**fatcat-scholar**: fulltext search over [fatcat](https://fatcat.wiki) corpus of 25+ million open research papers ## Translations Update the .pot file and translation files: pybabel extract -F extra/i18n/babel.cfg -o extra/i18n/web_interface.pot fatcat_scholar/ pybabel update -i extra/i18n/web_interface.pot -d fatcat_scholar/translations Compile translated messages together: pybabel compile -d fatcat_scholar/translations Create initial .po file for a new language translation (then run the above update/compile after doing initial translations): pybabel init -i extra/i18n/web_interface.pot -d fatcat_scholar/translations -l de ## Production Use gunicorn plus uvicorn, to get multiple worker processes, each running async: gunicorn example:app -w 4 -k uvicorn.workers.UvicornWorker ## Prototype Pipeline Requires staff credentials in environment for `internetarchive` python library. TODO: pass these credentials via ansible/dotenv Generate complete SIM issue database: ia search "collection:periodicals collection:sim_microfilm mediatype:collection" --itemlist | rg "^pub_" > data/sim_collections.tsv ia search "collection:periodicals collection:sim_microfilm mediatype:texts" --itemlist | rg "^sim_" > data/sim_items.tsv cat data/sim_collections.tsv | parallel -j4 ia metadata {} | jq . -c | pv -l > data/sim_collections.json cat data/sim_items.tsv | parallel -j8 ia metadata {} | jq . -c | pv -l > data/sim_items.json cat data/sim_collections.2020-05-15.json | pv -l | python -m fatcat_scholar.issue_db load_pubs cat data/sim_items.2020-05-15.json | pv -l | python -m fatcat_scholar.issue_db load_issues python -m fatcat_scholar.issue_db load_counts Create QA elasticsearch index (localhost): http put ":9200/qa_scholar_fulltext_v01?include_type_name=true" < schema/scholar_fulltext.v01.json http put ":9200/qa_scholar_fulltext_v01/_alias/qa_scholar_fulltext" Fetch "heavy" fulltext documents (JSON) for full SIM database: python -m fatcat_scholar.sim_pipeline run_issue_db | pv -l | gzip > data/sim_intermediate.json.gz Re-use existing COVID-19 database to index releases: cat /srv/fatcat_covid19/metadata/2020-06-24/fatcat_hits.enrich.json \ | jq -c .fatcat_release \ | rg -v "^null" \ | parallel -j8 --linebuffer --round-robin --pipe python -m fatcat_scholar.work_pipeline run_releases \ | pv -l \ | gzip > data/work_intermediate.json.gz => 48.3k 0:17:58 [44.8 /s] Transform and index both into local elasticsearch: zcat data/work_intermediate.json.gz data/sim_intermediate.json.gz \ | parallel -j8 --linebuffer --round-robin --pipe python -m fatcat_scholar.transform run_transform \ | esbulk -verbose -size 100 -id key -w 4 -index qa_scholar_fulltext_v01 -type _doc => 132635 docs in 2m18.787824205s at 955.667 docs/s with 4 workers