1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/******************************************************************************
* The MIT License
*
* Copyright (c) 2010 Bryan Newbold.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*****************************************************************************/
/*
* wirish timer class to manage the four 16-bit timer peripherals
*/
#include "wirish.h"
#include "HardwareTimer.h"
HardwareTimer::HardwareTimer(timer_dev_num timerNum) {
ASSERT(timerNum != TIMER_INVALID);
this->timerNum = timerNum;
}
void HardwareTimer::resume(void) {
timer_resume(this->timerNum);
}
void HardwareTimer::pause(void) {
timer_pause(this->timerNum);
}
uint16 HardwareTimer::getPrescaleFactor(void) {
return timer_get_prescaler(this->timerNum) + 1;
}
void HardwareTimer::setPrescaleFactor(uint16 factor) {
// The prescaler register is zero-indexed
timer_set_prescaler(this->timerNum, factor-1);
}
uint16 HardwareTimer::getOverflow() {
return timer_get_reload(this->timerNum);
}
void HardwareTimer::setOverflow(uint16 val) {
timer_set_reload(this->timerNum, val);
}
uint16 HardwareTimer::getCount(void) {
return timer_get_count(this->timerNum);
}
void HardwareTimer::setCount(uint16 val) {
uint16 ovf = this->getOverflow();
timer_set_count(this->timerNum, min(val, ovf));
}
uint16 HardwareTimer::setPeriod(uint32 microseconds) {
// Not the best way to handle this edge case?
if(!microseconds) {
setPrescaleFactor(1);
setOverflow(1);
return this->getOverflow();
}
uint32 cycles = microseconds * CYCLES_PER_MICROSECOND;
// With a prescale factor of 1, there are CYCLES_PER_MICROSECOND
// counts/ms
uint16 ps = (uint16)((cycles >> 16) + 1);
setPrescaleFactor(ps);
// Finally, this overflow will always be less than 65536
setOverflow((cycles/ps) - 1);
return this->getOverflow();
}
inline void HardwareTimer::setChannelMode(int channel, TimerMode mode) {
timer_set_mode(this->timerNum, channel, mode);
}
void HardwareTimer::setChannel1Mode(TimerMode mode) {
this->setChannelMode(1, mode);
}
void HardwareTimer::setChannel2Mode(TimerMode mode) {
this->setChannelMode(2, mode);
}
void HardwareTimer::setChannel3Mode(TimerMode mode) {
this->setChannelMode(3, mode);
}
void HardwareTimer::setChannel4Mode(TimerMode mode) {
this->setChannelMode(4, mode);
}
inline uint16 HardwareTimer::getCompare(int channel) {
return timer_get_compare_value(this->timerNum, channel);
}
uint16 HardwareTimer::getCompare1() {
return this->getCompare(1);
}
uint16 HardwareTimer::getCompare2() {
return this->getCompare(2);
}
uint16 HardwareTimer::getCompare3() {
return this->getCompare(3);
}
uint16 HardwareTimer::getCompare4() {
return this->getCompare(4);
}
inline void HardwareTimer::setCompare(int channel, uint16 val) {
uint16 ovf = this->getOverflow();
timer_set_compare_value(this->timerNum, channel, min(val, ovf));
}
void HardwareTimer::setCompare1(uint16 val) {
this->setCompare(1, val);
}
void HardwareTimer::setCompare2(uint16 val) {
this->setCompare(2, val);
}
void HardwareTimer::setCompare3(uint16 val) {
this->setCompare(3, val);
}
void HardwareTimer::setCompare4(uint16 val) {
this->setCompare(4, val);
}
inline void HardwareTimer::attachInterrupt(int channel, voidFuncPtr handler) {
timer_attach_interrupt(this->timerNum, channel, handler);
}
void HardwareTimer::attachCompare1Interrupt(voidFuncPtr handler) {
this->attachInterrupt(1, handler);
}
void HardwareTimer::attachCompare2Interrupt(voidFuncPtr handler) {
this->attachInterrupt(2, handler);
}
void HardwareTimer::attachCompare3Interrupt(voidFuncPtr handler) {
this->attachInterrupt(3, handler);
}
void HardwareTimer::attachCompare4Interrupt(voidFuncPtr handler) {
this->attachInterrupt(4, handler);
}
inline void HardwareTimer::detachInterrupt(int channel) {
timer_detach_interrupt(this->timerNum, channel);
}
void HardwareTimer::detachCompare1Interrupt(void) {
this->detachInterrupt(1);
}
void HardwareTimer::detachCompare2Interrupt(void) {
this->detachInterrupt(2);
}
void HardwareTimer::detachCompare3Interrupt(void) {
this->detachInterrupt(3);
}
void HardwareTimer::detachCompare4Interrupt(void) {
this->detachInterrupt(4);
}
void HardwareTimer::generateUpdate(void) {
timer_generate_update(this->timerNum);
}
HardwareTimer Timer1(TIMER1);
HardwareTimer Timer2(TIMER2);
HardwareTimer Timer3(TIMER3);
HardwareTimer Timer4(TIMER4);
#if NR_TIMERS >= 8
HardwareTimer Timer5(TIMER5); // High-density devices only
HardwareTimer Timer8(TIMER8); // High-density devices only
#endif
HardwareTimer* getTimer(timer_dev_num timerNum) {
switch (timerNum) {
case TIMER1:
return &Timer1;
case TIMER2:
return &Timer2;
case TIMER3:
return &Timer3;
case TIMER4:
return &Timer4;
#if NR_TIMERS >= 8
case TIMER5:
return &Timer5;
case TIMER8:
return &Timer8;
#endif
default:
return 0;
}
}
|