1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
// Interactive Test Session for LeafLabs Maple
// Copyright (c) 2010 LeafLabs LLC.
//
// Useful for testing Maple features and troubleshooting. Select a COMM port
// (SerialUSB or Serial2) before compiling and then enter 'h' at the prompt
// for a list of commands.
#include "wirish.h"
#define LED_PIN BOARD_LED_PIN
#define PWM_PIN 3
// choose your weapon
#define COMM SerialUSB
//#define COMM Serial2
//#define COMM Serial3
#define ESC ((uint8)27)
int rate = 0;
#if defined(BOARD_maple) || defined(BOARD_maple_RET6)
#elif defined(BOARD_maple_mini)
#elif defined(BOARD_maple_native)
const uint8[] pins_to_skip = {LED_PIN};
#else
#error "Board not selected correctly."
#endif
#if defined(BOARD_maple)
const uint8 pwm_pins[] =
{0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 24, 25, 27, 28};
const uint8 adc_pins[] =
{0, 1, 2, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 27, 28};
const uint8 pins_to_skip[] = {LED_PIN};
#elif defined(BOARD_maple_mini)
#define USB_DP 23
#define USB_DM 24
const uint8 pwm_pins[] = {3, 4, 5, 8, 9, 10, 11, 15, 16, 25, 26, 27};
const uint8 adc_pins[] = {3, 4, 5, 6, 7, 8, 9, 10, 11, 33}; // NB: 33 is LED
const uint8 pins_to_skip[] = {LED_PIN, USB_DP, USB_DM};
#elif defined(BOARD_maple_native)
const uint8 pwm_pins[] = {
12, 13, 14, 15, 22, 23, 24, 25, 37, 38, 45, 46, 47, 48, 49, 50, 53, 54};
const uint8 adc_pins[] = {
6, 7, 8, 9, 10, 11,
/* FIXME These are on ADC3, which lacks support:
39, 40, 41, 42, 43, 45, */
46, 47, 48, 49, 50, 51, 52, 53, 54};
const uint8 pins_to_skip[] = {LED_PIN};
#elif defined(BOARD_maple_RET6)
const uint8 pwm_pins[] =
{0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 24, 25, 27, 28, 35, 37, 37,
38}; // NB 38 is BUT
const uint8 adc_pins[] =
{0, 1, 2, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 27, 28};
const uint8 pins_to_skip[] = {LED_PIN};
#else
#error "Board type has not been selected correctly."
#endif
uint8 gpio_state[NR_GPIO_PINS];
const char* const dummy_dat = ("qwertyuiopasdfghjklzxcvbnmmmmmm,./1234567890-="
"qwertyuiopasdfghjklzxcvbnm,./1234567890");
void cmd_print_help(void);
void cmd_adc_stats(void);
void cmd_stressful_adc_stats(void);
void cmd_everything(void);
void cmd_serial1_serial3(void);
void cmd_gpio_monitoring(void);
void cmd_sequential_adc_reads(void);
void cmd_gpio_qa(void);
void cmd_sequential_gpio_writes(void);
void cmd_gpio_toggling(void);
void cmd_sequential_pwm_test(void);
void cmd_pwm_sweep(void);
void cmd_servo_sweep(void);
bool skip_pin_p(uint8 pin);
void measure_adc_noise(uint8 pin);
void fast_gpio(int pin);
void do_serials(HardwareSerial **serials, int n, unsigned baud);
void init_all_timers(uint16 prescale);
void setup() {
// Set up the LED to blink
pinMode(BOARD_LED_PIN, OUTPUT);
// Start up the serial ports
Serial1.begin(9600);
Serial2.begin(9600);
Serial3.begin(9600);
// Send a message out over COMM interface
COMM.println(" ");
COMM.println(" __ __ _ _ ");
COMM.println(" | \\/ | __ _ _ __ | | ___| |");
COMM.println(" | |\\/| |/ _` | '_ \\| |/ _ \\ |");
COMM.println(" | | | | (_| | |_) | | __/_|");
COMM.println(" |_| |_|\\__,_| .__/|_|\\___(_)");
COMM.println(" |_|");
COMM.println(" by leaflabs");
COMM.println("");
COMM.println("");
COMM.println("Maple interactive test program (type '?' for help)");
COMM.println("----------------------------------------------------------");
COMM.print("> ");
}
void loop () {
toggleLED();
delay(100);
while(COMM.available()) {
uint8 input = COMM.read();
COMM.println(input);
switch(input) {
case '\r':
break;
case ' ':
COMM.println("spacebar, nice!");
break;
case '?':
case 'h':
cmd_print_help();
break;
case 'u':
SerialUSB.println("Hello World!");
break;
case 'w':
Serial1.println("Hello World!");
Serial2.println("Hello World!");
