diff options
Diffstat (limited to 'chapters')
-rw-r--r-- | chapters/0-Prologue.scm | 30 | ||||
-rw-r--r-- | chapters/1-Introduction.scm | 103 |
2 files changed, 133 insertions, 0 deletions
diff --git a/chapters/0-Prologue.scm b/chapters/0-Prologue.scm new file mode 100644 index 0000000..3a5f44d --- /dev/null +++ b/chapters/0-Prologue.scm @@ -0,0 +1,30 @@ + +; mostly typing these up to confirm that they display as expected + +(define ((Gamma w) t) + (up t (w t) ((D w) t))) + +(define ((Lagrange-equations Lagrangian) w) + (- (D (compose ((partial 2) Lagrangian) (Gamma w))) + (compose ((partial 1) Lagrangian) (Gamma w)))) + +(define ((L-harmonic m k) local) + (let ((q (coordinate local)) + (v (velocity local))) + (- (* 1/2 m (square v)) + (* 1/2 k (square q))))) + +(define (proposed-solution t) + (* 'a (cos (+ (* 'omega t) 'phi)))) + +(show-expression + (((Lagrange-equations (L-harmonic 'm 'k)) + proposed-solution) + 't)) +; didn't simplify the way The Book shows it, but is equivalent + +(show-expression + (((Lagrange-equations (L-harmonic 'm 'k)) + (literal-function 'x)) + 't)) + diff --git a/chapters/1-Introduction.scm b/chapters/1-Introduction.scm new file mode 100644 index 0000000..38beba8 --- /dev/null +++ b/chapters/1-Introduction.scm @@ -0,0 +1,103 @@ + +(define ((Lfree mass) state) + (* 1/2 mass (square (velocity state)))) + +; geometric transform of spherical coordinates to 3D coordinates +; 'R' is radius +(define ((sphere->R3 R) state) + (let ((q (coordinate state))) + (let ((theta (ref q 0)) + (phi (ref q 1))) + (up (* R (sin theta) (cos phi)) ; x + (* R (sin theta) (sin phi)) ; y + (* R (cos theta)))))) ; z + +; apply a coordinate transform to a function over states (?) +(define ((F->C F) state) + (up (time state) + (F state) + (+ (((partial 0) F) state) + (* (((partial 1) F) state) + (velocity state))))) + +(define (Lsphere m R) + (compose (Lfree m) (F->C (sphere->R3 R)))) + +((Lsphere 'm 'R) + (up 't (up 'theta 'phi) (up 'thetadot 'phidot))) +; (+ (* 1/2 (expt R 2) m (expt phidot 2) (expt (sin theta) 2)) (* 1/2 (expt R 2) m (expt thetadot 2))) +; -> 1/2 m R^2 phidot^2 sin(theta)^2 + 1/2 R^2 m thetadot^2 +; -> 1/2 m R^2 ( phidot^2 sin(theta)^2 + thetadot^2 ) + +; this is kinetic energy of a particle on a sphere in spherical coordinates, as expected + +(define ((L2 mass metric) place velocity) + (* 1/2 mass ((metric velocity velocity) place))) + + +; (metric velocity velocity) here is the magniture of velocity ("weighted sum of squares") +; 'Lc' is "Lagrangian in coordinate representation" +(define ((Lc mass metric coordsys) state) + (let ((x (coordinates state)) + (v (velocities state)) + (e (coordinate-system->vector-basis coordsys))) + ((L2 mass metric) ((point coordsys) x) (* e v)))) + +(define the-metric (literal-metric 'g R2-rect)) + +(define L (Lc 'm the-metric R2-rect)) + +(L (up 't (up 'x 'y) (up 'vx 'vy))) +; (+ (* 1/2 m (expt vx 2) (g_00 (up x y))) +; (* m vx vy (g_01 (up x y))) +; (* 1/2 m (expt vy 2) (g_11 (up x y)))) + +; same as 1.3, assuming g_01 and g_10 are the same (?) + +; going to define a path on a 2D manifold + +(define gamma (literal-manifold-map 'q R1-rect R2-rect)) + +; ahhh! +; ``((point R1-rect 't))` creates a point on the real like (R1-rect), based on coordinate 't. +; `((chart R2-rect) m)` takes a point m and returns coordinates + +((chart R2-rect) (gamma ((point R1-rect) 't))) +; (up (q^0 t) (q^1 t)) + +(define coordinate-path + (compose (chart R2-rect) gamma (point R1-rect))) + +(coordinate-path 't) +; (up (q^0 t) (q^1 t)) + +(define Lagrange-residuals + (((Lagrange-equations L) coordinate-path) 't)) + +Lagrange-residuals +; big mess + +(define-coordinates t R1-rect) + +(define Cartan + (Christoffel->Cartan + (metric->Christoffel-2 the-metric + (coordinate-system->basis R2-rect)))) + +(define geodesic-equation-residuals + (((((covariant-derivative Cartan gamma) d/dt) + ((differential gamma) d/dt)) + (chart R2-rect)) + ((point R1-rect) 't))) + +(define metric-components + (metric->components the-metric + (coordinate-system->basis R2-rect))) + +(- Lagrange-residuals + (* (* 'm (metric-components (gamma ((point R1-rect) 't)))) + geodesic-equation-residuals)) +; (down 0 0) + +; so the Lagrange equations correspond to the Christoffel coefficients + |