/****************************************************************************** * The MIT License * * Copyright (c) 2010 Perry Hung. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *****************************************************************************/ /** * @brief Implements pretty much only the basic clock setup on the * stm32, clock enable/disable and peripheral reset commands. */ #include "libmaple.h" #include "flash.h" #include "rcc.h" enum { APB1, APB2, AHB }; struct rcc_dev_info { const uint8 clk_domain; const uint8 line_num; }; /* device descriptor tables */ static const struct rcc_dev_info rcc_dev_table[] = { [RCC_GPIOA] = { .clk_domain = APB2, .line_num = 2 }, [RCC_GPIOB] = { .clk_domain = APB2, .line_num = 3 }, [RCC_GPIOC] = { .clk_domain = APB2, .line_num = 4 }, [RCC_GPIOD] = { .clk_domain = APB2, .line_num = 5 }, [RCC_GPIOE] = { .clk_domain = APB2, .line_num = 6 }, // High-density only [RCC_GPIOF] = { .clk_domain = APB2, .line_num = 7 }, // High-density only [RCC_GPIOG] = { .clk_domain = APB2, .line_num = 8 }, // High-density only [RCC_AFIO] = { .clk_domain = APB2, .line_num = 0 }, [RCC_ADC1] = { .clk_domain = APB2, .line_num = 9 }, [RCC_ADC2] = { .clk_domain = APB2, .line_num = 10 }, [RCC_USART1] = { .clk_domain = APB2, .line_num = 14 }, [RCC_USART2] = { .clk_domain = APB1, .line_num = 17 }, [RCC_USART3] = { .clk_domain = APB1, .line_num = 18 }, [RCC_USART4] = { .clk_domain = APB1, .line_num = 19 }, // High-density only [RCC_USART5] = { .clk_domain = APB1, .line_num = 20 }, // High-density only [RCC_TIMER1] = { .clk_domain = APB2, .line_num = 11 }, [RCC_TIMER2] = { .clk_domain = APB1, .line_num = 0 }, [RCC_TIMER3] = { .clk_domain = APB1, .line_num = 1 }, [RCC_TIMER4] = { .clk_domain = APB1, .line_num = 2 }, [RCC_TIMER5] = { .clk_domain = APB1, .line_num = 3 }, // High-density only [RCC_TIMER6] = { .clk_domain = APB1, .line_num = 4 }, // High-density only [RCC_TIMER7] = { .clk_domain = APB1, .line_num = 5 }, // High-density only [RCC_TIMER8] = { .clk_domain = APB2, .line_num = 13 }, // High-density only [RCC_SPI1] = { .clk_domain = APB2, .line_num = 12 }, [RCC_SPI2] = { .clk_domain = APB1, .line_num = 14 }, [RCC_FSMC] = { .clk_domain = AHB, .line_num = 8 }, // High-density only [RCC_DAC] = { .clk_domain = APB1, .line_num = 9 }, // High-density only }; /** * @brief Initialize the clock control system. Initializes the system * clock source to use the PLL driven by an external oscillator * @param sysclk_src system clock source, must be PLL * @param pll_src pll clock source, must be HSE * @param pll_mul pll multiplier */ void rcc_clk_init(uint32 sysclk_src, uint32 pll_src, uint32 pll_mul) { /* Assume that we're going to clock the chip off the PLL, fed by * the HSE */ ASSERT(sysclk_src == RCC_CLKSRC_PLL && pll_src == RCC_PLLSRC_HSE); uint32 cfgr = 0; uint32 cr = RCC_READ_CR(); cfgr = (pll_src | pll_mul); RCC_WRITE_CFGR(cfgr); /* Turn on the HSE */ cr |= RCC_CR_HSEON; RCC_WRITE_CR(cr); while (!(RCC_READ_CR() & RCC_CR_HSERDY)) ; /* Now the PLL */ cr |= RCC_CR_PLLON; RCC_WRITE_CR(cr); while (!(RCC_READ_CR() & RCC_CR_PLLRDY)) ; /* Finally, let's switch over to the PLL */ cfgr &= ~RCC_CFGR_SW; cfgr |= RCC_CFGR_SW_PLL; RCC_WRITE_CFGR(cfgr); while ((RCC_READ_CFGR() & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL) ; } /** * @brief Turn on the clock line on a device * @param dev_num device to turn on */ void rcc_clk_enable(uint32 dev_num) { static const uint32 enable_regs[] = { [APB1] = RCC_APB1ENR, [APB2] = RCC_APB2ENR, [AHB] = RCC_AHBENR, }; uint8 clk_domain = rcc_dev_table[dev_num].clk_domain; __set_bits(enable_regs[clk_domain], BIT(rcc_dev_table[dev_num].line_num)); } /** * @brief Set the divider on a device prescaler * @param prescaler prescaler to set * @param divider prescaler divider */ void rcc_set_prescaler(uint32 prescaler, uint32 divider) { static const uint32 masks[] = { [RCC_PRESCALER_AHB] = RCC_CFGR_HPRE, [RCC_PRESCALER_APB1] = RCC_CFGR_PPRE1, [RCC_PRESCALER_APB2] = RCC_CFGR_PPRE2, [RCC_PRESCALER_USB] = RCC_CFGR_USBPRE, [RCC_PRESCALER_ADC] = RCC_CFGR_ADCPRE, }; uint32 cfgr = RCC_READ_CFGR(); cfgr &= ~masks[prescaler]; cfgr |= divider; RCC_WRITE_CFGR(cfgr); } /** * @brief reset a device * @param dev_num device to reset */ void rcc_reset_dev(uint32 dev_num) { static const uint32 reset_regs[] = { [APB1] = RCC_APB1RSTR, [APB2] = RCC_APB2RSTR, }; uint8 clk_domain = rcc_dev_table[dev_num].clk_domain; __set_bits(reset_regs[clk_domain], BIT(rcc_dev_table[dev_num].line_num)); __clear_bits(reset_regs[clk_domain], BIT(rcc_dev_table[dev_num].line_num)); }