aboutsummaryrefslogtreecommitdiffstats
path: root/examples/test-timers.cpp
blob: 545597f076f1f67c20fc31525cb6fb0aa4c87860 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// Program to test the timer.h implementation's essential functionality.

#include "wirish.h"
#include "timer.h"

void handler1(void);
void handler2(void);
void handler3(void);
void handler4(void);

void handler3b(void);
void handler4b(void);

int t;

int count1 = 0;
int count2 = 0;
int count3 = 0;
int count4 = 0;
uint16 rate1 = 1000;
uint16 rate2 = 2000;
uint16 rate3 = 4000;
uint16 rate4 = 8000;
uint16 val1 = 10000;
uint16 val2 = 10000;
uint16 val3 = 10000;
uint16 val4 = 10000;

// FIXME [0.1.0] high density timer test (especially basic timers + DAC)
timer_dev *timers[] = {TIMER1, TIMER2, TIMER3, TIMER4};
voidFuncPtr handlers[] = {handler1, handler2, handler3, handler4};

void initTimer(timer_dev *dev);
void setTimerPeriod(timer_dev *dev, uint32 period_us);
void testSetTimerPeriod(uint32 period);
void testTimerChannels(timer_dev *dev);
int timerNumber(timer_dev *dev);

void setup() {
    // Set up the LED to blink
    pinMode(BOARD_LED_PIN, OUTPUT);

    // Setup the button as input
    pinMode(BOARD_BUTTON_PIN, INPUT);

    // Send a message out Serial2
    Serial2.begin(115200);
    Serial2.println("*** Initializing timers...");
    timer_foreach(initTimer);
    Serial2.println("*** Done. Beginning timer test.");
}

void loop() {
    Serial2.println("-----------------------------------------------------");

    Serial2.println("Testing timer_get_count()/timer_set_count()");
    Serial2.print("TIMER1 count = ");
    Serial2.println(timer_get_count(TIMER1));
    Serial2.println("timer_set_count(TIMER1, 1234)");
    timer_set_count(TIMER1, 1234);
    Serial2.print("timer_get_count(TIMER1) = ");
    Serial2.println(timer_get_count(TIMER1));

    Serial2.println("-----------------------------------------------------");
    Serial2.println("Testing pause/resume; button roughly controls TIMER4");
    // when BUT is held down, TIMER4 is in the "pause" state and the
    // timer doesn't increment, so the final counts should reflect the
    // ratio of time that BUT was held down.
    count3 = 0;
    count4 = 0;
    timer_set_mode(TIMER3, TIMER_CH1, TIMER_OUTPUT_COMPARE);
    timer_set_mode(TIMER4, TIMER_CH1, TIMER_OUTPUT_COMPARE);
    timer_pause(TIMER3);
    timer_pause(TIMER4);
    timer_set_count(TIMER3, 0);
    timer_set_count(TIMER4, 0);
    timer_set_reload(TIMER3, 30000);
    timer_set_reload(TIMER4, 30000);
    timer_set_compare(TIMER3, 1, 1000);
    timer_set_compare(TIMER4, 1, 1000);
    timer_attach_interrupt(TIMER3, TIMER_CC1_INTERRUPT, handler3b);
    timer_attach_interrupt(TIMER4, TIMER_CC1_INTERRUPT, handler4b);
    timer_resume(TIMER3);
    timer_resume(TIMER4);

    Serial2.println("Testing for ~4 seconds...");
    for(int i = 0; i < 4000; i++) {
        if (isButtonPressed()) {
            timer_pause(TIMER4);
        } else {
            timer_resume(TIMER4);
        }
        delay(1);
    }

    timer_set_mode(TIMER3, TIMER_CH1, TIMER_DISABLED);
    timer_set_mode(TIMER4, TIMER_CH1, TIMER_DISABLED);

    Serial2.print("TIMER3 count: ");
    Serial2.println(timer_get_count(TIMER3));
    Serial2.print("TIMER4 count: ");
    Serial2.println(timer_get_count(TIMER4));

    Serial2.println("-----------------------------------------------------");
    Serial2.println("Testing setTimerPeriod()");
    testSetTimerPeriod(10);
    testSetTimerPeriod(30000);
    testSetTimerPeriod(300000);
    testSetTimerPeriod(30000);

    Serial2.println("Sanity check (with hand-coded reload and prescaler for "
                    "72 MHz timers):");
    timer_set_mode(TIMER4, TIMER_CH1, TIMER_OUTPUT_COMPARE);
    timer_set_prescaler(TIMER4, 33);
    timer_set_reload(TIMER4, 65454);
    timer_pause(TIMER4);
    timer_set_count(TIMER4, 0);
    timer_set_compare(TIMER4, TIMER_CH1, 1);
    timer_attach_interrupt(TIMER4, TIMER_CC1_INTERRUPT, handler4b);
    Serial2.println("Period 30000ms, wait 2 seconds...");
    count4 = 0;
    timer_resume(TIMER4);
    delay(2000);
    timer_pause(TIMER4);
    timer_set_mode(TIMER4, TIMER_CH1, TIMER_DISABLED);
    Serial2.print("TIMER4 count: ");
    Serial2.println(count4);
    Serial2.println("  (Should be around 2sec/30000ms ~ 67)");

