1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
/******************************************************************************
* The MIT License
*
* Copyright (c) 2010 Perry Hung.
* Copyright 2014 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/**
* @author Marti Bolivar <mbolivar@leaflabs.com>
* @brief Wirish SPI implementation.
*/
#include <wirish/HardwareSPI.h>
#include <libmaple/timer.h>
#include <libmaple/util.h>
#include <libmaple/rcc.h>
#include <wirish/wirish.h>
#include <wirish/boards.h>
#if CYCLES_PER_MICROSECOND != 72
/* TODO [0.2.0?] something smarter than this */
#warning "Unexpected clock speed; SPI frequency calculation will be incorrect"
#endif
struct spi_pins {
uint8 nss;
uint8 sck;
uint8 miso;
uint8 mosi;
};
static const spi_pins* dev_to_spi_pins(spi_dev *dev);
static void enable_device(spi_dev *dev,
bool as_master,
SPIFrequency frequency,
spi_cfg_flag endianness,
spi_mode mode);
static const spi_pins board_spi_pins[] __FLASH__ = {
#if BOARD_HAVE_SPI1
{BOARD_SPI1_NSS_PIN,
BOARD_SPI1_SCK_PIN,
BOARD_SPI1_MISO_PIN,
BOARD_SPI1_MOSI_PIN},
#else
{0, 0, 0, 0},
#endif
#if BOARD_HAVE_SPI2
{BOARD_SPI2_NSS_PIN,
BOARD_SPI2_SCK_PIN,
BOARD_SPI2_MISO_PIN,
BOARD_SPI2_MOSI_PIN},
#else
{0, 0, 0, 0},
#endif
#if BOARD_HAVE_SPI3
{BOARD_SPI3_NSS_PIN,
BOARD_SPI3_SCK_PIN,
BOARD_SPI3_MISO_PIN,
BOARD_SPI3_MOSI_PIN},
#else
{0, 0, 0, 0},
#endif
};
/*
* Constructor
*/
HardwareSPI::HardwareSPI(uint32 spi_num) {
switch (spi_num) {
case 1:
this->spi_d = SPI1;
break;
case 2:
this->spi_d = SPI2;
break;
#ifdef STM32_HIGH_DENSITY
case 3:
this->spi_d = SPI3;
break;
#endif
default:
ASSERT(0);
}
}
/*
* Set up/tear down
*/
void HardwareSPI::begin(SPIFrequency frequency, uint32 bitOrder, uint32 mode) {
if (mode >= 4) {
ASSERT(0);
return;
}
spi_cfg_flag end = bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB;
spi_mode m = (spi_mode)mode;
enable_device(this->spi_d, true, frequency, end, m);
}
void HardwareSPI::begin(void) {
this->begin(SPI_1_125MHZ, MSBFIRST, 0);
}
void HardwareSPI::beginSlave(uint32 bitOrder, uint32 mode) {
if (mode >= 4) {
ASSERT(0);
return;
}
spi_cfg_flag end = bitOrder == MSBFIRST ? SPI_FRAME_MSB : SPI_FRAME_LSB;
spi_mode m = (spi_mode)mode;
enable_device(this->spi_d, false, (SPIFrequency)0, end, m);
}
void HardwareSPI::beginSlave(void) {
this->beginSlave(MSBFIRST, 0);
}
void HardwareSPI::end(void) {
if (!spi_is_enabled(this->spi_d)) {
return;
}
// Follows RM0008's sequence for disabling a SPI in master/slave
// full duplex mode.