Serial3.println("Hello World!");
break;
case 'm':
cmd_serial1_serial3();
break;
case '.':
while(!COMM.available()) {
Serial1.print(".");
Serial2.print(".");
Serial3.print(".");
SerialUSB.print(".");
}
break;
case 'n':
cmd_adc_stats();
break;
case 'N':
cmd_stressful_adc_stats();
break;
case 'e':
cmd_everything();
break;
case 'W':
while(!COMM.available()) {
Serial1.print(dummy_dat);
Serial2.print(dummy_dat);
Serial3.print(dummy_dat);
}
break;
case 'U':
COMM.println("Dumping data to USB. Press any key.");
while(!COMM.available()) {
SerialUSB.print(dummy_dat);
}
break;
case 'g':
cmd_sequential_gpio_writes();
break;
case 'G':
cmd_gpio_toggling();
break;
case 'f':
COMM.println("Wiggling D4 as fast as possible in bursts. "
"Press any key.");
pinMode(4,OUTPUT);
while(!COMM.available()) {
fast_gpio(4);
delay(1);
}
break;
case 'p':
cmd_sequential_pwm_test();
break;
case 'P':
cmd_pwm_sweep();
break;
case '_':
COMM.println("Delaying for 5 seconds...");
delay(5000);
break;
case 't': // TODO
break;
case 'T': // TODO
break;
case 's':
cmd_servo_sweep();
break;
case 'd':
COMM.println("Pulling down D4, D22. Press any key.");
pinMode(22,INPUT_PULLDOWN);
pinMode(4,INPUT_PULLDOWN);
while(!COMM.available()) {
continue;
}
COMM.println("Pulling up D4, D22. Press any key.");
pinMode(22,INPUT_PULLUP);
pinMode(4,INPUT_PULLUP);
while(!COMM.available()) {
continue;
}
COMM.read();
pinMode(4,OUTPUT);
break;
case 'i': // TODO
break;
case 'I': // TODO
break;
case 'r':
cmd_gpio_monitoring();
break;
case 'a':
cmd_sequential_adc_reads();
break;
case '+':
cmd_gpio_qa();
break;
default: // -------------------------------
COMM.print("Unexpected: ");
COMM.print(input);
COMM.println(", press h for help.");
}
COMM.print("> ");
}
}
void cmd_print_help(void) {
COMM.println("");
//COMM.println("Command Listing\t(# means any digit)");
COMM.println("Command Listing");
COMM.println("\t?: print this menu");
COMM.println("\th: print this menu");
COMM.println("\tw: print Hello World on all 3 USARTS");
COMM.println("\tn: measure noise and do statistics");
COMM.println("\tN: measure noise and do statistics with background stuff");
COMM.println("\ta: show realtime ADC info");
COMM.println("\t.: echo '.' until new input");
COMM.println("\tu: print Hello World on USB");
COMM.println("\t_: do as little as possible for a couple seconds (delay)");
COMM.println("\tp: test all PWM channels sequentially");
COMM.println("\tW: dump data as fast as possible on all 3 USARTS");
COMM.println("\tU: dump data as fast as possible on USB");
COMM.println("\tg: toggle all GPIOs sequentialy");
COMM.println("\tG: toggle all GPIOs at the same time");
COMM.println("\tf: toggle GPIO D4 as fast as possible in bursts");
COMM.println("\tP: simultaneously test all PWM channels with different "
"speeds/sweeps");
COMM.println("\tr: Monitor and print GPIO status changes");
COMM.println("\ts: output a sweeping servo PWM on all PWM channels");
COMM.println("\tm: output data on USART1 and USART3 with various rates");
COMM.println("\t+: test shield mode (for QA; will disrupt USARTS)");
COMM.println("Unimplemented:");
COMM.println("\te: do everything all at once until new input");
COMM.println("\tt: output a 1khz squarewave on all GPIOs");
COMM.println("\tT: output a 1hz squarewave on all GPIOs");
COMM.println("\ti: print out a bunch of info about system state");
COMM.println("\tI: print out status of all headers");
}
void measure_adc_noise(uint8 pin) { // TODO
uint16 data[100];
float mean = 0;
//float stddev = 0;
float delta = 0;
float M2 = 0;
pinMode(pin, INPUT_ANALOG);
// variance algorithm from knuth; see wikipedia
// checked against python
for(int i = 0; i < 100; i++) {
data[i] = analogRead(pin);
delta = data[i] - mean;
mean = mean + delta/(i + 1);
M2 = M2 + delta * (data[i] - mean);
}
//sqrt is broken?
