aboutsummaryrefslogtreecommitdiffstats
path: root/python/fatcat_web/search.py
blob: 2a3515d449bb1aa8c98b5ab6d5b601125dacb5dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
"""
Helpers for doing elasticsearch queries (used in the web interface; not part of
the formal API)
"""

import datetime
import sys
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import elasticsearch
import elasticsearch_dsl.response
from elasticsearch_dsl import Q, Search

from fatcat_web import app


class FatcatSearchError(Exception):
    def __init__(self, status_code: Union[int, str], name: str, description: str = None):
        if status_code == "TIMEOUT":
            status_code = 504
        elif isinstance(status_code, str):
            try:
                status_code = int(status_code)
            except ValueError:
                status_code = 503
        self.status_code = status_code
        self.name = name
        self.description = description


@dataclass
class ReleaseQuery:
    q: Optional[str] = None
    limit: Optional[int] = None
    offset: Optional[int] = None
    fulltext_only: bool = False
    container_id: Optional[str] = None
    recent: bool = False
    exclude_stubs: bool = False

    @staticmethod
    def from_args(args: Dict[str, Any]) -> "ReleaseQuery":

        query_str = args.get("q") or "*"

        container_id = args.get("container_id")
        # TODO: as filter, not in query string
        if container_id:
            query_str += ' container_id:"{}"'.format(container_id)

        # TODO: where are container_issnl queries actually used?
        issnl = args.get("container_issnl")
        if issnl and query_str:
            query_str += ' container_issnl:"{}"'.format(issnl)

        offset = args.get("offset", "0")
        offset = max(0, int(offset)) if offset.isnumeric() else 0

        return ReleaseQuery(
            q=query_str,
            offset=offset,
            fulltext_only=bool(args.get("fulltext_only")),
            container_id=container_id,
            recent=bool(args.get("recent")),
            exclude_stubs=bool(args.get("exclude_stubs")),
        )


@dataclass
class GenericQuery:
    q: Optional[str] = None
    limit: Optional[int] = None
    offset: Optional[int] = None

    @staticmethod
    def from_args(args: Dict[str, Any]) -> "GenericQuery":
        query_str = args.get("q")
        if not query_str:
            query_str = "*"
        offset = args.get("offset", "0")
        offset = max(0, int(offset)) if offset.isnumeric() else 0

        return GenericQuery(
            q=query_str,
            offset=offset,
        )


@dataclass
class SearchHits:
    count_returned: int
    count_found: int
    offset: int
    limit: int
    deep_page_limit: int
    query_time_ms: int
    results: List[Any]


def _hits_total_int(val: Any) -> int:
    """
    Compatibility hack between ES 6.x and 7.x. In ES 6x, total is returned as
    an int in many places, in ES 7 as a dict (JSON object) with 'value' key
    """
    if isinstance(val, int):
        return val
    else:
        return int(val["value"])


def results_to_dict(response: elasticsearch_dsl.response.Response) -> List[dict]:
    """
    Takes a response returns all the hits as JSON objects.

    Also handles surrogate strings that elasticsearch returns sometimes,
    probably due to mangled data processing in some pipeline. "Crimes against
    Unicode"; production workaround
    """

    results = []
    for h in response:
        r = h._d_
        # print(h.meta._d_)
        results.append(r)

    for h in results:
        for key in h:
            if type(h[key]) is str:
                h[key] = h[key].encode("utf8", "ignore").decode("utf8")
    return results


def wrap_es_execution(search: Search) -> Any:
    """
    Executes a Search object, and converts various ES error types into
    something we can pretty print to the user.
    """
    try:
        resp = search.execute()
    except elasticsearch.exceptions.RequestError as e:
        # this is a "user" error
        print("elasticsearch 400: " + str(e.info), file=sys.stderr)
        description = None
        assert isinstance(e.info, dict)
        if e.info.get("error", {}).get("root_cause", {}):
            description = str(e.info["error"]["root_cause"][0].get("reason"))
        raise FatcatSearchError(e.status_code, str(e.error), description)
    except elasticsearch.exceptions.ConnectionError as e:
        raise FatcatSearchError(e.status_code, "ConnectionError: search engine not available")
    except elasticsearch.exceptions.TransportError as e:
        # all other errors
        print("elasticsearch non-200 status code: {}".format(e.info), file=sys.stderr)
        description = None
        assert isinstance(e.info, dict)
        if e.info and e.info.get("error", {}).get("root_cause", {}):
            description = str(e.info["error"]["root_cause"][0].get("reason"))
        raise FatcatSearchError(e.status_code, str(e.error), description)
    return resp


