aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/FreeRTOS/utility/croutine.c
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/FreeRTOS/utility/croutine.c')
-rwxr-xr-xlibraries/FreeRTOS/utility/croutine.c380
1 files changed, 380 insertions, 0 deletions
diff --git a/libraries/FreeRTOS/utility/croutine.c b/libraries/FreeRTOS/utility/croutine.c
new file mode 100755
index 0000000..fe56730
--- /dev/null
+++ b/libraries/FreeRTOS/utility/croutine.c
@@ -0,0 +1,380 @@
+/*
+ FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
+
+
+ FreeRTOS supports many tools and architectures. V7.0.0 is sponsored by:
+ Atollic AB - Atollic provides professional embedded systems development
+ tools for C/C++ development, code analysis and test automation.
+ See http://www.atollic.com
+
+
+ ***************************************************************************
+ * *
+ * FreeRTOS tutorial books are available in pdf and paperback. *
+ * Complete, revised, and edited pdf reference manuals are also *
+ * available. *
+ * *
+ * Purchasing FreeRTOS documentation will not only help you, by *
+ * ensuring you get running as quickly as possible and with an *
+ * in-depth knowledge of how to use FreeRTOS, it will also help *
+ * the FreeRTOS project to continue with its mission of providing *
+ * professional grade, cross platform, de facto standard solutions *
+ * for microcontrollers - completely free of charge! *
+ * *
+ * >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
+ * *
+ * Thank you for using FreeRTOS, and thank you for your support! *
+ * *
+ ***************************************************************************
+
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
+ >>>NOTE<<< The modification to the GPL is included to allow you to
+ distribute a combined work that includes FreeRTOS without being obliged to
+ provide the source code for proprietary components outside of the FreeRTOS
+ kernel. FreeRTOS is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details. You should have received a copy of the GNU General Public
+ License and the FreeRTOS license exception along with FreeRTOS; if not it
+ can be viewed here: http://www.freertos.org/a00114.html and also obtained
+ by writing to Richard Barry, contact details for whom are available on the
+ FreeRTOS WEB site.
+
+ 1 tab == 4 spaces!
+
+ http://www.FreeRTOS.org - Documentation, latest information, license and
+ contact details.
+
+ http://www.SafeRTOS.com - A version that is certified for use in safety
+ critical systems.
+
+ http://www.OpenRTOS.com - Commercial support, development, porting,
+ licensing and training services.
+*/
+
+#include "FreeRTOS.h"
+#include "task.h"
+#include "croutine.h"
+
+/*
+ * Some kernel aware debuggers require data to be viewed to be global, rather
+ * than file scope.
+ */
+#ifdef portREMOVE_STATIC_QUALIFIER
+ #define static
+#endif
+
+
+/* Lists for ready and blocked co-routines. --------------------*/
+static xList pxReadyCoRoutineLists[ configMAX_CO_ROUTINE_PRIORITIES ]; /*< Prioritised ready co-routines. */
+static xList xDelayedCoRoutineList1; /*< Delayed co-routines. */
+static xList xDelayedCoRoutineList2; /*< Delayed co-routines (two lists are used - one for delays that have overflowed the current tick count. */
+static xList * pxDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used. */
+static xList * pxOverflowDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used to hold co-routines that have overflowed the current tick count. */
+static xList xPendingReadyCoRoutineList; /*< Holds co-routines that have been readied by an external event. They cannot be added directly to the ready lists as the ready lists cannot be accessed by interrupts. */
+
+/* Other file private variables. --------------------------------*/
+corCRCB * pxCurrentCoRoutine = NULL;
+static unsigned portBASE_TYPE uxTopCoRoutineReadyPriority = 0;
+static portTickType xCoRoutineTickCount = 0, xLastTickCount = 0, xPassedTicks = 0;
+
+/* The initial state of the co-routine when it is created. */
+#define corINITIAL_STATE ( 0 )
+
+/*
+ * Place the co-routine represented by pxCRCB into the appropriate ready queue
+ * for the priority. It is inserted at the end of the list.
