/* ***************************************************************************** * The MIT License * * Copyright (c) 2010 Bryan Newbold. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * ****************************************************************************/ /** * @brief wirish timer class to manage the four 16-bit timer peripherals * * This implementation is not very efficient (lots of duplicated functions) */ #include "wirish.h" #include "HardwareTimer.h" HardwareTimer::HardwareTimer(uint8 timerNum) { ASSERT(timerNum < NR_TIMERS); this->timerNum = timerNum; // Need to remember over flow for bounds checking this->overflow = 0xFFFF; } void HardwareTimer::resume(void) { timer_resume(this->timerNum); } void HardwareTimer::pause(void) { timer_pause(this->timerNum); } void HardwareTimer::setPrescaleFactor(uint16 factor) { // The prescaler register is zero-indexed timer_set_prescaler(this->timerNum, factor-1); } void HardwareTimer::setOverflow(uint16 val) { this->overflow = val; timer_set_reload(this->timerNum, val); } void HardwareTimer::setCount(uint16 val) { if(val > this->overflow) val = this->overflow; timer_set_count(this->timerNum, val); } uint16 HardwareTimer::getCount(void) { return timer_get_count(this->timerNum); } // This function will set the prescaler and overflow to get // a period of the given length with the most resolution; // the return value is the overflow value and thus the largest // value that can be set as a compare. uint16 HardwareTimer::setPeriod(uint32 microseconds) { // XXX: 72MHz shouldn't be hard coded in here... global define? // Not the best way to handle this edge case? if(!microseconds) { setPrescaleFactor(1); setOverflow(1); return this->overflow; } // With a prescale factor of 1, there are 72counts/ms uint16 ps = ((microseconds*72)/65536) + 1; setPrescaleFactor(ps); // Find this overflow will always be less than 65536 setOverflow((microseconds*72)/ps); return this->overflow; } void HardwareTimer::setChannel1Mode(uint8 mode) { timer_set_mode(this->timerNum,1,mode); } void HardwareTimer::setChannel2Mode(uint8 mode) { timer_set_mode(this->timerNum,2,mode); } void HardwareTimer::setChannel3Mode(uint8 mode) { timer_set_mode(this->timerNum,3,mode); } void HardwareTimer::setChannel4Mode(uint8 mode) { timer_set_mode(this->timerNum,4,mode); } void HardwareTimer::setCompare1(uint16 val) { if(val > this->overflow) val = this->overflow; timer_set_compare_value(this->timerNum,1,val); } void HardwareTimer::setCompare2(uint16 val) { if(val > this->overflow) val = this->overflow; timer_set_compare_value(this->timerNum,2,val); } void HardwareTimer::setCompare3(uint16 val) { ASSERT(this->timerNum); if(val > this->overflow) val = this->overflow; timer_set_compare_value(this->timerNum,3,val); } void HardwareTimer::setCompare4(uint16 val) { if(val > this->overflow) val = this->overflow; timer_set_compare_value(this->timerNum,4,val); } void HardwareTimer::attachCompare1Interrupt(voidFuncPtr handler) { timer_attach_interrupt(this->timerNum,1,handler); } void HardwareTimer::attachCompare2Interrupt(voidFuncPtr handler) { timer_attach_interrupt(this->timerNum,2,handler); } void HardwareTimer::attachCompare3Interrupt(voidFuncPtr handler) { timer_attach_interrupt(this->timerNum,3,handler); } void HardwareTimer::attachCompare4Interrupt(voidFuncPtr handler) { timer_attach_interrupt(this->timerNum,4,handler); } void HardwareTimer::detachCompare1Interrupt(void) { timer_detach_interrupt(this->timerNum,1); } void HardwareTimer::detachCompare2Interrupt(void) { timer_detach_interrupt(this->timerNum,2); } void HardwareTimer::detachCompare3Interrupt(void) { timer_detach_interrupt(this->timerNum,3); } void HardwareTimer::detachCompare4Interrupt(void) { timer_detach_interrupt(this->timerNum,4); } #if NR_TIMERS >= 8 void HardwareTimer::setChannel5Mode(uint8 mode) { timer_set_mode(this->timerNum,5,mode); } void HardwareTimer::setChannel8Mode(uint8 mode) { timer_set_mode(this->timerNum,8,mode); } void HardwareTimer::setCompare5(uint16 val) { if(val > this->overflow) val = this->overflow; timer_set_compare_value(this->timerNum,5,val); } void HardwareTimer::setCompare8(uint16 val) { if(val > this->overflow) val = this->overflow; timer_set_compare_value(this->timerNum,8,val); } void HardwareTimer::attachCompare5Interrupt(voidFuncPtr handler) { timer_attach_interrupt(this->timerNum,5,handler); } void HardwareTimer::attachCompare8Interrupt(voidFuncPtr handler) { timer_attach_interrupt(this->timerNum,8,handler); } void HardwareTimer::detachCompare5Interrupt(void) { timer_detach_interrupt(this->timerNum,5); } void HardwareTimer::detachCompare8Interrupt(void) { timer_detach_interrupt(this->timerNum,8); } #endif HardwareTimer Timer1(1); HardwareTimer Timer2(2); HardwareTimer Timer3(3); HardwareTimer Timer4(4); #if NR_TIMERS >= 8 HardwareTimer Timer5(5); // High-density devices only HardwareTimer Timer8(8); // High-density devices only #endif