    // Test all the individual timer channels
    timer_foreach(testTimerChannels);
}

void initTimer(timer_dev *dev) {
    switch (dev->type) {
    case TIMER_ADVANCED:
    case TIMER_GENERAL:
        Serial2.print("Initializing timer ");
        Serial2.println(timerNumber(dev));
        for (int c = 1; c <= 4; c++) {
            timer_set_mode(dev, c, TIMER_OUTPUT_COMPARE);
        }
        Serial2.println("Done.");
        break;
    case TIMER_BASIC:
        break;
    }
}

void testSetTimerPeriod(uint32 period) {
    timer_set_mode(TIMER4, TIMER_CH1, TIMER_OUTPUT_COMPARE);
    timer_set_compare(TIMER4, TIMER_CH1, 1);
    setTimerPeriod(TIMER4, period);
    timer_pause(TIMER4);
    timer_set_count(TIMER4, 0);
    timer_attach_interrupt(TIMER4, TIMER_CC1_INTERRUPT, handler4b);
    Serial2.println("Period ");
    Serial2.print(period);
    Serial2.print(" ms. Waiting 2 seconds...");
    count4 = 0;
    timer_resume(TIMER4);
    delay(2000);
    timer_pause(TIMER4);
    timer_set_mode(TIMER4, TIMER_CH1, TIMER_DISABLED);
    Serial2.print("TIMER4 count: ");
    Serial2.println(timer_get_count(TIMER4));
    Serial2.print("  (Should be around 2 sec / ");
    Serial2.print(period);
    Serial2.print(" ms = ");
    Serial2.print(double(2) / period * 1000);
    Serial2.println(", modulo delays due to interrupts)");
}

int timerNumber(timer_dev *dev) {
    switch (dev->clk_id) {
    case RCC_TIMER1:
        return 1;
    case RCC_TIMER2:
        return 2;
    case RCC_TIMER3:
        return 3;
    case RCC_TIMER4:
        return 4;
#ifdef STM32_HIGH_DENSITY
    case RCC_TIMER5:
        return 5;
    case RCC_TIMER6:
        return 6;
    case RCC_TIMER7:
        return 7;
    case RCC_TIMER8:
        return 8;
#endif
    default:
        ASSERT(0);
        return 0;
    }
}

/* This function touches every channel of a given timer. The output
 * ratios should reflect the ratios of the rate variables.  It
 * demonstrates that, over time, the actual timing rates get blown
 * away by other system interrupts. */
void testTimerChannels(timer_dev *dev) {
    t = timerNumber(dev);
    toggleLED();
    delay(100);
    Serial2.println("-----------------------------------------------------");
    switch (dev->type) {
    case TIMER_BASIC:
        Serial2.print("NOT testing channels for basic timer ");
        Serial2.println(t);
        break;
    case TIMER_ADVANCED:
    case TIMER_GENERAL:
        Serial2.print("Testing channels for timer ");
        Serial2.println(t);
        timer_pause(dev);
        count1 = count2 = count3 = count4 = 0;
        timer_set_reload(dev, 0xFFFF);
        timer_set_prescaler(dev, 1);
        for (int c = 1; c <= 4; c++) {
            timer_set_compare(dev, c, 65535);
            timer_set_mode(dev, c, TIMER_OUTPUT_COMPARE);
            timer_attach_interrupt(dev, c, handlers[c - 1]);
        }
        timer_resume(dev);
        delay(3000);
        for (int c = 1; c <= 4; c++) {
            timer_set_mode(dev, c, TIMER_DISABLED);
        }
        Serial2.print("Channel 1 count: "); Serial2.println(count1);
        Serial2.print("Channel 2 count: "); Serial2.println(count2);
        Serial2.print("Channel 3 count: "); Serial2.println(count3);
        Serial2.print("Channel 4 count: "); Serial2.println(count4);
        break;
    }
}

// FIXME [0.0.10] move this into the new wirish timer implementation
void setTimerPeriod(timer_dev *dev, uint32 period_us) {
    if (!period_us) {
        // FIXME handle this case
        ASSERT(0);
        return;
    }

    uint32 cycles = period_us * CYCLES_PER_MICROSECOND;
    uint16 pre = (uint16)((cycles >> 16) + 1);
    timer_set_prescaler(dev, pre);
    timer_set_reload(dev, cycles / pre - 1);
}

void handler1(void) {
    val1 += rate1;
    timer_set_compare(timers[t], TIMER_CH1, val1);
    count1++;
}

void handler2(void) {
    val2 += rate2;
    timer_set_compare(timers[t], TIMER_CH2, val2);
    count2++;
}

void handler3(void) {
    val3 += rate3;
    timer_set_compare(timers[t], TIMER_CH3, val3);
    count3++;
}

void handler4(void) {
    val4 += rate4;
    timer_set_compare(timers[t], TIMER_CH4, val4);
    count4++;
}

void handler3b(void) {
    count3++;
}

void handler4b(void) {
    count4++;
}

__attribute__((constructor)) void premain() {
    init();
}

int main(void) {
    setup();

    while (true) {
        loop();
    }
    return 0;
}