1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
;; "wttree.scm" Weight balanced trees -*-Scheme-*-
;; Copyright (c) 1993-1994 Stephen Adams
;;
;; $Id: wttree.scm,v 1.1 1994/11/28 21:58:48 adams Exp adams $
;;
;; References:
;;
;; Stephen Adams, Implemeting Sets Efficiently in a Functional
;; Language, CSTR 92-10, Department of Electronics and Computer
;; Science, University of Southampton, 1992
;;
;;
;; Copyright (c) 1993-94 Massachusetts Institute of Technology
;;
;; This material was developed by the Scheme project at the Massachusetts
;; Institute of Technology, Department of Electrical Engineering and
;; Computer Science. Permission to copy this software, to redistribute
;; it, and to use it for any purpose is granted, subject to the following
;; restrictions and understandings.
;;
;; 1. Any copy made of this software must include this copyright notice
;; in full.
;;
;; 2. Users of this software agree to make their best efforts (a) to
;; return to the MIT Scheme project any improvements or extensions that
;; they make, so that these may be included in future releases; and (b)
;; to inform MIT of noteworthy uses of this software.
;;
;; 3. All materials developed as a consequence of the use of this
;; software shall duly acknowledge such use, in accordance with the usual
;; standards of acknowledging credit in academic research.
;;
;; 4. MIT has made no warrantee or representation that the operation of
;; this software will be error-free, and MIT is under no obligation to
;; provide any services, by way of maintenance, update, or otherwise.
;;
;; 5. In conjunction with products arising from the use of this material,
;; there shall be no use of the name of the Massachusetts Institute of
;; Technology nor of any adaptation thereof in any advertising,
;; promotional, or sales literature without prior written consent from
;; MIT in each case.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Weight Balanced Binary Trees
;;
;;
;;
;; This file has been modified from the MIT-Scheme library version to
;; make it more standard. The main changes are
;;
;; . The whole thing has been put in a LET as R4RS Scheme has no module
;; system.
;; . The MIT-Scheme define structure operations have been written out by
;; hand.
;;
;; It has been tested on MIT-Scheme, scheme48 and scm4e1
;;
;; If your system has a compiler and you want this code to run fast, you
;; should do whatever is necessary to inline all of the structure accessors.
;;
;; This is MIT-Scheme's way of saying that +, car etc should all be inlined.
;;
;;(declare (usual-integrations))
(define error
(case (scheme-implementation-type)
((MITScheme) error)
(else slib:error)))
(define error:wrong-type-argument
(case (scheme-implementation-type)
((MITScheme) error:wrong-type-argument)
(else (lambda (arg1 arg2 arg3)
(slib:error 'wrong-type-argument arg1 arg2 arg3)))))
(define error:bad-range-argument
(case (scheme-implementation-type)
((MITScheme) error:bad-range-argument)
(else (lambda (arg1 arg2)
(slib:error 'bad-range-argument arg1 arg2)))))
;;;
;;; Interface to this package.
;;;
;;; ONLY these procedures (and TEST at the end of the file) will be
;;; (re)defined in your system.
;;;
(define make-wt-tree-type #f)
(define number-wt-type #f)
(define string-wt-type #f)
(define make-wt-tree #f)
(define singleton-wt-tree #f)
(define alist->wt-tree #f)
(define wt-tree/empty? #f)
(define wt-tree/size #f)
(define wt-tree/add #f)
(define wt-tree/delete #f)
(define wt-tree/add! #f)
(define wt-tree/delete! #f)
(define wt-tree/member? #f)
(define wt-tree/lookup #f)
(define wt-tree/split< #f)
(define wt-tree/split> #f)
(define wt-tree/union #f)
(define wt-tree/intersection #f)
(define wt-tree/difference #f)
(define wt-tree/subset? #f)
(define wt-tree/set-equal? #f)
(define wt-tree/fold #f)
(define wt-tree/for-each #f)
(define wt-tree/index #f)
(define wt-tree/index-datum #f)
(define wt-tree/index-pair #f)
(define wt-tree/rank #f)
(define wt-tree/min #f)
(define wt-tree/min-datum #f)
(define wt-tree/min-pair #f)
(define wt-tree/delete-min #f)
(define wt-tree/delete-min! #f)
;; This LET sets all of the above variables.