//stddev = sqrt(variance);
COMM.print("header: D"); COMM.print(pin,DEC);
COMM.print("\tn: "); COMM.print(100,DEC);
COMM.print("\tmean: "); COMM.print(mean);
COMM.print("\tvariance: "); COMM.println(M2/99.0);
pinMode(pin, OUTPUT);
}
void cmd_adc_stats(void) {
COMM.println("Taking ADC noise stats...");
digitalWrite(BOARD_LED_PIN, 0);
for(uint32 i = 0; i < sizeof(adc_pins); i++) {
delay(5);
measure_adc_noise(adc_pins[i]);
}
}
void cmd_stressful_adc_stats(void) {
COMM.println("Taking ADC noise stats under duress...");
digitalWrite(BOARD_LED_PIN, 0);
for(uint32 i = 0; i < sizeof(adc_pins); i++) {
// spool up PWM
for(uint32 j = 2; j < (uint32)sizeof(pwm_pins); j++) {
if(adc_pins[i] != pwm_pins[j]) {
pinMode(pwm_pins[j], PWM);
pwmWrite(pwm_pins[j], 1000 + i);
}
}
SerialUSB.print(dummy_dat);
SerialUSB.print(dummy_dat);
measure_adc_noise(adc_pins[i]);
for(uint32 j = 2; j < (uint32)sizeof(pwm_pins); j++) {
if(adc_pins[i] != pwm_pins[j]) {
pinMode(pwm_pins[j], OUTPUT);
digitalWrite(pwm_pins[j], 0);
}
}
}
}
void cmd_everything(void) { // TODO
// print to usart
// print to usb
// toggle gpios
// enable pwm
COMM.println("(unimplemented)");
}
void fast_gpio(int maple_pin) {
GPIO_Port *port = PIN_MAP[maple_pin].port;
uint32 pin = PIN_MAP[maple_pin].pin;
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
gpio_write_bit(port, pin, 1); gpio_write_bit(port, pin, 0);
}
void cmd_serial1_serial3(void) {
HardwareSerial *serial_1_and_3[] = {&Serial1, &Serial3};
COMM.println("Testing 57600 baud on USART1 and USART3. Press any key.");
do_serials(serial_1_and_3, 2, 57600);
COMM.read();
COMM.println("Testing 115200 baud on USART1 and USART3. Press any key.");
do_serials(serial_1_and_3, 2, 115200);
COMM.read();
COMM.println("Testing 9600 baud on USART1 and USART3. Press any key.");
do_serials(serial_1_and_3, 2, 9600);
COMM.read();
COMM.println("Resetting USART1 and USART3...");
Serial1.begin(9600);
Serial3.begin(9600);
}
void do_serials(HardwareSerial **serials, int n, unsigned baud) {
for (int i = 0; i < n; i++) {
serials[i]->begin(9600);
}
while (!COMM.available()) {
for (int i = 0; i < n; i++) {
serials[i]->println(dummy_dat);
if (serials[i]->available()) {
serials[i]->println(serials[i]->read());
delay(1000);
}
}
}
}
void cmd_gpio_monitoring(void) {
COMM.println("Monitoring GPIO read state changes. Press any key.");
digitalWrite(BOARD_LED_PIN, 0);
// make sure to skip the TX/RX headers
for(int i = 2; i < NR_GPIO_PINS; i++) {
pinMode(i, INPUT_PULLDOWN);
gpio_state[i] = (uint8)digitalRead(i);
}
while(!COMM.available()) {
for(int i = 2; i < NR_GPIO_PINS; i++) {
uint8 current_state = (uint8)digitalRead(i);
if(current_state != gpio_state[i]) {
COMM.print("State change on header D");
COMM.print(i,DEC);
if(current_state) COMM.println(":\tHIGH");
