blob: ee2b17a8a971ae690a7d363bce43836cb50d3dcc (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
/* *****************************************************************************
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Created: 12/18/09 02:34:47
* Copyright (c) 2009 Perry L. Hung. All rights reserved.
*
* ****************************************************************************/
/**
* @file adc.c
*
* @brief Analog to digital converter routines
*/
#include "adc.h"
#include <stdio.h>
#include <inttypes.h>
/* The ADC input clock is generated from PCLK2/APB2 divided by a prescaler
* and it must not exceed 14MHz.
*
* ADC1 and ADC2 are clocked by APB2
*
* 1) Power on by setting ADON in ADC_CR2
* Conversion starts when ADON is set for a second time after some
* time t > t_stab.
*
* Up to 16 selected conversion must be selected in ADC_SQRx
*
* Single conversion mode:
* Set the ADON bit in the ADC_CR2 register
* Once the conversion is complete:
* Converted data is stored in ADC_DR
* EOC flag is set
* Interrupt is generated if EOCIE is set
*
* Calibration:
* Calibration is started by setting the CAL bit in the ADC_CR2 register.
* Once calibration is over, the CAL bit is reset by hardware and normal
* conversion can be performed. Calibrate at power-on.
*
* ALIGN in ADC_CR2 selects the alignment of data
*
* IMPORTANT: maximum external impedance must be below 0.4kOhms for 1.5
* sample conversion time.
*
* At 55.5 cycles/sample, the external input impedance < 50kOhms*/
void adc_init(void) {
/* PCLK2 is the APB2 clock */
// RCC_ADCCLKConfig(RCC_PCLK2_Div6);
/* Enable ADC1 clock so that we can talk to it */
// RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
/* Put everything back to power-on defaults */
// RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, ENABLE);
// RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, DISABLE);
ADC_CR1 = 0;
ADC_CR2 = CR2_EXTSEL_SWSTART | CR2_EXTTRIG; // Software triggers conversions
ADC_SQR1 = 0;
/* Up the sample conversion time to 55.5 cycles/sec, see note above */
/* TODO: fix magic numbers */
ADC_SMPR1 = 0xB6DB6D;
ADC_SMPR2 = 0x2DB6DB6D;
/* Enable the ADC */
CR2_ADON_BIT = 1;
/* Reset the calibration registers and then perform a reset */
CR2_RSTCAL_BIT = 1;
while(CR2_RSTCAL_BIT)
;
CR2_CAL_BIT = 1;
while(CR2_CAL_BIT)
;
}
void adc_disable(void) {
CR2_ADON_BIT = 0;
}
|