(let ()
;; We use the folowing MIT-Scheme operation on fixnums (small
;; integers). R4RS compatible (but less efficient) definitions.
;; You should replace these with something that is efficient in your
;; system.
(define fix:fixnum? (lambda (x) (and (exact? x) (integer? x))))
(define fix:+ +)
(define fix:- -)
(define fix:< <)
(define fix:<= <=)
(define fix:> >)
(define fix:* *)
;; A TREE-TYPE is a collection of those procedures that depend on the
;; ordering relation.
;; MIT-Scheme structure definition
;;(define-structure
;; (tree-type
;; (conc-name tree-type/)
;; (constructor %make-tree-type))
;; (key<? #F read-only true)
;; (alist->tree #F read-only true)
;; (add #F read-only true)
;; (insert! #F read-only true)
;; (delete #F read-only true)
;; (delete! #F read-only true)
;; (member? #F read-only true)
;; (lookup #F read-only true)
;; (split-lt #F read-only true)
;; (split-gt #F read-only true)
;; (union #F read-only true)
;; (intersection #F read-only true)
;; (difference #F read-only true)
;; (subset? #F read-only true)
;; (rank #F read-only true)
;;)
;; Written out by hand, using vectors:
;;
;; If possible, you should teach your system to print out something
;; like #[tree-type <] instread of the whole vector.
(define tag:tree-type (string->symbol "#[(runtime wttree)tree-type]"))
(define (%make-tree-type key<? alist->tree
add insert!
delete delete!
member? lookup
split-lt split-gt
union intersection
difference subset?
rank )
(vector tag:tree-type
key<? alist->tree add insert!
delete delete! member? lookup
split-lt split-gt union intersection
difference subset? rank ))
(define (tree-type? tt)
(and (vector? tt)
(eq? (vector-ref tt 0) tag:tree-type)))
(define (tree-type/key<? tt) (vector-ref tt 1))
(define (tree-type/alist->tree tt) (vector-ref tt 2))
(define (tree-type/add tt) (vector-ref tt 3))
(define (tree-type/insert! tt) (vector-ref tt 4))
(define (tree-type/delete tt) (vector-ref tt 5))
(define (tree-type/delete! tt) (vector-ref tt 6))
(define (tree-type/member? tt) (vector-ref tt 7))
(define (tree-type/lookup tt) (vector-ref tt 8))
(define (tree-type/split-lt tt) (vector-ref tt 9))
(define (tree-type/split-gt tt) (vector-ref tt 10))
(define (tree-type/union tt) (vector-ref tt 11))
(define (tree-type/intersection tt) (vector-ref tt 12))
(define (tree-type/difference tt) (vector-ref tt 13))
(define (tree-type/subset? tt) (vector-ref tt 14))
(define (tree-type/rank tt) (vector-ref tt 15))
;; User level tree representation.
;;
;; WT-TREE is a wrapper for trees of nodes.
;;
;;MIT-Scheme:
;;(define-structure
;; (wt-tree
;; (conc-name tree/)
;; (constructor %make-wt-tree))
;; (type #F read-only true)
;; (root #F read-only false))
;; If possible, you should teach your system to print out something
;; like #[wt-tree] instread of the whole vector.
(define tag:wt-tree (string->symbol "#[(runtime wttree)wt-tree]"))
(define (%make-wt-tree type root)
(vector tag:wt-tree type root))
(define (wt-tree? t)
(and (vector? t)
(eq? (vector-ref t 0) tag:wt-tree)))
(define (tree/type t) (vector-ref t 1))
(define (tree/root t) (vector-ref t 2))
(define (set-tree/root! t v) (vector-set! t 2 v))
;; Nodes are the thing from which the real trees are built. There are
;; lots of these and the uninquisitibe user will never see them, so
;; they are represented as untagged to save the slot that would be
;; used for tagging structures.
