +/* + * ubi32_nand_spi_er_read_bbt + */ +static int ubi32_nand_spi_er_read_bbt(struct ubi32_nand_spi_er *chip) +{ + int j; + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + for (j = 0; j < chip->device->blocks; j++) { + unsigned short row = j << 6; + uint8_t stat; + + /* + * Read Page + */ + ubi32_nand_spi_er_send_cmd_addr(0x13, row); + + /* + * Wait + */ + stat = ubi32_nand_spi_er_busywait(); + if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) { + DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat); + + /* + * Chip is stuck? + */ + return -EIO; + } + + /* + * Check factory bad block mark + */ + ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000); + + if ((io->status1 >> 24) != 0xFF) { + chip->nbb++; + __set_bit(j, chip->bbt); + continue; + } + + ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000 | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 8)); + if (io->status1 == 0xdeadbeef) { + chip->nbb++; + __set_bit(j, chip->bbt); + } + } + +#if defined(CONFIG_MTD_DEBUG) && (MTD_DEBUG_LEVEL3 <= CONFIG_MTD_DEBUG_VERBOSE) + printk("%s: Bad Block Table:", chip->name); + for (j = 0; j < chip->device->blocks; j++) { + if ((j % 64) == 0) { + printk("\n%s: block %03x: ", chip->name, j); + } + printk("%c", test_bit(j, chip->bbt) ? 'X' : '.'); + } + printk("\n%s: Bad Block Numbers: ", chip->name); + for (j = 0; j < chip->device->blocks; j++) { + if (test_bit(j, chip->bbt)) { + printk("%x ", j); + } + } + printk("\n"); +#endif + + return 0; +} + +#ifndef MODULE +/* + * Called at boot time: + * + * ubi32_nand_spi_er=read_only + * if read_only specified then do not unlock device + */ +static int __init ubi32_nand_spi_er_setup(char *str) +{ + if (str && (strncasecmp(str, "read_only", 9) == 0)) { + read_only = 1; + } + return 0; +} + +__setup("ubi32_nand_spi_er=", ubi32_nand_spi_er_setup); +#endif + +/* + * ubi32_nand_spi_er_probe + * Detect and initialize ubi32_nand_spi_er device. + */ +static int __devinit ubi32_nand_spi_er_probe(struct platform_device *pdev) +{ + uint32_t i; + uint32_t id; + int res; + size_t bbt_bytes; + struct ubi32_nand_spi_er *chip; + const struct ubi32_nand_spi_er_device *device; + struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT; + + /* + * Reset + */ + for (i = 0; i < 2; i++) { + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); + io->ctl2 = IO_XFL_CTL2_FC_CMD(0xFF); + FLASH_COMMAND_EXEC(io); + udelay(250); + } + udelay(1000); + + /* + * Read out ID + */ + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(2) | + IO_XFL_CTL1_FC_ADDR; + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x9F); + FLASH_COMMAND_EXEC(io); + + id = io->status1 >> 16; + device = ubi32_nand_spi_er_devices; + for (i = 0; i < ARRAY_SIZE(ubi32_nand_spi_er_devices); i++) { + if (device->id == id) { + break; + } + device++; + } + if (i == ARRAY_SIZE(ubi32_nand_spi_er_devices)) { + return -ENODEV; + } + + /* + * Initialize our chip structure + */ + bbt_bytes = DIV_ROUND_UP(device->blocks, BITS_PER_BYTE); + chip = kzalloc(sizeof(struct ubi32_nand_spi_er) + bbt_bytes, GFP_KERNEL); + if (!chip) { + return -ENOMEM; + } + snprintf(chip->name, sizeof(chip->name), "%s", device->name); + + chip->device = device; + chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID; + + mutex_init(&chip->lock); + + chip->mtd.type = MTD_NANDFLASH; + chip->mtd.flags = MTD_WRITEABLE; + + /* + * #blocks * block size * n blocks + */ + chip->mtd.size = device->blocks * device->pages_per_block * device->page_size; + chip->mtd.erasesize = device->erase_size; + + /* + * 1 page, optionally we can support partial write (512) + */ + chip->mtd.writesize = device->write_size; + chip->mtd.name = device->name; + chip->mtd.erase = ubi32_nand_spi_er_erase; + chip->mtd.read = ubi32_nand_spi_er_read; + chip->mtd.write = ubi32_nand_spi_er_write; + chip->mtd.block_isbad = ubi32_nand_spi_er_isbad; + chip->mtd.block_markbad = ubi32_nand_spi_er_markbad; + chip->mtd.priv = chip; + + /* + * Cache the bad block table + */ + res = ubi32_nand_spi_er_read_bbt(chip); + if (res) { + kfree(chip); + return res; + } + + /* + * Un/lock the chip + */ + io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; + io->ctl1 &= ~IO_XFL_CTL1_MASK; + io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(2); + io->ctl2 = IO_XFL_CTL2_FC_CMD(0x1F); + + if (read_only) { + i = 0xa0380000; + } else { + i = 0xa0000000; + } + asm volatile ( + " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" + " pipe_flush 0 \n\t" + + /* + * Move the data into the FIFO + */ + " move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t" + + /* + * Kick off the flash command + */ + " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" + " jmpt.t .+4 \n\t" + " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" + + /* + * Wait for the transaction to finish + */ + " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t" + " jmpeq.f .-4 \n\t" + + : + : [word1] "d" (i), + [port] "a" (FLASH_PORT) + : "cc" + ); + io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; + + dev_set_drvdata(&pdev->dev, chip); + + printk(KERN_INFO "%s: added device size: %u KBytes %lu bad blocks %s\n", chip->mtd.name, DIV_ROUND_UP(chip->mtd.size, 1024), chip->nbb, read_only ? "[read only]" : ""); + return add_mtd_device(&chip->mtd); +} + +/* + * ubi32_nand_spi_er_remove + */ +static int __devexit ubi32_nand_spi_er_remove(struct platform_device *pdev) +{ + struct ubi32_nand_spi_er *chip = dev_get_drvdata(&pdev->dev); + int status; + + DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", chip->name); + + status = del_mtd_device(&chip->mtd); + if (status == 0) { + kfree(chip); + } + + dev_set_drvdata(&pdev->dev, NULL); + return status; +} + +static struct platform_device *ubi32_nand_spi_er_device; + +static struct platform_driver ubi32_nand_spi_er_driver = { + .driver = { + .name = DRIVER_NAME, + .owner = THIS_MODULE, + }, + + .probe = ubi32_nand_spi_er_probe, + .remove = ubi32_nand_spi_er_remove, +}; + +/* + * ubi32_nand_spi_er_init + */ +static int __init ubi32_nand_spi_er_init(void) +{ + int ret; + + ret = platform_driver_register(&ubi32_nand_spi_er_driver); + + if (ret) { + return ret; + } + + ubi32_nand_spi_er_device = platform_device_alloc(DRIVER_NAME, 0); + if (!ubi32_nand_spi_er_device) { + return -ENOMEM; + } + + ret = platform_device_add(ubi32_nand_spi_er_device); + if (ret) { + platform_device_put(ubi32_nand_spi_er_device); + platform_driver_unregister(&ubi32_nand_spi_er_driver); + } + + return ret; +} +module_init(ubi32_nand_spi_er_init); + +/* + * ubi32_nand_spi_er_exit + */ +static void __exit ubi32_nand_spi_er_exit(void) +{ + platform_device_unregister(ubi32_nand_spi_er_device); + platform_driver_unregister(&ubi32_nand_spi_er_driver); +} +module_exit(ubi32_nand_spi_er_exit); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Patrick Tjin"); +MODULE_DESCRIPTION("MTD ubi32_nand_spi_er driver for ubicom32 SPI flash controller."); |