aboutsummaryrefslogtreecommitdiffstats
path: root/examples/hodgkin_huxley
diff options
context:
space:
mode:
Diffstat (limited to 'examples/hodgkin_huxley')
-rw-r--r--examples/hodgkin_huxley/model.modelica32
-rw-r--r--examples/hodgkin_huxley/page.md86
2 files changed, 0 insertions, 118 deletions
diff --git a/examples/hodgkin_huxley/model.modelica b/examples/hodgkin_huxley/model.modelica
deleted file mode 100644
index 7e44547..0000000
--- a/examples/hodgkin_huxley/model.modelica
+++ /dev/null
@@ -1,32 +0,0 @@
-model HodgkinHuxley
- "Model of action potential in squid neurons (1952)"
- parameter Real C_m =1.0 "membrane capacitance";
- parameter Real g_Na =120 "conductance";
- parameter Real g_K =36 "conductance";
- parameter Real g_L =0.3 "conductance";
- parameter Real V_Na =115 "potential";
- parameter Real V_K =-12 "potential";
- parameter Real V_lk =-49.387 "leak reveral potential";
- parameter Real E_Na =-190 "equilibrium potential";
- parameter Real E_K =-63 "equilibrium potential";
- parameter Real E_lk =-85.613 "equilibrium potential";
- parameter Real n =0.31768 "dimensionless; 0 to 1";
- parameter Real m =0.05293 "dimensionless; 0 to 1";
- parameter Real h =0.59612 "dimensionless; 0 to 1";
- Real V_m "membrane voltage potential";
- Real I =1.0 "membrane current";
- Real alpha_n, alpha_m, alpha_h "rate constants";
- Real beta_n, beta_m, beta_h "rate constants";
-equation
- C_m * der(V_m) = I - g_Na * m^3 * h * (V_m - E_Na) - g_K * n^4 * (V_m - E_K) - G_lk * (V_m - E_lk);
- der(n) = alpha_n - n * (alpha_n + beta_n);
- der(m) = alpha_m - m * (alpha_m + beta_m);
- der(h) = alpha_h - h * (alpha_h + beta_h);
-
- alpha_n = 0.01 * (V_m + 10) / (e^((V_m + 10)/10) - 1);
- alpha_m = 0.1 * (V_m + 25) / (e^((V_m + 25)/10) - 1);
- alpha_h = 0.07 * e^(V_m / 20);
- beta_n = 0.125 * e^(V_m / 80);
- beta_m = 4*e^(V_m/18);
- beta_h = 1 / (e^((V_m + 30)/10) + 1);
-end HodgkinHuxley;
diff --git a/examples/hodgkin_huxley/page.md b/examples/hodgkin_huxley/page.md
deleted file mode 100644
index 4598c97..0000000
--- a/examples/hodgkin_huxley/page.md
+++ /dev/null
@@ -1,86 +0,0 @@
-
-The Hodgkin–Huxley model, or conductance-based model, is a mathematical model
-that describes how action potentials in neurons are initiated and propagated.
-It is a set of nonlinear differential equations that approximates the
-electrical characteristics of excitable cells such as neurons and cardiac
-myocytes, and hence it is a continuous time model, unlike the Rulkov map for
-example.
-
-Alan Lloyd Hodgkin and Andrew Fielding Huxley described the model in 1952 to
-explain the ionic mechanisms underlying the initiation and propagation of
-action potentials in the squid giant axon. They received the 1963 Nobel Prize
-in Physiology or Medicine for this work.
-
-## Mathematical properties
-
-The Hodgkin–Huxley model can be thought of as a differential equation with four
-state variables, v(t), m(t), n(t), and h(t), that change with respect to time
-t. The system is difficult to study because it is a nonlinear system and cannot
-be solved analytically. However, there are many numeric methods available to
-analyze the system. Certain properties and general behaviors, such as limit
-cycles, can be proven to exist.
-
-## Alternative Models
-
-The Hodgkin–Huxley model is regarded as one of the great achievements of 20th-century biophysics. Nevertheless, modern Hodgkin–Huxley-type models have been extended in several important ways:
-
-* Additional ion channel populations have been incorporated based on experimental data.
-
-* The Hodgkin–Huxley model has been modified to incorporate transition state
- theory and produce thermodynamic Hodgkin–Huxley models.
-
-* Models often incorporate highly complex geometries of dendrites and axons,
- often based on microscopy data.
-
-* Stochastic models of ion-channel behavior, leading to stochastic hybrid
- systems
-
-Several simplified neuronal models have also been developed (such as the
-FitzHugh–Nagumo model), facilitating efficient large-scale simulation of groups
-of neurons, as well as mathematical insight into dynamics of action potential
-generation.
-
-
-## References
-
-The body of this page is from Wikipedia (see below).
-
-#### Papers
-
-"The dual effect of membrane potential on sodium conductance in the giant axon
-of Loligo". *The Journal of Physiology*. **116** (4): 497–506. April 1952.
-doi:10.1113/jphysiol.1952.sp004719.
-
-"Currents carried by sodium and potassium ions through the membrane of the
-giant axon of Loligo". *The Journal of Physiology*. **116** (4): 449–72. April 1952.
-doi:10.1113/jphysiol.1952.sp004717.
-
-"The components of membrane conductance in the giant axon of Loligo". *The
-Journal of Physiology*. **116** (4): 473–96. April 1952.
-doi:10.1113/jphysiol.1952.sp004718.
-
-"The dual effect of membrane potential on sodium conductance in the giant axon
-of Loligo". *The Journal of Physiology*. **116** (4): 497–506. April 1952.
-doi:10.1113/jphysiol.1952.sp004719.
-
-"A quantitative description of membrane current and its application to
-conduction and excitation in nerve". *The Journal of Physiology*. **117** (4):
-500–44. August 1952. doi:10.1113/jphysiol.1952.sp004764.
-
-#### Interactive Models on the Web
-
-* ModelDB: [Squid axon (Hodgkin, Huxley 1952)](https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=5426)
-* Wolfram Demonstrations:
- [Interactive Hodgkin-Huxley](http://demonstrations.wolfram.com/HodgkinHuxleyActionPotentialModel/)
- by Shimon Marom and
- [Neural Impulses: The Action Potential in Action](http://www.demonstrations.wolfram.com/NeuralImpulsesTheActionPotentialInAction/)
- by Garrett Neske
-* [Hodgkin-Huxley Simulation with Javascript](http://myselph.de/hodgkinHuxley.html)
- by Hubert Eichner, which creates static plots in the browser.
-* BioModels database: [](http://www.ebi.ac.uk/biomodels-main/BIOMD0000000020)
-
-#### Other Links
-
-* Wikipedia: [Hodgkin–Huxley model](https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model)
-* [Summary of the Hodgkin-Huxley model](http://ecee.colorado.edu/~ecen4831/HHsumWWW/HHsum.html)
-* [Hodgkin-Huxley model in R](http://www.magesblog.com/2012/06/hodgkin-huxley-model-in-r.html)