""" Helpers to make elasticsearch queries. """ import sys import datetime from gettext import gettext from typing import List, Optional, Any import elasticsearch from dynaconf import settings from elasticsearch_dsl import Search, Q # pytype: disable=import-error from pydantic import BaseModel # pytype: enable=import-error # i18n note: the use of gettext below doesn't actually do the translation here, # it just ensures that the strings are caught by babel for translation later class FulltextQuery(BaseModel): q: Optional[str] = None limit: Optional[int] = None offset: Optional[int] = None filter_time: Optional[str] = None filter_type: Optional[str] = None filter_availability: Optional[str] = None sort_order: Optional[str] = None collapse_key: Optional[str] = None time_options: Any = { "label": gettext("Release Date"), "slug": "filter_time", "default": "all_time", "list": [ {"label": gettext("All Time"), "slug": "all_time"}, {"label": gettext("Past Week"), "slug": "past_week"}, {"label": gettext("Past Year"), "slug": "past_year"}, {"label": gettext("Since 2000"), "slug": "since_2000"}, {"label": gettext("Before 1925"), "slug": "before_1925"}, ], } type_options: Any = { "label": gettext("Resource Type"), "slug": "filter_type", "default": "papers", "list": [ {"label": gettext("Papers"), "slug": "papers"}, {"label": gettext("Reports"), "slug": "reports"}, {"label": gettext("Datasets"), "slug": "datasets"}, {"label": gettext("Everything"), "slug": "everything"}, ], } availability_options: Any = { "label": gettext("Availability"), "slug": "filter_availability", "default": "fulltext", "list": [ {"label": gettext("Fulltext"), "slug": "fulltext"}, {"label": gettext("Metadata"), "slug": "everything"}, {"label": gettext("Open Access"), "slug": "oa"}, ], } sort_options: Any = { "label": gettext("Sort Order"), "slug": "sort_order", "default": "relevancy", "list": [ {"label": gettext("Relevancy"), "slug": "relevancy"}, {"label": gettext("Recent First"), "slug": "time_desc"}, {"label": gettext("Oldest First"), "slug": "time_asc"}, ], } class FulltextHits(BaseModel): count_returned: int count_found: int offset: int limit: int deep_page_limit: int query_time_ms: int results: List[Any] def do_fulltext_search( query: FulltextQuery, deep_page_limit: int = 2000 ) -> FulltextHits: es_client = elasticsearch.Elasticsearch(settings.ELASTICSEARCH_BACKEND, timeout=25.0) search = Search(using=es_client, index=settings.ELASTICSEARCH_FULLTEXT_INDEX) # Convert raw DOIs to DOI queries if ( query.q and len(query.q.split()) == 1 and query.q.startswith("10.") and query.q.count("/") >= 1 ): search = search.filter("terms", doi=query.q) query.q = "*" # type filters if query.filter_type == "papers" or query.filter_type is None: search = search.filter( "terms", type=["article-journal", "paper-conference", "chapter",] ) elif query.filter_type == "reports": search = search.filter("terms", type=["report", "standard",]) elif query.filter_type == "datasets": search = search.filter("terms", type=["dataset", "software",]) elif query.filter_type == "everything": pass else: raise ValueError( f"Unknown 'filter_type' parameter value: '{query.filter_type}'" ) # time filters if query.filter_time == "past_week": date_today = datetime.date.today() week_ago_date = str(date_today - datetime.timedelta(days=7)) tomorrow_date = str(date_today + datetime.timedelta(days=1)) search = search.filter("range", date=dict(gte=week_ago_date, lte=tomorrow_date)) elif query.filter_time == "past_year": # (date in the past year) or (year is this year) # the later to catch papers which don't have release_date defined date_today = datetime.date.today() this_year = date_today.year tomorrow_date = str(date_today + datetime.timedelta(days=1)) year_ago_date = str(date_today - datetime.timedelta(days=365)) search = search.filter( Q("range", date=dict(gte=year_ago_date, lte=tomorrow_date)) | Q("term", year=this_year) ) elif query.filter_time == "since_2000": this_year = datetime.date.today().year search = search.filter("range", year=dict(gte=2000, lte=this_year)) elif query.filter_time == "before_1925": search = search.filter("range", year=dict(lt=1925)) elif query.filter_time == "all_time" or query.filter_time is None: pass else: raise ValueError( f"Unknown 'filter_time' parameter value: '{query.filter_time}'" ) # availability filters if query.filter_availability == "oa": search = search.filter("term", tags="oa") elif query.filter_availability == "everything": pass elif query.filter_availability == "fulltext" or query.filter_availability is None: search = search.filter("terms", access_type=["wayback", "ia_file", "ia_sim"]) else: raise ValueError( f"Unknown 'filter_availability' parameter value: '{query.filter_availability}'" ) if query.collapse_key: search = search.filter("term", collapse_key=query.collapse_key) else: search = search.extra( collapse={ "field": "collapse_key", "inner_hits": {"name": "more_pages", "size": 0,}, } ) # we combined several queries to improve scoring. # this query use the fancy built-in query string parser basic_fulltext = Q( "query_string", query=query.q, default_operator="AND", analyze_wildcard=True, allow_leading_wildcard=False, lenient=True, quote_field_suffix=".exact", fields=[ "title^5", "biblio_all^3", "everything", ], ) has_fulltext = Q("terms", access_type=["ia_sim", "ia_file", "wayback"],) poor_metadata = Q( "bool", should=[ # if these fields aren't set, metadata is poor. The more that do # not exist, the stronger the signal. Q("bool", must_not=Q("exists", field="year")), Q("bool", must_not=Q("exists", field="type")), Q("bool", must_not=Q("exists", field="stage")), Q("bool", must_not=Q("exists", field="biblio.container_ident")), ], ) search = search.query( "boosting", positive=Q("bool", must=basic_fulltext, should=[has_fulltext],), negative=poor_metadata, negative_boost=0.5, ) search = search.highlight( "abstracts.body", "fulltext.body", "fulltext.acknowledgment", "fulltext.annex", require_field_match=False, number_of_fragments=2, fragment_size=300, # TODO: this will fix highlight encoding, but requires ES 7.x # encoder="html", ) # sort order if query.sort_order == "time_asc": search = search.sort("year", "date") elif query.sort_order == "time_desc": search = search.sort("-year", "-date") elif query.sort_order == "relevancy" or query.sort_order is None: pass else: raise ValueError(f"Unknown 'sort_order' parameter value: '{query.sort_order}'") # Sanity checks limit = min((int(query.limit or 15), 100)) offset = max((int(query.offset or 0), 0)) if offset > deep_page_limit: # Avoid deep paging problem. offset = deep_page_limit search = search.params(track_total_hits=True) search = search[offset : (offset + limit)] try: resp = search.execute() except elasticsearch.exceptions.RequestError as e: # this is a "user" error print("elasticsearch 400: " + str(e.info), file=sys.stderr) if e.info.get("error", {}).get("root_cause", {}): raise ValueError(str(e.info["error"]["root_cause"][0].get("reason"))) else: raise ValueError(str(e.info)) except elasticsearch.exceptions.TransportError as e: # all other errors print("elasticsearch non-200 status code: {}".format(e.info), file=sys.stderr) raise IOError(str(e.info)) # convert from objects to python dicts results = [] for h in resp: r = h._d_ # print(h.meta._d_) r["_highlights"] = [] if "highlight" in dir(h.meta): highlights = h.meta.highlight._d_ for k in highlights: r["_highlights"] += highlights[k] r["_collapsed"] = [] r["_collapsed_count"] = 0 if "inner_hits" in dir(h.meta): if isinstance(h.meta.inner_hits.more_pages.hits.total, int): r["_collapsed_count"] = h.meta.inner_hits.more_pages.hits.total - 1 else: r["_collapsed_count"] = h.meta.inner_hits.more_pages.hits.total['value'] - 1 for k in h.meta.inner_hits.more_pages: if k["key"] != r["key"]: r["_collapsed"].append(k) results.append(r) for h in results: # Handle surrogate strings that elasticsearch returns sometimes, # probably due to mangled data processing in some pipeline. # "Crimes against Unicode"; production workaround for key in h: if type(h[key]) is str: h[key] = h[key].encode("utf8", "ignore").decode("utf8") # ensure collapse_key is a single value, not an array if type(h["collapse_key"]) == list: h["collapse_key"] = h["collapse_key"][0] count_found: int = 0 if isinstance(resp.hits.total, int): count_found = int(resp.hits.total) else: count_found = int(resp.hits.total['value']) count_returned = len(results) # if we grouped to less than a page of hits, update returned count if (not query.collapse_key) and offset == 0 and (count_returned < limit): count_found = count_returned return FulltextHits( count_returned=count_returned, count_found=count_found, offset=offset, limit=limit, deep_page_limit=deep_page_limit, query_time_ms=int(resp.took), results=results, )