summaryrefslogtreecommitdiffstats
path: root/python/fatcat_tools/harvest/doi_registrars.py
blob: dd48e256d620b00125791300a11dcc408420b314 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import json
import sys
import time
from urllib.parse import parse_qs, urlparse

from confluent_kafka import KafkaException, Producer

from .harvest_common import HarvestState, requests_retry_session


class HarvestCrossrefWorker:
    """
    Crossref API date fields (and our interpretation)::

    - https://github.com/CrossRef/rest-api-doc#filter-names
    - *-index-date: "metadata indexed" is the API/index record update time
    - *-deposit-date: "metadata last (re)deposited" is the catalog record update time
    - *-update-date: "Metadata updated (Currently the same as *-deposit-date)"
    - *-created-date: "metadata first deposited"
    - *-pub-date (etc): publisher-supplied, not "meta-meta-data"

    https://api.crossref.org/works?filter=from-index-date:2018-11-14&rows=2

    Also from the REST API:

        Notes on incremental metadata updates

        When using time filters to retrieve periodic, incremental metadata
        updates, the from-index-date filter should be used over
        from-update-date, from-deposit-date, from-created-date and
        from-pub-date. The timestamp that from-index-date filters on is
        guaranteed to be updated every time there is a change to metadata
        requiring a reindex.

    However, when Crossref re-indexes tens of millions of rows, using
    from-index-date can be very slow, taking several days to process a single
    day of updates.

    I think the design is going to have to be a cronjob or long-running job
    (with long sleeps) which publishes "success through" to a separate state
    queue, as simple YYYY-MM-DD strings.

    Within a day, will need to use a resumption token. Maybe should use a
    crossref library... meh.

    will want to have some mechanism in kafka consumer (pushing to fatcat) to group
    in batches as well. maybe even pass through as batches? or just use timeouts on
    iteration.

    logic of this worker:
    - on start, fetch latest date from state feed
    - in a function (unit-testable), decide which dates to ingest
    - for each date needing update:
        - start a loop for just that date, using resumption token for this query
        - when done, publish to state feed, with immediate sync

    TODO: what sort of parallelism? I guess multi-processing on dates, but need
    to be careful how state is serialized back into kafka.
    """

    def __init__(
        self,
        kafka_hosts,
        produce_topic,
        state_topic,
        contact_email,
        api_host_url="https://api.crossref.org/works",
        start_date=None,
        end_date=None,
    ):

        self.api_host_url = api_host_url
        self.produce_topic = produce_topic
        self.state_topic = state_topic
        self.contact_email = contact_email
        self.kafka_config = {
            "bootstrap.servers": kafka_hosts,
            "message.max.bytes": 20000000,  # ~20 MBytes; broker is ~50 MBytes
        }

        self.state = HarvestState(start_date, end_date)
        self.state.initialize_from_kafka(self.state_topic, self.kafka_config)

        self.loop_sleep = 60 * 60  # how long to wait, in seconds, between date checks
        self.api_batch_size = 50
        self.name = "Crossref"
        self.producer = self._kafka_producer()

    def _kafka_producer(self):
        def fail_fast(err, msg):
            if err is not None:
                print("Kafka producer delivery error: {}".format(err), file=sys.stderr)
                print("Bailing out...", file=sys.stderr)
                # TODO: should it be sys.exit(-1)?
                raise KafkaException(err)

        self._kafka_fail_fast = fail_fast

        producer_conf = self.kafka_config.copy()
        producer_conf.update(
            {
                "delivery.report.only.error": True,
                "default.topic.config": {
                    "request.required.acks": -1,  # all brokers must confirm
                },
            }
        )
        return Producer(producer_conf)

    def params(self, date_str):
        filter_param = "from-update-date:{},until-update-date:{}".format(date_str, date_str)
        return {
            "filter": filter_param,
            "rows": self.api_batch_size,
            "cursor": "*",
        }

    def update_params(self, params, resp):
        params["cursor"] = resp["message"]["next-cursor"]
        return params

    def extract_key(self, obj):
        return obj["DOI"].encode("utf-8")

    def fetch_date(self, date):