;; In MIT-Scheme these were all DEFINE-INTEGRABLE
(define (make-node k v l r w) (vector w l k r v))
(define (node/k node) (vector-ref node 2))
(define (node/v node) (vector-ref node 4))
(define (node/l node) (vector-ref node 1))
(define (node/r node) (vector-ref node 3))
(define (node/w node) (vector-ref node 0))
(define empty 'empty)
(define (empty? x) (eq? x 'empty))
(define (node/size node)
(if (empty? node) 0 (node/w node)))
(define (node/singleton k v) (make-node k v empty empty 1))
(define (with-n-node node receiver)
(receiver (node/k node) (node/v node) (node/l node) (node/r node)))
;;
;; Constructors for building node trees of various complexity
;;
(define (n-join k v l r)
(make-node k v l r (fix:+ 1 (fix:+ (node/size l) (node/size r)))))
(define (single-l a.k a.v x r)
(with-n-node r
(lambda (b.k b.v y z) (n-join b.k b.v (n-join a.k a.v x y) z))))
(define (double-l a.k a.v x r)
(with-n-node r
(lambda (c.k c.v r.l z)
(with-n-node r.l
(lambda (b.k b.v y1 y2)
(n-join b.k b.v
(n-join a.k a.v x y1)
(n-join c.k c.v y2 z)))))))
(define (single-r b.k b.v l z)
(with-n-node l
(lambda (a.k a.v x y) (n-join a.k a.v x (n-join b.k b.v y z)))))
(define (double-r c.k c.v l z)
(with-n-node l
(lambda (a.k a.v x l.r)
(with-n-node l.r
(lambda (b.k b.v y1 y2)
(n-join b.k b.v
(n-join a.k a.v x y1)
(n-join c.k c.v y2 z)))))))
;; (define-integrable wt-tree-ratio 5)
(define wt-tree-ratio 5)
(define (t-join k v l r)
(define (simple-join) (n-join k v l r))
(let ((l.n (node/size l))
(r.n (node/size r)))
(cond ((fix:< (fix:+ l.n r.n) 2) (simple-join))
((fix:> r.n (fix:* wt-tree-ratio l.n))
;; right is too big
(let ((r.l.n (node/size (node/l r)))
(r.r.n (node/size (node/r r))))
(if (fix:< r.l.n r.r.n)
(single-l k v l r)
(double-l k v l r))))
((fix:> l.n (fix:* wt-tree-ratio r.n))
;; left is too big
(let ((l.l.n (node/size (node/l l)))
(l.r.n (node/size (node/r l))))
(if (fix:< l.r.n l.l.n)
(single-r k v l r)
(double-r k v l r))))
(else
(simple-join)))))
;;
;; Node tree procedures that are independent of key<?
;;
(define (node/min node)
(cond ((empty? node) (error:empty 'min))
((empty? (node/l node)) node)
(else (node/min (node/l node)))))
(define (node/delmin node)
(cond ((empty? node) (error:empty 'delmin))
((empty? (node/l node)) (node/r node))
(else (t-join (node/k node) (node/v node)
(node/delmin (node/l node)) (node/r node)))))
(define (node/concat2 node1 node2)
(cond ((empty? node1) node2)
((empty? node2) node1)
(else
(let ((min-node (node/min node2)))
(t-join (node/k min-node) (node/v min-node)
node1 (node/delmin node2))))))
(define (node/inorder-fold procedure base node)
(define (fold base node)
(if (empty? node)
base
(with-n-node node
(lambda (k v l r)
(fold (procedure k v (fold base r)) l)))))
(fold base node))
(define (node/for-each procedure node)
(if (not (empty? node))
(with-n-node node
(lambda (k v l r)
(node/for-each procedure l)
(procedure k v)
(node/for-each procedure r)))))
(define (node/height node)
(if (empty? node)
0
(+ 1 (max (node/height (node/l node))
(node/height (node/r node))))))
(define (node/index node index)
(define (loop node index)
(let ((size.l (node/size (node/l node))))
(cond ((fix:< index size.l) (loop (node/l node) index))
((fix:> index size.l) (loop (node/r node)
(fix:- index (fix:+ 1 size.l))))
(else node))))
(let ((bound (node/size node)))
(if (or (< index 0)
(>= index bound)
(not (fix:fixnum? index)))
(error:bad-range-argument index 'node/index)
(loop node index))))
(define (error:empty owner)
(error "Operation requires non-empty tree:" owner))
(define (local:make-wt-tree-type key<?)
