// Interactive Test Session for LeafLabs Maple // Copyright (c) 2010 LeafLabs LLC. // // Useful for testing Maple features and troubleshooting. Select a COMM port // (SerialUSB or Serial2) before compiling and then enter 'h' at the prompt // for a list of commands. #include "wirish.h" #define LED_PIN 13 #define PWM_PIN 2 // choose your weapon #define COMM SerialUSB //#define COMM Serial2 uint8 input = 0; uint8 tiddle = 0; int toggle = 0; int rate = 0; int sample = 0; // read these off maple board rev3 // note that 38 is just a button and 39+ aren't functional as of 04/22/2010 const uint8 pwm_pins[] = {0,1,2,3,5,6,7,8,9,11,12,14,24,25,27,28}; const uint8 adc_pins[] = {0,1,2,10,11,12,13,15,16,17,18,19,20,27,28}; #define NUM_GPIO 44 // 44 is the MAX uint8 gpio_state[NUM_GPIO]; #define DUMMY_DAT "qwertyuiopasdfghjklzxcvbnmmmmmm,./1234567890-=qwertyuiopasdfghjklzxcvbnm,./1234567890" void print_help(void); void do_noise(uint8 pin); void do_everything(void); void do_fast_gpio(void); void setup() { /* Set up the LED to blink */ pinMode(LED_PIN, OUTPUT); /* Start up the serial ports */ Serial1.begin(9600); Serial2.begin(9600); Serial3.begin(9600); /* Send a message out over COMM interface */ COMM.println(" "); COMM.println(" __ __ _ _"); COMM.println(" | \\/ | __ _ _ __ | | ___| |"); COMM.println(" | |\\/| |/ _` | '_ \\| |/ _ \\ |"); COMM.println(" | | | | (_| | |_) | | __/_|"); COMM.println(" |_| |_|\\__,_| .__/|_|\\___(_)"); COMM.println(" |_|"); COMM.println(" by leaflabs"); COMM.println(""); COMM.println(""); COMM.println("Maple interactive test program (type '?' for help)"); COMM.println("------------------------------------------------------------"); COMM.print("> "); } void loop() { toggle ^= 1; digitalWrite(LED_PIN, toggle); delay(100); while(COMM.available()) { input = COMM.read(); COMM.println(input); switch(input) { case 13: // Carriage Return break; case 32: // ' ' COMM.println("spacebar, nice!"); break; case 63: // '?' case 104: // 'h' print_help(); break; case 117: // 'u' SerialUSB.println("Hello World!"); break; case 119: // 'w' Serial1.println("Hello World!"); Serial2.println("Hello World!"); Serial3.println("Hello World!"); break; case 109: // 'm' COMM.println("Testing 57600 baud on USART1 and USART3. Press enter."); Serial1.begin(57600); Serial3.begin(57600); while(!COMM.available()) { Serial1.println(DUMMY_DAT); Serial3.println(DUMMY_DAT); if(Serial1.available()) { Serial1.println(Serial1.read()); delay(1000); } if(Serial3.available()) { Serial3.println(Serial3.read()); delay(1000); } } COMM.read(); COMM.println("Testing 115200 baud on USART1 and USART3. Press enter."); Serial1.begin(115200); Serial3.begin(115200); while(!COMM.available()) { Serial1.println(DUMMY_DAT); Serial3.println(DUMMY_DAT); if(Serial1.available()) { Serial1.println(Serial1.read()); delay(1000); } if(Serial3.available()) { Serial3.println(Serial3.read()); delay(1000); } } COMM.read(); COMM.println("Testing 9600 baud on USART1 and USART3. Press enter."); Serial1.begin(9600); Serial3.begin(9600); while(!COMM.available()) { Serial1.println(DUMMY_DAT); Serial3.println(DUMMY_DAT); if(Serial1.available()) { Serial1.println(Serial1.read()); delay(1000); } if(Serial3.available()) { Serial3.println(Serial3.read()); delay(1000); } } COMM.read(); COMM.println("Resetting USART1 and USART3..."); Serial1.begin(9600); Serial3.begin(9600); break; case 46: // '.' while(!COMM.available()) { Serial1.print("."); Serial2.print("."); Serial3.print("."); SerialUSB.print("."); } break; case 110: // 'n' COMM.println("Taking ADC noise stats..."