        date_str = date.isoformat()
        params = self.params(date_str)
        http_session = requests_retry_session()
        http_session.headers.update(
            {
                "User-Agent": "fatcat_tools/0.1.0 (https://fatcat.wiki; mailto:{}) python-requests".format(
                    self.contact_email
                ),
            }
        )
        count = 0
        while True:
            http_resp = http_session.get(self.api_host_url, params=params)
            if http_resp.status_code == 503:
                # crude backoff; now redundant with session exponential
                # backoff, but allows for longer backoff/downtime on remote end
                print(
                    "got HTTP {}, pausing for 30 seconds".format(http_resp.status_code),
                    file=sys.stderr,
                )
                # keep kafka producer connection alive
                self.producer.poll(0)
                time.sleep(30.0)
                continue
            http_resp.raise_for_status()
            try:
                resp_body = http_resp.text
                resp = json.loads(resp_body)
            except json.JSONDecodeError as exc:
                # Datacite API returned HTTP 200, but JSON seemed unparseable.
                # It might be a glitch, so we retry.
                print(
                    "failed to decode body from {}: {}".format(http_resp.url, resp_body),
                    file=sys.stderr,
                )
                raise exc
            items = self.extract_items(resp)
            count += len(items)
            print(
                "... got {} ({} of {}), HTTP fetch took {}".format(
                    len(items), count, self.extract_total(resp), http_resp.elapsed
                ),
                file=sys.stderr,
            )
            # print(json.dumps(resp))
            for work in items:
                self.producer.produce(
                    self.produce_topic,
                    json.dumps(work).encode("utf-8"),
                    key=self.extract_key(work),
                    on_delivery=self._kafka_fail_fast,
                )
            self.producer.poll(0)
            if len(items) < self.api_batch_size:
                break
            params = self.update_params(params, resp)
        self.producer.flush()

    def extract_items(self, resp):
        return resp["message"]["items"]

    def extract_total(self, resp):
        return resp["message"]["total-results"]

    def run(self, continuous=False):

        while True:
            current = self.state.next_span(continuous)
            if current:
                print("Fetching DOIs updated on {} (UTC)".format(current), file=sys.stderr)
                self.fetch_date(current)
                self.state.complete(
                    current, kafka_topic=self.state_topic, kafka_config=self.kafka_config
                )
                continue

            if continuous:
                print("Sleeping {} seconds...".format(self.loop_sleep), file=sys.stderr)
                time.sleep(self.loop_sleep)
            else:
                break
        print("{} DOI ingest caught up".format(self.name), file=sys.stderr)


class HarvestDataciteWorker(HarvestCrossrefWorker):
    """
    datacite has a REST API as well as OAI-PMH endpoint.

    have about 8 million

    bulk export notes: https://github.com/datacite/datacite/issues/188

    fundamentally, very similar to crossref. don't have a scrape... maybe
    could/should use this script for that, and dump to JSON?
    """

    def __init__(
        self,
        kafka_hosts,
        produce_topic,
        state_topic,
        contact_email,
        api_host_url="https://api.datacite.org/dois",
        start_date=None,
        end_date=None,
    ):
        super().__init__(
            kafka_hosts=kafka_hosts,
            produce_topic=produce_topic,
            state_topic=state_topic,
            api_host_url=api_host_url,
            contact_email=contact_email,
            start_date=start_date,
            end_date=end_date,
        )

        # for datecite, it's "from-update-date"
        self.name = "Datacite"

    def params(self, date_str):
        """
        Dates have to be supplied in 2018-10-27T22:36:30.000Z format.
        """
        return {
            "query": "updated:[{}T00:00:00.000Z TO {}T23:59:59.999Z]".format(
                date_str, date_str
            ),
            "page[size]": self.api_batch_size,
            "page[cursor]": 1,
        }

    def extract_items(self, resp):
        return resp["data"]

    def extract_total(self, resp):
        return resp["meta"]["total"]

    def extract_key(self, obj):
        return obj["attributes"]["doi"].encode("utf-8")

    def update_params(self, params, resp):
        """
        Using cursor mechanism (https://support.datacite.org/docs/pagination#section-cursor).

        $ curl -sL https://is.gd/cLbE5h | jq -r .links.next

        Example: https://is.gd/cLbE5h

        Further API errors reported:
            https://github.com/datacite/datacite/issues/897 (HTTP 400)
            https://github.com/datacite/datacite/issues/898 (HTTP 500)
        """
        parsed = urlparse(resp["links"]["next"])
        page_cursor = parse_qs(parsed.query).get("page[cursor]")
        if not page_cursor:
            raise ValueError("no page[cursor] in .links.next")
        params["page[cursor]"] = page_cursor[0]
        return params