;; MIT-Scheme definitions:
;;(declare (integrate key<?))
;;(define-integrable (key>? x y) (key<? y x))
(define (key>? x y) (key<? y x))
(define (node/find k node)
;; Returns either the node or #f.
;; Loop takes D comparisons where D is the depth of the tree
;; rather than the traditional compare-low, compare-high which
;; takes on average 1.5(D-1) comparisons
(define (loop this best)
(cond ((empty? this) best)
((key<? k (node/k this)) (loop (node/l this) best))
(else (loop (node/r this) this))))
(let ((best (loop node #f)))
(cond ((not best) #f)
((key<? (node/k best) k) #f)
(else best))))
(define (node/rank k node rank)
(cond ((empty? node) #f)
((key<? k (node/k node)) (node/rank k (node/l node) rank))
((key>? k (node/k node))
(node/rank k (node/r node)
(fix:+ 1 (fix:+ rank (node/size (node/l node))))))
(else (fix:+ rank (node/size (node/l node))))))
(define (node/add node k v)
(if (empty? node)
(node/singleton k v)
(with-n-node node
(lambda (key val l r)
(cond ((key<? k key) (t-join key val (node/add l k v) r))
((key<? key k) (t-join key val l (node/add r k v)))
(else (n-join key v l r)))))))
(define (node/delete x node)
(if (empty? node)
empty
(with-n-node node
(lambda (key val l r)
(cond ((key<? x key) (t-join key val (node/delete x l) r))
((key<? key x) (t-join key val l (node/delete x r)))
(else (node/concat2 l r)))))))
(define (node/concat tree1 tree2)
(cond ((empty? tree1) tree2)
((empty? tree2) tree1)
(else
(let ((min-node (node/min tree2)))
(node/concat3 (node/k min-node) (node/v min-node) tree1
(node/delmin tree2))))))
(define (node/concat3 k v l r)
(cond ((empty? l) (node/add r k v))
((empty? r) (node/add l k v))
(else
(let ((n1 (node/size l))
(n2 (node/size r)))
(cond ((fix:< (fix:* wt-tree-ratio n1) n2)
(with-n-node r
(lambda (k2 v2 l2 r2)
(t-join k2 v2 (node/concat3 k v l l2) r2))))
((fix:< (fix:* wt-tree-ratio n2) n1)
(with-n-node l
(lambda (k1 v1 l1 r1)
(t-join k1 v1 l1 (node/concat3 k v r1 r)))))
(else
(n-join k v l r)))))))
(define (node/split-lt node x)
(cond ((empty? node) empty)
((key<? x (node/k node))
(node/split-lt (node/l node) x))
((key<? (node/k node) x)
(node/concat3 (node/k node) (node/v node) (node/l node)
(node/split-lt (node/r node) x)))
(else (node/l node))))
(define (node/split-gt node x)
(cond ((empty? node) empty)
((key<? (node/k node) x)
(node/split-gt (node/r node) x))
((key<? x (node/k node))
(node/concat3 (node/k node) (node/v node)
(node/split-gt (node/l node) x) (node/r node)))
(else (node/r node))))
(define (node/union tree1 tree2)
(cond ((empty? tree1) tree2)
((empty? tree2) tree1)
(else
(with-n-node tree2
(lambda (ak av l r)
(let ((l1 (node/split-lt tree1 ak))
(r1 (node/split-gt tree1 ak)))
(node/concat3 ak av (node/union l1 l) (node/union r1 r))))))))
(define (node/difference tree1 tree2)
(cond ((empty? tree1) empty)
((empty? tree2) tree1)
(else
(with-n-node tree2
(lambda (ak av l r)
(let ((l1 (node/split-lt tree1 ak))