+ *
+ * This macro accesses the co-routine ready lists and therefore must not be
+ * used from within an ISR.
+ */
+#define prvAddCoRoutineToReadyQueue( pxCRCB ) \
+{ \
+ if( pxCRCB->uxPriority > uxTopCoRoutineReadyPriority ) \
+ { \
+ uxTopCoRoutineReadyPriority = pxCRCB->uxPriority; \
+ } \
+ vListInsertEnd( ( xList * ) &( pxReadyCoRoutineLists[ pxCRCB->uxPriority ] ), &( pxCRCB->xGenericListItem ) ); \
+}
+
+/*
+ * Utility to ready all the lists used by the scheduler. This is called
+ * automatically upon the creation of the first co-routine.
+ */
+static void prvInitialiseCoRoutineLists( void );
+
+/*
+ * Co-routines that are readied by an interrupt cannot be placed directly into
+ * the ready lists (there is no mutual exclusion). Instead they are placed in
+ * in the pending ready list in order that they can later be moved to the ready
+ * list by the co-routine scheduler.
+ */
+static void prvCheckPendingReadyList( void );
+
+/*
+ * Macro that looks at the list of co-routines that are currently delayed to
+ * see if any require waking.
+ *
+ * Co-routines are stored in the queue in the order of their wake time -
+ * meaning once one co-routine has been found whose timer has not expired
+ * we need not look any further down the list.
+ */
+static void prvCheckDelayedList( void );
+
+/*-----------------------------------------------------------*/
+
+signed portBASE_TYPE xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, unsigned portBASE_TYPE uxPriority, unsigned portBASE_TYPE uxIndex )
+{
+signed portBASE_TYPE xReturn;
+corCRCB *pxCoRoutine;
+
+ /* Allocate the memory that will store the co-routine control block. */
+ pxCoRoutine = ( corCRCB * ) pvPortMalloc( sizeof( corCRCB ) );
+ if( pxCoRoutine )
+ {
+ /* If pxCurrentCoRoutine is NULL then this is the first co-routine to
+ be created and the co-routine data structures need initialising. */
+ if( pxCurrentCoRoutine == NULL )
+ {
+ pxCurrentCoRoutine = pxCoRoutine;
+ prvInitialiseCoRoutineLists();
+ }
+
+ /* Check the priority is within limits. */
+ if( uxPriority >= configMAX_CO_ROUTINE_PRIORITIES )
+ {
+ uxPriority = configMAX_CO_ROUTINE_PRIORITIES - 1;
+ }
+
+ /* Fill out the co-routine control block from the function parameters. */
+ pxCoRoutine->uxState = corINITIAL_STATE;
+ pxCoRoutine->uxPriority = uxPriority;
+ pxCoRoutine->uxIndex = uxIndex;
+ pxCoRoutine->pxCoRoutineFunction = pxCoRoutineCode;
+
+ /* Initialise all the other co-routine control block parameters. */
+ vListInitialiseItem( &( pxCoRoutine->xGenericListItem ) );
+ vListInitialiseItem( &( pxCoRoutine->xEventListItem ) );
+
+ /* Set the co-routine control block as a link back from the xListItem.