def agg_to_dict(agg: Any) -> Dict[str, Any]:
    """
    Takes a simple term aggregation result (with buckets) and returns a simple
    dict with keys as terms and counts as values. Includes an extra value
    '_other', and by convention aggregations should be written to have "missing"
    values as '_unknown'.
    """
    result = dict()
    for bucket in agg.buckets:
        result[bucket.key] = bucket.doc_count
    if agg.sum_other_doc_count:
        result["_other"] = agg.sum_other_doc_count
    return result


def do_container_search(query: GenericQuery, deep_page_limit: int = 2000) -> SearchHits:

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_CONTAINER_INDEX"])

    basic_query = Q(
        "query_string",
        query=query.q,
        default_operator="AND",
        analyze_wildcard=True,
        allow_leading_wildcard=False,
        lenient=True,
        fields=["biblio"],
    )

    search = search.query(
        "boosting",
        positive=Q(
            "bool",
            must=basic_query,
            should=[
                Q("range", releases_total={"gte": 500}),
                Q("range", releases_total={"gte": 5000}),
            ],
        ),
        negative=Q("term", releases_total=0),
        negative_boost=0.5,
    )

    # Sanity checks
    limit = min((int(query.limit or 25), 100))
    offset = max((int(query.offset or 0), 0))
    if offset > deep_page_limit:
        # Avoid deep paging problem.
        offset = deep_page_limit

    search = search[offset : (offset + limit)]
    search = search.params(track_total_hits=True)

    resp = wrap_es_execution(search)
    results = results_to_dict(resp)

    return SearchHits(
        count_returned=len(results),
        count_found=_hits_total_int(resp.hits.total),
        offset=offset,
        limit=limit,
        deep_page_limit=deep_page_limit,
        query_time_ms=int(resp.took),
        results=results,
    )


def do_release_search(query: ReleaseQuery, deep_page_limit: int = 2000) -> SearchHits:

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])

    # availability filters
    if query.fulltext_only:
        search = search.filter("term", in_ia=True)

    # Below, we combine several queries to improve scoring.

    # this query use the fancy built-in query string parser
    basic_biblio = Q(
        "query_string",
        query=query.q,
        default_operator="AND",
        analyze_wildcard=True,
        allow_leading_wildcard=False,
        lenient=True,
        fields=[
            "title^2",
            "biblio",
        ],
    )
    has_fulltext = Q("term", in_ia=True)
    poor_metadata = Q(
        "bool",
        should=[
            # if these fields aren't set, metadata is poor. The more that do
            # not exist, the stronger the signal.
            Q("bool", must_not=Q("exists", field="title")),
            Q("bool", must_not=Q("exists", field="release_year")),
            Q("bool", must_not=Q("exists", field="release_type")),
            Q("bool", must_not=Q("exists", field="release_stage")),
            Q("bool", must_not=Q("exists", field="container_id")),
        ],
    )

    search = search.query(
        "boosting",
        positive=Q(
            "bool",
            must=basic_biblio,
            should=[has_fulltext],
        ),
        negative=poor_metadata,
        negative_boost=0.5,
    )

    # Sanity checks
    limit = min((int(query.limit or 25), 100))
    offset = max((int(query.offset or 0), 0))
    if offset > deep_page_limit:
        # Avoid deep paging problem.
        offset = deep_page_limit

    search = search[offset : (offset + limit)]
    search = search.params(track_total_hits=True)

    resp = wrap_es_execution(search)
    results = results_to_dict(resp)

    for h in results:
        # Ensure 'contrib_names' is a list, not a single string
        if type(h["contrib_names"]) is not list:
            h["contrib_names"] = [
                h["contrib_names"],
            ]
        h["contrib_names"] = [
            name.encode("utf8", "ignore").decode("utf8") for name in h["contrib_names"]
        ]

    return SearchHits(
        count_returned=len(results),
        count_found=_hits_total_int(resp.hits.total),
        offset=offset,
        limit=limit,
        deep_page_limit=deep_page_limit,
        query_time_ms=int(resp.took),
        results=results,
    )


def get_elastic_container_random_releases(ident: str, limit: int = 5) -> List[Dict[str, Any]]:
    """
    Returns a list of releases from the container.
    """

    assert limit > 0 and limit <= 100

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    search = search.query(
        "bool",
        must=[
            Q("term", container_id=ident),
            Q("range", release_year={"lte": datetime.datetime.today().year}),
        ],
    )
    search = search.sort("-in_web", "-release_date")
    search = search[: int(limit)]

    search = search.params(request_cache=True)
    # not needed: search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)
    results = results_to_dict(resp)

    return results


def get_elastic_entity_stats() -> dict:
    """
    TODO: files, filesets, webcaptures (no schema yet)