(r1 (node/split-gt tree1 ak)))
av
(node/concat (node/difference l1 l)
(node/difference r1 r))))))))
(define (node/intersection tree1 tree2)
(cond ((empty? tree1) empty)
((empty? tree2) empty)
(else
(with-n-node tree2
(lambda (ak av l r)
(let ((l1 (node/split-lt tree1 ak))
(r1 (node/split-gt tree1 ak)))
(if (node/find ak tree1)
(node/concat3 ak av (node/intersection l1 l)
(node/intersection r1 r))
(node/concat (node/intersection l1 l)
(node/intersection r1 r)))))))))
(define (node/subset? tree1 tree2)
(or (empty? tree1)
(and (fix:<= (node/size tree1) (node/size tree2))
(with-n-node tree1
(lambda (k v l r)
v
(cond ((key<? k (node/k tree2))
(and (node/subset? l (node/l tree2))
(node/find k tree2)
(node/subset? r tree2)))
((key>? k (node/k tree2))
(and (node/subset? r (node/r tree2))
(node/find k tree2)
(node/subset? l tree2)))
(else
(and (node/subset? l (node/l tree2))
(node/subset? r (node/r tree2))))))))))
;;; Tree interface: stripping off or injecting the tree types
(define (tree/map-add tree k v)
(%make-wt-tree (tree/type tree)
(node/add (tree/root tree) k v)))
(define (tree/insert! tree k v)
(set-tree/root! tree (node/add (tree/root tree) k v)))
(define (tree/delete tree k)
(%make-wt-tree (tree/type tree)
(node/delete k (tree/root tree))))
(define (tree/delete! tree k)
(set-tree/root! tree (node/delete k (tree/root tree))))
(define (tree/split-lt tree key)
(%make-wt-tree (tree/type tree)
(node/split-lt (tree/root tree) key)))
(define (tree/split-gt tree key)
(%make-wt-tree (tree/type tree)
(node/split-gt (tree/root tree) key)))
(define (tree/union tree1 tree2)
(%make-wt-tree (tree/type tree1)
(node/union (tree/root tree1) (tree/root tree2))))
(define (tree/intersection tree1 tree2)
(%make-wt-tree (tree/type tree1)
(node/intersection (tree/root tree1) (tree/root tree2))))
(define (tree/difference tree1 tree2)
(%make-wt-tree (tree/type tree1)
(node/difference (tree/root tree1) (tree/root tree2))))
(define (tree/subset? tree1 tree2)
(node/subset? (tree/root tree1) (tree/root tree2)))
(define (alist->tree alist)
(define (loop alist node)
(cond ((null? alist) node)
((pair? alist) (loop (cdr alist)
(node/add node (caar alist) (cdar alist))))
(else
(error:wrong-type-argument alist "alist" 'alist->tree))))
(%make-wt-tree my-type (loop alist empty)))
(define (tree/get tree key default)
(let ((node (node/find key (tree/root tree))))
(if node
(node/v node)
default)))
(define (tree/rank tree key) (node/rank key (tree/root tree) 0))
(define (tree/member? key tree)
(and (node/find key (tree/root tree))
#t))
(define my-type #F)
(set! my-type
(%make-tree-type
key<? ; key<?
alist->tree ; alist->tree
tree/map-add ; add
tree/insert! ; insert!
tree/delete ; delete
tree/delete! ; delete!
tree/member? ; member?
tree/get ; lookup
tree/split-lt ; split-lt
tree/split-gt ; split-gt
tree/union ; union
tree/intersection ; intersection
tree/difference ; difference
tree/subset? ; subset?