+ This is so we can get back to the containing CRCB from a generic item
+ in a list. */
+ listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xGenericListItem ), pxCoRoutine );
+ listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xEventListItem ), pxCoRoutine );
+
+ /* Event lists are always in priority order. */
+ listSET_LIST_ITEM_VALUE( &( pxCoRoutine->xEventListItem ), configMAX_PRIORITIES - ( portTickType ) uxPriority );
+
+ /* Now the co-routine has been initialised it can be added to the ready
+ list at the correct priority. */
+ prvAddCoRoutineToReadyQueue( pxCoRoutine );
+
+ xReturn = pdPASS;
+ }
+ else
+ {
+ xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
+ }
+
+ return xReturn;
+}
+/*-----------------------------------------------------------*/
+
+void vCoRoutineAddToDelayedList( portTickType xTicksToDelay, xList *pxEventList )
+{
+portTickType xTimeToWake;
+
+ /* Calculate the time to wake - this may overflow but this is
+ not a problem. */
+ xTimeToWake = xCoRoutineTickCount + xTicksToDelay;
+
+ /* We must remove ourselves from the ready list before adding
+ ourselves to the blocked list as the same list item is used for
+ both lists. */
+ vListRemove( ( xListItem * ) &( pxCurrentCoRoutine->xGenericListItem ) );
+
+ /* The list item will be inserted in wake time order. */
+ listSET_LIST_ITEM_VALUE( &( pxCurrentCoRoutine->xGenericListItem ), xTimeToWake );
+
+ if( xTimeToWake < xCoRoutineTickCount )
+ {
+ /* Wake time has overflowed. Place this item in the
+ overflow list. */
+ vListInsert( ( xList * ) pxOverflowDelayedCoRoutineList, ( xListItem * ) &( pxCurrentCoRoutine->xGenericListItem ) );
+ }
+ else
+ {
+ /* The wake time has not overflowed, so we can use the
+ current block list. */
+ vListInsert( ( xList * ) pxDelayedCoRoutineList, ( xListItem * ) &( pxCurrentCoRoutine->xGenericListItem ) );
+ }
+
+ if( pxEventList )
+ {
+ /* Also add the co-routine to an event list. If this is done then the
+ function must be called with interrupts disabled. */
+ vListInsert( pxEventList, &( pxCurrentCoRoutine->xEventListItem ) );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckPendingReadyList( void )
+{
+ /* Are there any co-routines waiting to get moved to the ready list? These
+ are co-routines that have been readied by an ISR. The ISR cannot access
+ the ready lists itself. */
+ while( listLIST_IS_EMPTY( &xPendingReadyCoRoutineList ) == pdFALSE )
+ {
+ corCRCB *pxUnblockedCRCB;
+
+ /* The pending ready list can be accessed by an ISR. */
+ portDISABLE_INTERRUPTS();
+ {
+ pxUnblockedCRCB = ( corCRCB * ) listGET_OWNER_OF_HEAD_ENTRY( (&xPendingReadyCoRoutineList) );
+ vListRemove( &( pxUnblockedCRCB->xEventListItem ) );
+ }
+ portENABLE_INTERRUPTS();
+
+ vListRemove( &( pxUnblockedCRCB->xGenericListItem ) );
+ prvAddCoRoutineToReadyQueue( pxUnblockedCRCB );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvCheckDelayedList( void )
+{
+corCRCB *pxCRCB;
+
+ xPassedTicks = xTaskGetTickCount() - xLastTickCount;
+ while( xPassedTicks )
+ {
+ xCoRoutineTickCount++;
+ xPassedTicks--;
+
+ /* If the tick count has overflowed we need to swap the ready lists. */
+ if( xCoRoutineTickCount == 0 )
+ {
+ xList * pxTemp;
+
+ /* Tick count has overflowed so we need to swap the delay lists. If there are
+ any items in pxDelayedCoRoutineList here then there is an error! */
+ pxTemp = pxDelayedCoRoutineList;
+ pxDelayedCoRoutineList = pxOverflowDelayedCoRoutineList;
+ pxOverflowDelayedCoRoutineList = pxTemp;
+ }
+
+ /* See if this tick has made a timeout expire. */