    Returns dict:
        changelog: {latest: {index, datetime}}
        release: {total, refs_total}
        papers: {total, in_web, in_oa, in_kbart, in_web_not_kbart}
    """

    stats = {}

    # release totals
    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    search.aggs.bucket(
        "release_ref_count",
        "sum",
        field="ref_count",
    )
    search = search[:0]  # pylint: disable=unsubscriptable-object

    search = search.params(request_cache=True)
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    stats["release"] = {
        "total": _hits_total_int(resp.hits.total),
        "refs_total": int(resp.aggregations.release_ref_count.value),
    }

    # paper counts
    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    search = search.query(
        "terms",
        release_type=[
            "article-journal",
            "paper-conference",
            # "chapter",
            # "thesis",
        ],
    )
    search.aggs.bucket(
        "paper_like",
        "filters",
        filters={
            "in_web": {"term": {"in_web": "true"}},
            "is_oa": {"term": {"is_oa": "true"}},
            "in_kbart": {"term": {"in_kbart": "true"}},
            "in_web_not_kbart": {
                "bool": {
                    "filter": [
                        {"term": {"in_web": "true"}},
                        {"term": {"in_kbart": "false"}},
                    ]
                }
            },
        },
    )
    search = search[:0]

    search = search.params(request_cache=True)
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)
    buckets = resp.aggregations.paper_like.buckets
    stats["papers"] = {
        "total": _hits_total_int(resp.hits.total),
        "in_web": buckets.in_web.doc_count,
        "is_oa": buckets.is_oa.doc_count,
        "in_kbart": buckets.in_kbart.doc_count,
        "in_web_not_kbart": buckets.in_web_not_kbart.doc_count,
    }

    # container counts
    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_CONTAINER_INDEX"])
    search.aggs.bucket(
        "release_ref_count",
        "sum",
        field="ref_count",
    )
    search = search[:0]  # pylint: disable=unsubscriptable-object

    search = search.params(request_cache=True)
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)
    stats["container"] = {
        "total": _hits_total_int(resp.hits.total),
    }

    return stats


def get_elastic_search_coverage(query: ReleaseQuery) -> dict:

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    search = search.query(
        "query_string",
        query=query.q,
        default_operator="AND",
        analyze_wildcard=True,
        allow_leading_wildcard=False,
        lenient=True,
        fields=["biblio"],
    )
    search.aggs.bucket(
        "preservation",
        "terms",
        field="preservation",
        missing="_unknown",
    )
    if query.recent:
        date_today = datetime.date.today()
        start_date = str(date_today - datetime.timedelta(days=60))
        end_date = str(date_today + datetime.timedelta(days=1))
        search = search.filter("range", release_date=dict(gte=start_date, lte=end_date))

    search = search[:0]

    search = search.params(request_cache=True)
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    preservation_bucket = agg_to_dict(resp.aggregations.preservation)
    preservation_bucket["total"] = _hits_total_int(resp.hits.total)
    for k in ("bright", "dark", "shadows_only", "none"):
        if k not in preservation_bucket:
            preservation_bucket[k] = 0
    if app.config["FATCAT_MERGE_SHADOW_PRESERVATION"]:
        preservation_bucket["none"] += preservation_bucket["shadows_only"]
        preservation_bucket["shadows_only"] = 0
    stats = {
        "total": _hits_total_int(resp.hits.total),
        "preservation": preservation_bucket,
    }

    return stats


def get_elastic_container_stats(
    ident: str,
    issnl: Optional[str] = None,
    es_client: Optional[elasticsearch.Elasticsearch] = None,
    es_index: Optional[str] = None,
    merge_shadows: Optional[bool] = None,
) -> Dict[str, Any]:
    """
    Returns dict:
        ident
        issnl (optional)
        total: count
        in_web: count
        in_kbart: count
        is_preserved: count
        preservation{}
            "histogram" by preservation status
        release_type{}
            "histogram" by release type
    """

