/****************************************************************************** * The MIT License * * Copyright (c) 2010 Bryan Newbold. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *****************************************************************************/ /* * wirish timer class to manage the four 16-bit timer peripherals */ #include "wirish.h" #include "HardwareTimer.h" HardwareTimer::HardwareTimer(timer_dev_num timerNum) { ASSERT(timerNum != TIMER_INVALID); this->timerNum = timerNum; } void HardwareTimer::resume(void) { timer_resume(this->timerNum); } void HardwareTimer::pause(void) { timer_pause(this->timerNum); } uint16 HardwareTimer::getPrescaleFactor(void) { return timer_get_prescaler(this->timerNum) + 1; } void HardwareTimer::setPrescaleFactor(uint16 factor) { // The prescaler register is zero-indexed timer_set_prescaler(this->timerNum, factor-1); } uint16 HardwareTimer::getOverflow() { return timer_get_reload(this->timerNum); } void HardwareTimer::setOverflow(uint16 val) { timer_set_reload(this->timerNum, val); } uint16 HardwareTimer::getCount(void) { return timer_get_count(this->timerNum); } void HardwareTimer::setCount(uint16 val) { uint16 ovf = this->getOverflow(); timer_set_count(this->timerNum, min(val, ovf)); } uint16 HardwareTimer::setPeriod(uint32 microseconds) { // Not the best way to handle this edge case? if(!microseconds) { setPrescaleFactor(1); setOverflow(1); return this->getOverflow(); } uint32 cycles = microseconds * CYCLES_PER_MICROSECOND; // With a prescale factor of 1, there are CYCLES_PER_MICROSECOND // counts/ms uint16 ps = (uint16)((cycles >> 16) + 1); setPrescaleFactor(ps); // Finally, this overflow will always be less than 65536 setOverflow((cycles/ps) - 1); return this->getOverflow(); } inline void HardwareTimer::setChannelMode(int channel, TimerMode mode) { timer_set_mode(this->timerNum, channel, mode); } void HardwareTimer::setChannel1Mode(TimerMode mode) { this->setChannelMode(1, mode); } void HardwareTimer::setChannel2Mode(TimerMode mode) { this->setChannelMode(2, mode); } void HardwareTimer::setChannel3Mode(TimerMode mode) { this->setChannelMode(3, mode); } void HardwareTimer::setChannel4Mode(TimerMode mode) { this->setChannelMode(4, mode); } inline uint16 HardwareTimer::getCompare(int channel) { return timer_get_compare_value(this->timerNum, channel); } uint16 HardwareTimer::getCompare1() { return this->getCompare(1); } uint16 HardwareTimer::getCompare2() { return this->getCompare(2); } uint16 HardwareTimer::getCompare3() { return this->getCompare(3); } uint16 HardwareTimer::getCompare4() { return this->getCompare(4); } inline void HardwareTimer::setCompare(int channel, uint16 val) { uint16 ovf = this->getOverflow(); timer_set_compare_value(this->timerNum, channel, min(val, ovf)); } void HardwareTimer::setCompare1(uint16 val) { this->setCompare(1, val); } void HardwareTimer::setCompare2(uint16 val) { this->setCompare(2, val); } void HardwareTimer::setCompare3(uint16 val) { this->setCompare(3, val); } void HardwareTimer::setCompare4(uint16 val) { this->setCompare(4, val); } inline void HardwareTimer::attachInterrupt(int channel, voidFuncPtr handler) { timer_attach_interrupt(this->timerNum, channel, handler); } void HardwareTimer::attachCompare1Interrupt(voidFuncPtr handler) { this->attachInterrupt(1, handler); } void HardwareTimer::attachCompare2Interrupt(voidFuncPtr handler) { this->attachInterrupt(2, handler); } void HardwareTimer::attachCompare3Interrupt(voidFuncPtr handler) { this->attachInterrupt(3, handler); } void HardwareTimer::attachCompare4Interrupt(voidFuncPtr handler) { this->attachInterrupt(4, handler); } inline void HardwareTimer::detachInterrupt(int channel) { timer_detach_interrupt(this->timerNum, channel); } void HardwareTimer::detachCompare1Interrupt(void) { this->detachInterrupt(1); } void HardwareTimer::detachCompare2Interrupt(void) { this->detachInterrupt(2); } void HardwareTimer::detachCompare3Interrupt(void) { this->detachInterrupt(3); } void HardwareTimer::detachCompare4Interrupt(void) { this->detachInterrupt(4); } void HardwareTimer::generateUpdate(void) { timer_generate_update(this->timerNum); } HardwareTimer Timer1(TIMER1); HardwareTimer Timer2(TIMER2); HardwareTimer Timer3(TIMER3); HardwareTimer Timer4(TIMER4); #ifdef STM32_HIGH_DENSITY HardwareTimer Timer5(TIMER5); // High-density devices only HardwareTimer Timer8(TIMER8); // High-density devices only #endif HardwareTimer* getTimer(timer_dev_num timerNum) { switch (timerNum) { case TIMER1: return &Timer1; case TIMER2: return &Timer2; case TIMER3: return &Timer3; case TIMER4: return &Timer4; #ifdef STM32_HIGH_DENSITY case TIMER5: return &Timer5; case TIMER8: return &Timer8; #endif default: return 0; } }