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(uint32 i = 2; i<sizeof(adc_pins); i++) { delay(5); do_noise(adc_pins[i]); } break; case 78: // 'N' COMM.println("Taking ADC noise stats under duress..."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(uint32 i = 2; i<sizeof(adc_pins); i++) { // spool up PWM for(uint32 j = 2; j<(uint32)sizeof(pwm_pins); j++) { if(adc_pins[i] != pwm_pins[j]) { pinMode(pwm_pins[j],PWM); pwmWrite(pwm_pins[j], 1000 + i); } } SerialUSB.print(DUMMY_DAT); SerialUSB.print(DUMMY_DAT); do_noise(adc_pins[i]); for(uint32 j = 2; j<(uint32)sizeof(pwm_pins); j++) { if(adc_pins[i] != pwm_pins[j]) { pinMode(pwm_pins[j],OUTPUT); digitalWrite(pwm_pins[j],0); } } } break; case 101: // 'e' do_everything(); break; case 87: // 'W' while(!COMM.available()) { Serial1.print(DUMMY_DAT); Serial2.print(DUMMY_DAT); Serial3.print(DUMMY_DAT); } break; case 85: // 'U' COMM.println("Dumping data to USB. Press enter."); while(!COMM.available()) { SerialUSB.print(DUMMY_DAT); } break; case 103: // 'g' COMM.print("Sequentially testing GPIO write on all possible headers except D0 and D1."); COMM.println("Anything for next, ESC to stop."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(uint32 i = 2; i<NUM_GPIO; i++) { COMM.print("GPIO write out on header D"); COMM.print(i, DEC); COMM.println("..."); pinMode(i, OUTPUT); digitalWrite(i, tiddle); while(!COMM.available()) { tiddle ^= 1; digitalWrite(i, tiddle); } digitalWrite(i, 0); if((uint8)COMM.read() == (uint8)27) break; // ESC } break; case 71: // 'G' COMM.println("Flipping all GPIOs at the same time. Press enter."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(uint32 i = 2; i<NUM_GPIO; i++) { pinMode(i, OUTPUT); } while(!COMM.available()) { tiddle ^= 1; for(uint32 i = 2; i<NUM_GPIO; i++) { digitalWrite(i, tiddle); } } for(uint32 i = 2; i<NUM_GPIO; i++) { digitalWrite(i, 0); } if((uint8)COMM.read() == (uint8)27) break; // ESC break; case 102: // 'f' COMM.println("Wiggling GPIO header D4 as fast as possible in bursts. Press enter."); pinMode(4,OUTPUT); while(!COMM.available()) { do_fast_gpio(); delay(1); } break; case 112: // 'p' COMM.println("Sequentially testing PWM on all possible headers except D0 and D1. "); COMM.println("Anything for next, ESC to stop."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(uint32 i = 2; i<sizeof(pwm_pins); i++) { COMM.print("PWM out on header D"); COMM.print(pwm_pins[i], DEC); COMM.println("..."); pinMode(pwm_pins[i], PWM); pwmWrite(pwm_pins[i], 16000); while(!COMM.available()) { delay(10); } pinMode(pwm_pins[i], OUTPUT); digitalWrite(pwm_pins[i], 0); if((uint8)COMM.read() == (uint8)27) break; // ESC } break; case 80: // 'P' COMM.println("Testing all PWM ports with a sweep. Press enter."