else COMM.println(":\tLOW");
gpio_state[i] = current_state;
}
}
}
for(int i = 2; i < NR_GPIO_PINS; i++) {
pinMode(i, OUTPUT);
}
}
void cmd_sequential_adc_reads(void) {
COMM.print("Sequentially reading each ADC port.");
COMM.println("Press any key for next port, or ESC to stop.");
digitalWrite(LED_PIN, 0);
// make sure to skip the TX/RX headers
for(uint32 i = 2; i < sizeof(adc_pins); i++) {
COMM.print("Reading on header D");
COMM.print(adc_pins[i], DEC);
COMM.println("...");
pinMode(adc_pins[i], INPUT_ANALOG);
while(!COMM.available()) {
int sample = analogRead(adc_pins[i]);
COMM.print(adc_pins[i],DEC);
COMM.print("\t");
COMM.print(sample,DEC);
COMM.print("\t");
COMM.print("|");
for(int j = 0; j < 4096; j += 100) {
if(sample >= j) COMM.print("#");
else COMM.print(" ");
}
COMM.print("| ");
for(int j = 0; j < 12; j++) {
if(sample & (1 << (11 - j))) COMM.print("1");
else COMM.print("0");
}
COMM.println("");
}
pinMode(adc_pins[i], OUTPUT);
digitalWrite(adc_pins[i], 0);
if((uint8)COMM.read() == ESC) break;
}
}
void cmd_gpio_qa(void) {
COMM.println("Doing QA testing for most GPIO pins...");
digitalWrite(BOARD_LED_PIN, 0);
for(int i = 0; i < NR_GPIO_PINS; i++) {
pinMode(i, INPUT);
gpio_state[i] = 0;
}
COMM.println("Waiting to start; press a key.");
while(digitalRead(0) != 1 && !COMM.available()) {
continue;
}
for(int i = 0; i < NR_GPIO_PINS; i++) {
if(skip_pin_p(i)) {
COMM.print("Not checking pin ");
COMM.println(i);
continue;
}
COMM.print("Checking pin ");
COMM.print(i, DEC);
while(digitalRead(i) == 0) continue;
for(int j = 0; j < NR_GPIO_PINS; j++) {
if (skip_pin_p(j))
continue;
if(digitalRead(j) && j != i) {
COMM.print(": FAIL ########################### D");
COMM.println(j, DEC);
break;
}
}
while(digitalRead(i) == 1) continue;
for(int j = 0; j < NR_GPIO_PINS; j++) {
if (skip_pin_p(j))
continue;
if(digitalRead(j) && j != i) {
COMM.print(": FAIL ########################### D");
COMM.println(j, DEC);
break;
}
}
COMM.println(": Ok!");
}
for(int i = 0; i < NR_GPIO_PINS; i++) {
pinMode(i, OUTPUT);
digitalWrite(i, 0);
}
}
bool skip_pin_p(uint8 pin) {
for (uint8 i = 0; i < sizeof(pins_to_skip); i++) {
if (pin == pins_to_skip[i])
return true;
}
return false;
}
void cmd_sequential_gpio_writes(void) {
COMM.print("Sequentially toggling all pins except D0, D1. ");
COMM.println("Anything for next, ESC to stop.");
digitalWrite(BOARD_LED_PIN, 0);
// make sure to skip the TX/RX headers
for(uint32 i = 2; i < NR_GPIO_PINS; i++) {
COMM.print("GPIO write out on header D");
COMM.print((int)i, DEC);
COMM.println("...");
pinMode(i, OUTPUT);
do {
togglePin(i);
} while(!COMM.available());
digitalWrite(i, 0);
if((uint8)COMM.read() == ESC) break;
}
}
void cmd_gpio_toggling(void) {
COMM.println("Toggling all GPIOs simultaneously. Press any key.");