    if not es_client:
        es_client = app.es_client
    if not es_index:
        es_index = app.config["ELASTICSEARCH_RELEASE_INDEX"]
    if merge_shadows is None:
        merge_shadows = app.config["FATCAT_MERGE_SHADOW_PRESERVATION"]

    search = Search(using=es_client, index=es_index)
    search = search.query(
        "term",
        container_id=ident,
    )
    search.aggs.bucket(
        "container_stats",
        "filters",
        filters={
            "in_web": {
                "term": {"in_web": True},
            },
            "in_kbart": {
                "term": {"in_kbart": True},
            },
            "is_preserved": {
                "term": {"is_preserved": True},
            },
        },
    )
    search.aggs.bucket(
        "preservation",
        "terms",
        field="preservation",
        missing="_unknown",
    )
    search.aggs.bucket(
        "release_type",
        "terms",
        field="release_type",
        missing="_unknown",
    )

    search = search[:0]

    search = search.params(request_cache=True)
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    container_stats = resp.aggregations.container_stats.buckets
    preservation_bucket = agg_to_dict(resp.aggregations.preservation)
    preservation_bucket["total"] = _hits_total_int(resp.hits.total)
    for k in ("bright", "dark", "shadows_only", "none"):
        if k not in preservation_bucket:
            preservation_bucket[k] = 0
    if merge_shadows:
        preservation_bucket["none"] += preservation_bucket["shadows_only"]
        preservation_bucket["shadows_only"] = 0
    release_type_bucket = agg_to_dict(resp.aggregations.release_type)
    stats = {
        "ident": ident,
        "issnl": issnl,
        "total": _hits_total_int(resp.hits.total),
        "in_web": container_stats["in_web"]["doc_count"],
        "in_kbart": container_stats["in_kbart"]["doc_count"],
        "is_preserved": container_stats["is_preserved"]["doc_count"],
        "preservation": preservation_bucket,
        "release_type": release_type_bucket,
    }

    return stats


def get_elastic_container_histogram_legacy(ident: str) -> List[Tuple[int, bool, int]]:
    """
    Fetches a stacked histogram of {year, in_ia}. This is for the older style
    of coverage graph (SVG or JSON export). This function should be DEPRECATED
    to be removed in the near future.

    Filters to the past 500 years (at most), or about 1000 values.

    Returns a list of tuples:
        (year, in_ia, count)
    """

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    search = search.query(
        "bool",
        must=[
            Q(
                "range",
                release_year={
                    "gte": datetime.datetime.today().year - 499,
                    "lte": datetime.datetime.today().year,
                },
            ),
        ],
        filter=[
            Q(
                "bool",
                minimum_should_match=1,
                should=[
                    Q("match", container_id=ident),
                ],
            ),
        ],
    )
    search.aggs.bucket(
        "year_in_ia",
        "composite",
        size=1000,
        sources=[
            {
                "year": {
                    "histogram": {
                        "field": "release_year",
                        "interval": 1,
                    },
                }
            },
            {
                "in_ia": {
                    "terms": {
                        "field": "in_ia",
                    },
                }
            },
        ],
    )
    search = search[:0]

    search = search.params(request_cache="true")
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    buckets = resp.aggregations.year_in_ia.buckets
    vals = [(int(h["key"]["year"]), h["key"]["in_ia"], h["doc_count"]) for h in buckets]
    vals = sorted(vals)
    return vals


def get_elastic_preservation_by_year(query: ReleaseQuery) -> List[Dict[str, Any]]:
    """
    Fetches a stacked histogram of {year, preservation}.

    Preservation has 4 potential values; this function filters to the past 250
    years (at most), or about 1000 values.