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX pins for(uint32 i = 2; i<sizeof(pwm_pins); i++) { pinMode(pwm_pins[i], PWM); pwmWrite(pwm_pins[i], 4000); } while(!COMM.available()) { rate += 20; if(rate > 65500) rate = 0; for(uint32 i = 2; i<sizeof(pwm_pins); i++) { pwmWrite(pwm_pins[i], rate); } delay(1); } for(uint32 i = 2; i<sizeof(pwm_pins); i++) { pinMode(pwm_pins[i], OUTPUT); } break; case 95: // '_' COMM.println("Delaying for 5 seconds..."); delay(5000); break; case 116: // 't' break; case 84: // 'T' break; case 115: // 's' COMM.println("Testing all PWM headers with a servo sweep. Press enter."); COMM.println(""); // turn off LED digitalWrite(LED_PIN, 0); timer_init(1, 21); timer_init(2, 21); timer_init(3, 21); timer_init(4, 21); // make sure to skip the TX/RX headers for(uint32 i = 2; i<sizeof(pwm_pins); i++) { pinMode(pwm_pins[i], PWM); pwmWrite(pwm_pins[i], 4000); } // 1.25ms = 4096counts = 0deg // 1.50ms = 4915counts = 90deg // 1.75ms = 5734counts = 180deg rate = 4096; while(!COMM.available()) { rate += 20; if(rate > 5734) rate = 4096; for(uint32 i = 2; i<sizeof(pwm_pins); i++) { pwmWrite(pwm_pins[i], rate); } delay(20); } for(uint32 i = 2; i<sizeof(pwm_pins); i++) { pinMode(pwm_pins[i], OUTPUT); } timer_init(1, 1); timer_init(2, 1); timer_init(3, 1); timer_init(4, 1); Serial2.begin(9600); COMM.println("(reset serial port)"); break; case 100: // 'd' COMM.println("Pulling down D4, D22"); pinMode(22,INPUT_PULLDOWN); pinMode(4,INPUT_PULLDOWN); while(!COMM.available()) { delay(1); } COMM.read(); COMM.println("Pulling up D4, D22"); pinMode(22,INPUT_PULLUP); pinMode(4,INPUT_PULLUP); while(!COMM.available()) { delay(1); } COMM.read(); pinMode(4,OUTPUT); break; case 105: // 'i' break; case 73: // 'I' break; case 114: // 'r' COMM.println("Monitoring GPIO read state changes. Press enter."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(int i = 2; i<NUM_GPIO; i++) { pinMode(i, INPUT_PULLDOWN); gpio_state[i] = (uint8)digitalRead(i); } while(!COMM.available()) { for(int i = 2; i<NUM_GPIO; i++) { tiddle = (uint8)digitalRead(i); if(tiddle != gpio_state[i]) { COMM.print("State change on header D"); COMM.print(i,DEC); if(tiddle) COMM.println(":\tHIGH"); else COMM.println(":\tLOW"); gpio_state[i] = tiddle; } } } for(int i = 2; i<NUM_GPIO; i++) { pinMode(i, OUTPUT); } break; case 97: // 'a' COMM.print("Sequentially reading each ADC port."); COMM.println("Anything for next, ESC to stop."); // turn off LED digitalWrite(LED_PIN, 0); // make sure to skip the TX/RX headers for(uint32 i = 2; i<sizeof(adc_pins); i++) { COMM.print("Reading on header D"); COMM.print(adc_pins[i], DEC); COMM.println("..."); pinMode(adc_pins[i], INPUT_ANALOG); while(!COMM.available()) { sample = analogRead(adc_pins[i]); COMM.print(adc_pins[i],DEC); COMM.print("\t"); COMM.print(sample,DEC); COMM.print("\t"); COMM.print("|"); for(int j = 0; j<4096; j+= 100) { if(sample >= j) COMM.print("#"); else COMM.print(" "); } COMM.print("| "); for(int j = 0; j<12; j++) { if(sample & (1 << (11-j))) COMM.print("1"); else COMM.print("0"); } COMM.println(""); } pinMode(adc_pins[i], OUTPUT); digitalWrite(adc_pins[i], 0); if((uint8)COMM.read() == (uint8)27) break; // ESC } break; case 43: // '+' COMM.println("Doing QA testing for 37 GPIO pins..."); // turn off LED digitalWrite(LED_PIN, 0); for(int i = 0; i<NUM_GPIO; i++) { pinMode(i, INPUT); gpio_state[i] = 0; //(uint8)digitalRead(i); } COMM.println("Waiting to start..."); while(digitalRead(0) != 1 && !COMM.available()) { continue; } for(int i=0; i<38; i++) { if(i==13) { COMM.println("Not Checking D13 (LED)"); continue; } COMM.print("Checking D"); COMM.print(i,DEC); while(digitalRead(i) == 0) continue; for(int j=0; j<NUM_GPIO; j++) { if(digitalRead(j) && j!