digitalWrite(BOARD_LED_PIN, 0);
// make sure to skip the TX/RX headers
for(uint32 i = 2; i < NR_GPIO_PINS; i++) {
pinMode(i, OUTPUT);
}
while(!COMM.available()) {
for(uint32 i = 2; i < NR_GPIO_PINS; i++) {
togglePin(i);
}
}
for(uint32 i = 2; i < NR_GPIO_PINS; i++) {
digitalWrite(i, 0);
}
}
void cmd_sequential_pwm_test(void) {
COMM.println("Sequentially testing PWM on all possible headers "
"except D0 and D1.");
COMM.println("Press any key for next, ESC to stop.");
digitalWrite(BOARD_LED_PIN, 0);
// make sure to skip the TX/RX headers
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
COMM.print("PWM out on header D");
COMM.print(pwm_pins[i], DEC);
COMM.println("...");
pinMode(pwm_pins[i], PWM);
pwmWrite(pwm_pins[i], 16000);
while(!COMM.available()) { delay(10); }
pinMode(pwm_pins[i], OUTPUT);
digitalWrite(pwm_pins[i], 0);
if((uint8)COMM.read() == ESC) break;
}
}
void cmd_pwm_sweep(void) {
COMM.println("Testing all PWM ports with a sweep. Press any key.");
digitalWrite(BOARD_LED_PIN, 0);
// make sure to skip the TX/RX pins
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
pinMode(pwm_pins[i], PWM);
pwmWrite(pwm_pins[i], 4000);
}
while(!COMM.available()) {
rate += 20;
if(rate > 65500) rate = 0;
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
pwmWrite(pwm_pins[i], rate);
}
delay(1);
}
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
pinMode(pwm_pins[i], OUTPUT);
}
}
void cmd_servo_sweep(void) {
COMM.println("Testing all PWM headers with a servo sweep. Press any key.");
COMM.println();
digitalWrite(BOARD_LED_PIN, 0);
init_all_timers(21);
// make sure to skip the TX/RX headers
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
pinMode(pwm_pins[i], PWM);
pwmWrite(pwm_pins[i], 4000);
}
// 1.25ms = 4096counts = 0deg
// 1.50ms = 4915counts = 90deg
// 1.75ms = 5734counts = 180deg
rate = 4096;
while(!COMM.available()) {
rate += 20;
if(rate > 5734) rate = 4096;
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
pwmWrite(pwm_pins[i], rate);
}
delay(20);
}
for(uint32 i = 2; i < sizeof(pwm_pins); i++) {
pinMode(pwm_pins[i], OUTPUT);
}
init_all_timers(1);
Serial2.begin(9600);
COMM.println("(reset serial port)");
}
void init_all_timers(uint16 prescale) {
timer_init(TIMER1, prescale);
timer_init(TIMER2, prescale);
timer_init(TIMER3, prescale);
#if NR_TIMERS >= 4
timer_init(TIMER4, prescale);
#elif NR_TIMERS >= 8 // TODO test this on maple native
timer_init(TIMER5, prescale);
timer_init(TIMER6, prescale);
timer_init(TIMER7, prescale);
timer_init(TIMER8, prescale);
#endif
}
// Force init to be called *first*, i.e. before static object allocation.
// Otherwise, statically allocated objects that need libmaple may fail.
__attribute__((constructor)) void premain() {
init();
}
int main(void) {
setup();
while (1) {
loop();
}
return 0;
}
|