    Returns a list of dicts, sorted by year, with keys/values like:

        {year (int), bright (int), dark (int), shadows_only (int), none (int)}

    Stubs can be excluded by setting the appropriate query flag
    """

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    if query.q not in [None, "*"]:
        search = search.query(
            "query_string",
            query=query.q,
            default_operator="AND",
            analyze_wildcard=True,
            allow_leading_wildcard=False,
            lenient=True,
            fields=[
                "biblio",
            ],
        )
    if query.container_id:
        search = search.filter(
            "term",
            container_id=query.container_id,
        )
    if query.exclude_stubs:
        search = search.query(
            "bool",
            filter=[
                Q(
                    "bool",
                    must_not=[
                        Q("match", release_type="stub"),
                    ],
                ),
            ],
        )
    search = search.filter(
        "range",
        release_year={
            "gte": datetime.datetime.today().year - 249,
            "lte": datetime.datetime.today().year,
        },
    )

    search.aggs.bucket(
        "year_preservation",
        "composite",
        size=1500,
        sources=[
            {
                "year": {
                    "histogram": {
                        "field": "release_year",
                        "interval": 1,
                    },
                }
            },
            {
                "preservation": {
                    "terms": {
                        "field": "preservation",
                    },
                }
            },
        ],
    )
    search = search[:0]
    search = search.params(request_cache="true")
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    buckets = resp.aggregations.year_preservation.buckets
    year_nums = set([int(h["key"]["year"]) for h in buckets])
    year_dicts = dict()
    if year_nums:
        for num in range(min(year_nums), max(year_nums) + 1):
            year_dicts[num] = dict(year=num, bright=0, dark=0, shadows_only=0, none=0)
        for row in buckets:
            year_dicts[int(row["key"]["year"])][row["key"]["preservation"]] = int(
                row["doc_count"]
            )
    if app.config["FATCAT_MERGE_SHADOW_PRESERVATION"]:
        for k in year_dicts.keys():
            year_dicts[k]["none"] += year_dicts[k]["shadows_only"]
            year_dicts[k]["shadows_only"] = 0
    return sorted(year_dicts.values(), key=lambda x: x["year"])


def get_elastic_preservation_by_date(query: ReleaseQuery) -> List[dict]:
    """
    Fetches a stacked histogram of {date, preservation}.

    Preservation has 4 potential values; this function filters to the past 250
    years (at most), or about 1000 values.

    Returns a list of dicts, sorted by date, with keys/values like:

        {date (str), bright (int), dark (int), shadows_only (int), none (int)}
    """

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    if query.q not in [None, "*"]:
        search = search.query(
            "query_string",
            query=query.q,
            default_operator="AND",
            analyze_wildcard=True,
            allow_leading_wildcard=False,
            lenient=True,
            fields=[
                "biblio",
            ],
        )
    if query.container_id:
        search = search.filter(
            "term",
            container_id=query.container_id,
        )
    date_today = datetime.date.today()
    start_date = date_today - datetime.timedelta(days=60)
    end_date = date_today + datetime.timedelta(days=1)
    search = search.filter(
        "range",
        release_date=dict(
            gte=str(start_date),
            lte=str(end_date),
        ),
    )

    search.aggs.bucket(
        "date_preservation",
        "composite",
        size=1500,
        sources=[
            {
                "date": {
                    "histogram": {
                        "field": "release_date",
                        "interval": 1,
                    },
                }
            },
            {
                "preservation": {
                    "terms": {
                        "field": "preservation",
                    },
                }
            },
        ],
    )
    search = search[:0]
    search = search.params(request_cache="true")
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    buckets = resp.aggregations.date_preservation.buckets
    date_dicts: Dict[str, Dict[str, Any]] = dict()
    this_date = start_date
    while this_date <= end_date:
        date_dicts[str(this_date)] = dict(
            date=str(this_date), bright=0, dark=0, shadows_only=0, none=0
        )
        this_date = this_date + datetime.timedelta(days=1)
    for row in buckets:
        date_dicts[row["key"]["date"][0:10]][row["key"]["preservation"]] = int(row["doc_count"])
    if app.config["FATCAT_MERGE_SHADOW_PRESERVATION"]:
        for k in date_dicts.keys():
            date_dicts[k]["none"] += date_dicts[k]["shadows_only"]
            date_dicts[k]["shadows_only"] = 0
    return sorted(date_dicts.values(), key=lambda x: x["date"])


def get_elastic_container_preservation_by_volume(query: ReleaseQuery) -> List[dict]:
    """
    Fetches a stacked histogram of {volume, preservation}.

    Currently only includes volume numbers which are simple integers (all chars
    are digits).