=i) { COMM.print(": FAIL ########################### D"); COMM.println(j, DEC); break; } } while(digitalRead(i) == 1) continue; for(int j=0; j<NUM_GPIO; j++) { if(digitalRead(j) && j!=i) { COMM.print(": FAIL ########################### D"); COMM.println(j, DEC); break; } } COMM.println(": Ok!"); } for(int i = 0; i<NUM_GPIO; i++) { pinMode(i, OUTPUT); digitalWrite(i, 0); } break; default: COMM.print("Unexpected: "); COMM.println(input); } COMM.print("> "); } } void print_help(void) { COMM.println(""); //COMM.println("Command Listing\t(# means any digit)"); COMM.println("Command Listing"); COMM.println("\t?: print this menu"); COMM.println("\th: print this menu"); COMM.println("\tw: print Hello World on all 3 USARTS"); COMM.println("\tn: measure noise and do statistics"); COMM.println("\tN: measure noise and do statistics with background stuff"); COMM.println("\ta: show realtime ADC info"); COMM.println("\t.: echo '.' until new input"); COMM.println("\tu: print Hello World on USB"); COMM.println("\t_: try to do as little as possible for a couple seconds (delay)"); COMM.println("\tp: test all PWM channels sequentially"); COMM.println("\tW: dump data as fast as possible on all 3 USARTS"); COMM.println("\tU: dump data as fast as possible on USB"); COMM.println("\tg: toggle all GPIOs sequentialy"); COMM.println("\tG: toggle all GPIOs at the same time"); COMM.println("\tf: toggle GPIO D4 as fast as possible in bursts"); COMM.println("\tP: test all PWM channels at the same time with different speeds/sweeps"); COMM.println("\tr: read in GPIO status changes and print them in realtime"); COMM.println("\ts: output a sweeping SERVO PWM on all PWM channels"); COMM.println("\tm: output serial data dumps on USART1 and USART3 with various rates"); COMM.println("\t+: test shield mode (for QA, will disrupt Serial2!)"); COMM.println("Unimplemented:"); COMM.println("\te: do everything all at once until new input"); COMM.println("\tt: output a 1khz squarewave on all GPIOs as well as possible"); COMM.println("\tT: output a 1hz squarewave on all GPIOs as well as possible"); COMM.println("\ti: print out a bunch of info about system state"); COMM.println("\tI: print out status of all headers"); } void do_noise(uint8 pin) { // TODO uint16 data[100]; float mean = 0; //float stddev = 0; float delta = 0; float M2 = 0; pinMode(pin, INPUT_ANALOG); // variance algorithm from knuth; see wikipedia // checked against python for(int i = 0; i<100; i++) { data[i] = analogRead(pin); delta = data[i] - mean; mean = mean + delta/(i+1); M2 = M2 + delta*(data[i] - mean); } //sqrt is broken? //stddev = sqrt(variance); COMM.print("header: D"); COMM.print(pin,DEC); COMM.print("\tn: "); COMM.print(100,DEC); COMM.print("\tmean: "); COMM.print(mean); COMM.print("\tvar: "); COMM.println(M2/99.0); pinMode(pin, OUTPUT); } void do_everything(void) { // TODO // TODO // print to usart // print to usb // toggle gpios // enable pwm COMM.println("(unimplemented)"); } void do_fast_gpio(void) { // header D4 is on port B and is pin 5 on the uC gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); gpio_write_bit(GPIOB_BASE, 5, 1); gpio_write_bit(GPIOB_BASE, 5, 0); } // Force init to be called *first*, i.e. before static object allocation. // Otherwise, statically allocated object that need libmaple may fail. __attribute__(( constructor )) void premain() { init(); } int main(void) { setup(); while (1) { loop(); } return 0; }