while (spi_is_rx_nonempty(this->spi_d)) {
// FIXME [0.1.0] remove this once you have an interrupt based driver
volatile uint16 rx __attribute__((unused)) = spi_rx_reg(this->spi_d);
}
while (!spi_is_tx_empty(this->spi_d))
;
while (spi_is_busy(this->spi_d))
;
spi_peripheral_disable(this->spi_d);
}
/*
* I/O
*/
uint8 HardwareSPI::read(void) {
uint8 buf[1];
this->read(buf, 1);
return buf[0];
}
void HardwareSPI::read(uint8 *buf, uint32 len) {
uint32 rxed = 0;
while (rxed < len) {
while (!spi_is_rx_nonempty(this->spi_d))
;
buf[rxed++] = (uint8)spi_rx_reg(this->spi_d);
}
}
void HardwareSPI::write(uint8 byte) {
this->write(&byte, 1);
}
void HardwareSPI::write(const uint8 *data, uint32 length) {
uint32 txed = 0;
while (txed < length) {
txed += spi_tx(this->spi_d, data + txed, length - txed);
}
}
uint8 HardwareSPI::transfer(uint8 byte) {
this->write(byte);
return this->read();
}
/*
* Pin accessors
*/
uint8 HardwareSPI::misoPin(void) {
return dev_to_spi_pins(this->spi_d)->miso;
}
uint8 HardwareSPI::mosiPin(void) {
return dev_to_spi_pins(this->spi_d)->mosi;
}
uint8 HardwareSPI::sckPin(void) {
return dev_to_spi_pins(this->spi_d)->sck;
}
uint8 HardwareSPI::nssPin(void) {
return dev_to_spi_pins(this->spi_d)->nss;
}
/*
* Deprecated functions
*/
uint8 HardwareSPI::send(uint8 data) {
uint8 buf[] = {data};
return this->send(buf, 1);
}
uint8 HardwareSPI::send(uint8 *buf, uint32 len) {
uint32 txed = 0;
uint8 ret = 0;
while (txed < len) {
this->write(buf[txed++]);
ret = this->read();
}
return ret;
}
uint8 HardwareSPI::recv(void) {
return this->read();
}
/*
* Auxiliary functions
*/
static void configure_gpios(spi_dev *dev, bool as_master);
static spi_baud_rate determine_baud_rate(spi_dev *dev, SPIFrequency freq);
static const spi_pins* dev_to_spi_pins(spi_dev *dev) {
switch (dev->clk_id) {
case RCC_SPI1:
#if BOARD_HAVE_SPI1
return board_spi_pins;
#else
return NULL;
#endif
case RCC_SPI2:
#if BOARD_HAVE_SPI2
return board_spi_pins + 1;
#else
return NULL;
#endif
case RCC_SPI3:
#if BOARD_HAVE_SPI3
return board_spi_pins + 2;
#else
return NULL;
#endif
default:
return NULL;
}
}
/* Enables the device in master or slave full duplex mode. If you
* change this code, you must ensure that appropriate changes are made
* to HardwareSPI::end(). */
static void enable_device(spi_dev *dev,
bool as_master,
SPIFrequency freq,
spi_cfg_flag endianness,
spi_mode mode) {
spi_baud_rate baud = determine_baud_rate(dev, freq);
uint32 cfg_flags = (endianness | SPI_DFF_8_BIT | SPI_SW_SLAVE |
(as_master ? SPI_SOFT_SS : 0));
spi_init(dev);
configure_gpios(dev, as_master);
if (as_master) {
spi_master_enable(dev, baud, mode, cfg_flags);
} else {
spi_slave_enable(dev, mode, cfg_flags);
}
}
static void disable_pwm(const stm32_pin_info *i) {
if (i->timer_device) {
timer_set_mode(i->timer_device, i->timer_channel, TIMER_DISABLED);
}
}
static void configure_gpios(spi_dev *dev, bool as_master) {
const spi_pins *pins = dev_to_spi_pins(dev);
if (!pins) {
return;
}
const stm32_pin_info *nssi = &PIN_MAP[pins->nss];
const stm32_pin_info *scki = &PIN_MAP[pins->sck];
const stm32_pin_info *misoi = &PIN_MAP[pins->miso];
const stm32_pin_info *mosii = &PIN_MAP[pins->mosi];
disable_pwm(nssi);
disable_pwm(scki);
disable_pwm(misoi);
disable_pwm(mosii);
spi_config_gpios(dev, as_master, nssi->gpio_device, nssi->gpio_bit,
scki->gpio_device, scki->gpio_bit, misoi->gpio_bit,
mosii->gpio_bit);
}
static const spi_baud_rate baud_rates[MAX_SPI_FREQS] __FLASH__ = {
SPI_BAUD_PCLK_DIV_2,
SPI_BAUD_PCLK_DIV_4,
SPI_BAUD_PCLK_DIV_8,
SPI_BAUD_PCLK_DIV_16,
SPI_BAUD_PCLK_DIV_32,
SPI_BAUD_PCLK_DIV_64,
SPI_BAUD_PCLK_DIV_128,
SPI_BAUD_PCLK_DIV_256,
};
/*
* Note: This assumes you're on a LeafLabs-style board
* (CYCLES_PER_MICROSECOND == 72, APB2 at 72MHz, APB1 at 36MHz).
*/
static spi_baud_rate determine_baud_rate(spi_dev *dev, SPIFrequency freq) {
if (rcc_dev_clk(dev->clk_id) == RCC_APB2 && freq == SPI_140_625KHZ) {
/* APB2 peripherals are too fast for 140.625 KHz */
ASSERT(0);
return (spi_baud_rate)~0;
}
return (rcc_dev_clk(dev->clk_id) == RCC_APB2 ?
baud_rates[freq + 1] :
baud_rates[freq]);
}
|