From c2a4fe1d51f1306ad10168bb3d5104f1bb04c097 Mon Sep 17 00:00:00 2001 From: bryan newbold Date: Sun, 1 Feb 2009 08:38:00 -0500 Subject: more fixes --- math/algebra | 12 ++++++------ math/tensors | 2 +- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/math/algebra b/math/algebra index 96197ff..d43a59a 100644 --- a/math/algebra +++ b/math/algebra @@ -6,42 +6,42 @@ Algebra .. list-table:: Closure of binary operators on given sets of numbers - * Operation + * - Operation - :latex:$+$ - :latex:$\times$ - :latex:$-$ - :latex:$\divide$ - :latex:$^$ - :latex:$\sqrt{\text{ }}$ - * Positive Integers + * - Positive Integers - Y - Y - N - N - Y - N - * Positive rationals + * - Positive rationals - Y - Y - N - Y - Y - N - * Rationals (and zero) + * - Rationals (and zero) - Y - Y - Y - Y - Y - N - * Reals wrt positive integers + * - Reals wrt positive integers - Y - Y - Y - Y - Y - Y - * Complex numbers + * - Complex numbers - Y - Y - Y diff --git a/math/tensors b/math/tensors index e15270a..d46810e 100644 --- a/math/tensors +++ b/math/tensors @@ -46,7 +46,7 @@ as an example for a rank-3 tensor: Even a regular vector is a tensor: pass it a second vector and take the inner product (aka dot product) to get a real. -Define the **metric tensor ** +Define the **metric tensor** :m:$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$. The metric tensor is rank two and symetric (the vectors A and B could be swapped without changing the scalar output value) and is the same as the inner product. -- cgit v1.2.3