1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/******************************************************************************
* The MIT License
*
* Copyright (c) 2011, 2012 LeafLabs, LLC.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/**
* @file libmaple/timer_private.h
* @author Marti Bolivar <mbolivar@leaflabs.com>
* @brief Private, internal timer APIs.
*/
#ifndef _LIBMAPLE_TIMER_PRIVATE_H_
#define _LIBMAPLE_TIMER_PRIVATE_H_
/*
* Helper macros for declaring timer_devs of various timer_types
*/
/* The indexes of user handlers in a timer_dev.handlers are just like
* the corresponding DIER bits, as follows: */
/* Advanced timers:
* [0] = Update handler;
* [1,2,3,4] = capture/compare 1,2,3,4 handlers, respectively;
* [5] = COM;
* [6] = TRG;
* [7] = BRK. */
#define NR_ADV_HANDLERS 8
/* General purpose timers:
* [0] = update;
* [1,2,3,4] = capture/compare 1,2,3,4;
* [5] = <junk>;
* [6] = trigger. */
#define NR_GEN_HANDLERS 7
/* Basic timers:
* [0] = update. */
#define NR_BAS_HANDLERS 1
/* For declaring advanced timers. */
#define DECLARE_ADVANCED_TIMER(name, num) \
timer_dev name = { \
.regs = { .adv = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_ADVANCED, \
.handlers = { [NR_ADV_HANDLERS - 1] = 0 }, \
}
/* For declaring full-featured general purpose timers. */
#define DECLARE_GENERAL_TIMER(name, num) \
timer_dev name = { \
.regs = { .gen = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_GENERAL, \
.handlers = { [NR_GEN_HANDLERS - 1] = 0 }, \
}
/* For declaring general purpose timers with limited interrupt
* capability (e.g. timers 9 through 14 on STM32F2 and XL-density
* STM32F1). */
#define DECLARE_RESTRICTED_GENERAL_TIMER(name, num, max_dier_bit) \
timer_dev name = { \
.regs = { .gen = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_GENERAL, \
.handlers = { [max_dier_bit] = 0 }, \
}
/* For declaring basic timers (e.g. TIM6 and TIM7). */
#define DECLARE_BASIC_TIMER(name, num) \
timer_dev name = { \
.regs = { .bas = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_BASIC, \
.handlers = { [NR_BAS_HANDLERS - 1] = 0 }, \
}
/*
* IRQ handlers
*
* These decode TIMx_DIER and TIMx_SR, then dispatch to the user-level
* IRQ handlers. They also clean up TIMx_SR afterwards, so the user
* doesn't have to deal with register details.
*
* Notes:
*
* - These dispatch routines make use of the fact that DIER interrupt
* enable bits and SR interrupt flags have common bit positions.
* Thus, ANDing DIER and SR lets us check if an interrupt is enabled
* and if it has occurred simultaneously.
*
* - We force these routines to inline to avoid call overhead, but
* there aren't any measurements to prove that this is actually a
* good idea. Profile-directed optimizations are definitely wanted. */
/* A special-case dispatch routine for timers which only serve a
* single interrupt on a given IRQ line.
*
* This function still checks DIER & SR, as in some cases, a timer may
* only serve a single interrupt on a particular NVIC line, but that
* line may be shared with another timer. For example, the timer 1
* update interrupt shares an IRQ line with the timer 10 interrupt on
* STM32F1 (XL-density), STM32F2, and STM32F4. */
static __always_inline void dispatch_single_irq(timer_dev *dev,
timer_interrupt_id iid,
uint32 irq_mask) {
timer_bas_reg_map *regs = (dev->regs).bas;
if (regs->DIER & regs->SR & irq_mask) {
void (*handler)(void) = dev->handlers[iid];
if (handler) {
handler();
regs->SR &= ~irq_mask;
}
}
}
/* Helper macro for dispatch routines which service multiple interrupts. */
#define handle_irq(dier_sr, irq_mask, handlers, iid, handled_irq) do { \
if ((dier_sr) & (irq_mask)) { \
void (*__handler)(void) = (handlers)[iid]; \
if (__handler) { \
__handler(); \
handled_irq |= (irq_mask); \
} \
} \
} while (0)
static __always_inline void dispatch_adv_brk(timer_dev *dev) {
dispatch_single_irq(dev, TIMER_BREAK_INTERRUPT, TIMER_SR_BIF);
}
static __always_inline void dispatch_adv_up(timer_dev *dev) {
dispatch_single_irq(dev, TIMER_UPDATE_INTERRUPT, TIMER_SR_UIF);
}
static __always_inline void dispatch_adv_trg_com(timer_dev *dev) {
timer_adv_reg_map *regs = (dev->regs).adv;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0; /* Logical OR of SR interrupt flags we end up
* handling. We clear these. User handlers
* must clear overcapture flags, to avoid
* wasting time in output mode. */
handle_irq(dsr, TIMER_SR_TIF, hs, TIMER_TRG_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_COMIF, hs, TIMER_COM_INTERRUPT, handled);
regs->SR &= ~handled;
}
static __always_inline void dispatch_adv_cc(timer_dev *dev) {
timer_adv_reg_map *regs = (dev->regs).adv;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_CC4IF, hs, TIMER_CC4_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC3IF, hs, TIMER_CC3_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC2IF, hs, TIMER_CC2_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
regs->SR &= ~handled;
}
static __always_inline void dispatch_general(timer_dev *dev) {
timer_gen_reg_map *regs = (dev->regs).gen;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_TIF, hs, TIMER_TRG_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC4IF, hs, TIMER_CC4_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC3IF, hs, TIMER_CC3_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC2IF, hs, TIMER_CC2_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_UIF, hs, TIMER_UPDATE_INTERRUPT, handled);
regs->SR &= ~handled;
}
/* On F1 (XL-density), F2, and F4, TIM9 and TIM12 are restricted
* general-purpose timers with update, CC1, CC2, and TRG interrupts. */
static __always_inline void dispatch_tim_9_12(timer_dev *dev) {
timer_gen_reg_map *regs = (dev->regs).gen;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_TIF, hs, TIMER_TRG_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC2IF, hs, TIMER_CC2_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_UIF, hs, TIMER_UPDATE_INTERRUPT, handled);
regs->SR &= ~handled;
}
/* On F1 (XL-density), F2, and F4, timers 10, 11, 13, and 14 are
* restricted general-purpose timers with update and CC1 interrupts. */
static __always_inline void dispatch_tim_10_11_13_14(timer_dev *dev) {
timer_gen_reg_map *regs = (dev->regs).gen;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_UIF, hs, TIMER_UPDATE_INTERRUPT, handled);
regs->SR &= ~handled;
}
static __always_inline void dispatch_basic(timer_dev *dev) {
dispatch_single_irq(dev, TIMER_UPDATE_INTERRUPT, TIMER_SR_UIF);
}
#endif
|