+ while( listLIST_IS_EMPTY( pxDelayedCoRoutineList ) == pdFALSE )
+ {
+ pxCRCB = ( corCRCB * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedCoRoutineList );
+
+ if( xCoRoutineTickCount < listGET_LIST_ITEM_VALUE( &( pxCRCB->xGenericListItem ) ) )
+ {
+ /* Timeout not yet expired. */
+ break;
+ }
+
+ portDISABLE_INTERRUPTS();
+ {
+ /* The event could have occurred just before this critical
+ section. If this is the case then the generic list item will
+ have been moved to the pending ready list and the following
+ line is still valid. Also the pvContainer parameter will have
+ been set to NULL so the following lines are also valid. */
+ vListRemove( &( pxCRCB->xGenericListItem ) );
+
+ /* Is the co-routine waiting on an event also? */
+ if( pxCRCB->xEventListItem.pvContainer )
+ {
+ vListRemove( &( pxCRCB->xEventListItem ) );
+ }
+ }
+ portENABLE_INTERRUPTS();
+
+ prvAddCoRoutineToReadyQueue( pxCRCB );
+ }
+ }
+
+ xLastTickCount = xCoRoutineTickCount;
+}
+/*-----------------------------------------------------------*/
+
+void vCoRoutineSchedule( void )
+{
+ /* See if any co-routines readied by events need moving to the ready lists. */
+ prvCheckPendingReadyList();
+
+ /* See if any delayed co-routines have timed out. */
+ prvCheckDelayedList();
+
+ /* Find the highest priority queue that contains ready co-routines. */
+ while( listLIST_IS_EMPTY( &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) ) )
+ {
+ if( uxTopCoRoutineReadyPriority == 0 )
+ {
+ /* No more co-routines to check. */
+ return;
+ }
+ --uxTopCoRoutineReadyPriority;
+ }
+
+ /* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the co-routines
+ of the same priority get an equal share of the processor time. */
+ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentCoRoutine, &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) );
+
+ /* Call the co-routine. */
+ ( pxCurrentCoRoutine->pxCoRoutineFunction )( pxCurrentCoRoutine, pxCurrentCoRoutine->uxIndex );
+
+ return;
+}
+/*-----------------------------------------------------------*/
+
+static void prvInitialiseCoRoutineLists( void )
+{
+unsigned portBASE_TYPE uxPriority;
+
+ for( uxPriority = 0; uxPriority < configMAX_CO_ROUTINE_PRIORITIES; uxPriority++ )
+ {
+ vListInitialise( ( xList * ) &( pxReadyCoRoutineLists[ uxPriority ] ) );
+ }
+
+ vListInitialise( ( xList * ) &xDelayedCoRoutineList1 );
+ vListInitialise( ( xList * ) &xDelayedCoRoutineList2 );
+ vListInitialise( ( xList * ) &xPendingReadyCoRoutineList );
+
+ /* Start with pxDelayedCoRoutineList using list1 and the
+ pxOverflowDelayedCoRoutineList using list2. */
+ pxDelayedCoRoutineList = &xDelayedCoRoutineList1;
+ pxOverflowDelayedCoRoutineList = &xDelayedCoRoutineList2;
+}
+/*-----------------------------------------------------------*/
+
+signed portBASE_TYPE xCoRoutineRemoveFromEventList( const xList *pxEventList )
+{
+corCRCB *pxUnblockedCRCB;
+signed portBASE_TYPE xReturn;
+
+ /* This function is called from within an interrupt. It can only access
+ event lists and the pending ready list. This function assumes that a
+ check has already been made to ensure pxEventList is not empty. */
+ pxUnblockedCRCB = ( corCRCB * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
+ vListRemove( &( pxUnblockedCRCB->xEventListItem ) );
+ vListInsertEnd( ( xList * ) &( xPendingReadyCoRoutineList ), &( pxUnblockedCRCB->xEventListItem ) );
+
+ if( pxUnblockedCRCB->uxPriority >= pxCurrentCoRoutine->uxPriority )
+ {
+ xReturn = pdTRUE;
+ }
+ else
+ {
+ xReturn = pdFALSE;
+ }
+
+ return xReturn;
+}
+