From ab8b60e77216a62216ac0841716a9c3f4f781df0 Mon Sep 17 00:00:00 2001 From: bnewbold Date: Sun, 24 Jan 2010 08:23:12 +0000 Subject: fixes --- math/topology.page | 37 +++++++++++++++++-------------------- 1 file changed, 17 insertions(+), 20 deletions(-) diff --git a/math/topology.page b/math/topology.page index ea369fb..9701427 100644 --- a/math/topology.page +++ b/math/topology.page @@ -26,8 +26,8 @@ $B$ is an open set under the topology $\mathcal{T}$. $\mathcal{T'}$ is finer than $\mathcal{T}$ if $\mathcal{T}$ is a subset of $\mathcal{T'}$ (and $\mathcal{T}$ is coarser); it is *strictly finer* if it is a proper subset (and $\mathcal{T}$ is -*strictly coarser*). Two sets are *comprable* if either $\mathcal{T\in T'}$ -or $\mathcal{T'\in T}$. +*strictly coarser*). Two sets are *comprable* if either $\mathcal{T \in T'}$ +or $\mathcal{T' \in T}$. *Smaller* and *larger* are somtimes used instead of finer and coarser. Topologies can be generated from a *basis*. @@ -37,42 +37,39 @@ TODO: Hausdorf Frequently Used Topologies ============================ -*Standard Topology* - The standard topology on the real line is generated by the collection of all intervals +Standard Topology +: The standard topology on the real line is generated by the collection of all intervals $$(a,b)=\{x|a