    Returns a list of dicts, sorted by volume, with keys/values like:

        {year (int), bright (int), dark (int), shadows_only (int), none (int)}

    Stubs can be excluded by setting the appropriate query flag
    """

    assert query.container_id is not None
    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    search = search.query(
        "bool",
        filter=[
            Q(
                "bool",
                must=[
                    Q("match", container_id=query.container_id),
                    Q("exists", field="volume"),
                ],
            ),
        ],
    )
    if query.exclude_stubs:
        search = search.query(
            "bool",
            filter=[
                Q(
                    "bool",
                    must_not=[
                        Q("match", release_type="stub"),
                    ],
                ),
            ],
        )

    search.aggs.bucket(
        "volume_preservation",
        "composite",
        size=1500,
        sources=[
            {
                "volume": {
                    "terms": {
                        "field": "volume",
                    },
                }
            },
            {
                "preservation": {
                    "terms": {
                        "field": "preservation",
                    },
                }
            },
        ],
    )
    search = search[:0]
    search = search.params(request_cache="true")
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    buckets = resp.aggregations.volume_preservation.buckets
    volume_nums = set(
        [int(h["key"]["volume"]) for h in buckets if h["key"]["volume"].isdigit()]
    )
    volume_dicts = dict()
    if volume_nums:
        if max(volume_nums) - min(volume_nums) > 500:
            raise Exception("too many volume histogram buckets")
        for num in range(min(volume_nums), max(volume_nums) + 1):
            volume_dicts[num] = dict(volume=num, bright=0, dark=0, shadows_only=0, none=0)
        for row in buckets:
            if row["key"]["volume"].isdigit():
                volume_dicts[int(row["key"]["volume"])][row["key"]["preservation"]] = int(
                    row["doc_count"]
                )
    if app.config["FATCAT_MERGE_SHADOW_PRESERVATION"]:
        for k in volume_dicts.keys():
            volume_dicts[k]["none"] += volume_dicts[k]["shadows_only"]
            volume_dicts[k]["shadows_only"] = 0
    return sorted(volume_dicts.values(), key=lambda x: x["volume"])


def get_elastic_preservation_by_type(query: ReleaseQuery) -> List[dict]:
    """
    Fetches preservation coverage by release type

    Returns a list of dicts, sorted by total count, with keys/values like:

        {year (int), bright (int), dark (int), shadows_only (int), none (int)}
    """

    search = Search(using=app.es_client, index=app.config["ELASTICSEARCH_RELEASE_INDEX"])
    if query.q not in [None, "*"]:
        search = search.query(
            "query_string",
            query=query.q,
            default_operator="AND",
            analyze_wildcard=True,
            allow_leading_wildcard=False,
            lenient=True,
            fields=[
                "biblio",
            ],
        )
    if query.container_id:
        search = search.query(
            "bool",
            filter=[
                Q(
                    "bool",
                    must=[
                        Q("match", container_id=query.container_id),
                    ],
                ),
            ],
        )
    if query.recent:
        date_today = datetime.date.today()
        start_date = str(date_today - datetime.timedelta(days=60))
        end_date = str(date_today + datetime.timedelta(days=1))
        search = search.filter("range", release_date=dict(gte=start_date, lte=end_date))
    search.aggs.bucket(
        "type_preservation",
        "composite",
        size=1500,
        sources=[
            {
                "release_type": {
                    "terms": {
                        "field": "release_type",
                    },
                }
            },
            {
                "preservation": {
                    "terms": {
                        "field": "preservation",
                    },
                }
            },
        ],
    )
    search = search[:0]
    search = search.params(request_cache="true")
    search = search.params(track_total_hits=True)
    resp = wrap_es_execution(search)

    buckets = resp.aggregations.type_preservation.buckets
    type_set = set([h["key"]["release_type"] for h in buckets])
    type_dicts = dict()
    for k in type_set:
        type_dicts[k] = dict(release_type=k, bright=0, dark=0, shadows_only=0, none=0, total=0)
    for row in buckets:
        type_dicts[row["key"]["release_type"]][row["key"]["preservation"]] = int(
            row["doc_count"]
        )
    for k in type_set:
        for p in ("bright", "dark", "shadows_only", "none"):
            type_dicts[k]["total"] += type_dicts[k][p]
    if app.config["FATCAT_MERGE_SHADOW_PRESERVATION"]:
        for k in type_set:
            type_dicts[k]["none"] += type_dicts[k]["shadows_only"]
            type_dicts[k]["shadows_only"] = 0
    return sorted(type_dicts.values(), key=lambda x: x["total"], reverse=True)