tree/rank ; rank
))
my-type)
(define (guarantee-tree tree procedure)
(if (not (wt-tree? tree))
(error:wrong-type-argument tree "weight-balanced tree" procedure)))
(define (guarantee-tree-type type procedure)
(if (not (tree-type? type))
(error:wrong-type-argument type "weight-balanced tree type" procedure)))
(define (guarantee-compatible-trees tree1 tree2 procedure)
(guarantee-tree tree1 procedure)
(guarantee-tree tree2 procedure)
(if (not (eq? (tree/type tree1) (tree/type tree2)))
(error "The trees" tree1 'and tree2 'have 'incompatible 'types
(tree/type tree1) 'and (tree/type tree2))))
;;;______________________________________________________________________
;;;
;;; Export interface
;;;
(set! make-wt-tree-type local:make-wt-tree-type)
(set! make-wt-tree
(lambda (tree-type)
(%make-wt-tree tree-type empty)))
(set! singleton-wt-tree
(lambda (type key value)
(guarantee-tree-type type 'singleton-wt-tree)
(%make-wt-tree type (node/singleton key value))))
(set! alist->wt-tree
(lambda (type alist)
(guarantee-tree-type type 'alist->wt-tree)
((tree-type/alist->tree type) alist)))
(set! wt-tree/empty?
(lambda (tree)
(guarantee-tree tree 'wt-tree/empty?)
(empty? (tree/root tree))))
(set! wt-tree/size
(lambda (tree)
(guarantee-tree tree 'wt-tree/size)
(node/size (tree/root tree))))
(set! wt-tree/add
(lambda (tree key datum)
(guarantee-tree tree 'wt-tree/add)
((tree-type/add (tree/type tree)) tree key datum)))
(set! wt-tree/delete
(lambda (tree key)
(guarantee-tree tree 'wt-tree/delete)
((tree-type/delete (tree/type tree)) tree key)))
(set! wt-tree/add!
(lambda (tree key datum)
(guarantee-tree tree 'wt-tree/add!)
((tree-type/insert! (tree/type tree)) tree key datum)))
(set! wt-tree/delete!
(lambda (tree key)
(guarantee-tree tree 'wt-tree/delete!)
((tree-type/delete! (tree/type tree)) tree key)))
(set! wt-tree/member?
(lambda (key tree)
(guarantee-tree tree 'wt-tree/member?)
((tree-type/member? (tree/type tree)) key tree)))
(set! wt-tree/lookup
(lambda (tree key default)
(guarantee-tree tree 'wt-tree/lookup)
((tree-type/lookup (tree/type tree)) tree key default)))
(set! wt-tree/split<
(lambda (tree key)
(guarantee-tree tree 'wt-tree/split<)
((tree-type/split-lt (tree/type tree)) tree key)))
(set! wt-tree/split>
(lambda (tree key)
(guarantee-tree tree 'wt-tree/split>)
((tree-type/split-gt (tree/type tree)) tree key)))
(set! wt-tree/union
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/union)
((tree-type/union (tree/type tree1)) tree1 tree2)))
(set! wt-tree/intersection
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/intersection)
((tree-type/intersection (tree/type tree1)) tree1 tree2)))
(set! wt-tree/difference
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/difference)
((tree-type/difference (tree/type tree1)) tree1 tree2)))
(set! wt-tree/subset?
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/subset?)
((tree-type/subset? (tree/type tree1)) tree1 tree2)))
(set! wt-tree/set-equal?
(lambda (tree1 tree2)
(and (wt-tree/subset? tree1 tree2)
(wt-tree/subset? tree2 tree1))))
(set! wt-tree/fold
(lambda (combiner-key-datum-result init tree)
(guarantee-tree tree 'wt-tree/fold)
(node/inorder-fold combiner-key-datum-result
init
(tree/root tree))))
(set! wt-tree/for-each
(lambda (action-key-datum tree)
(guarantee-tree tree 'wt-tree/for-each)
(node/for-each action-key-datum (tree/root tree))))
(set! wt-tree/index
(lambda (tree index)
(guarantee-tree tree 'wt-tree/index)
(let ((node (node/index (tree/root tree) index)))
(and node (node/k node)))))
(set! wt-tree/index-datum
(lambda (tree index)
(guarantee-tree tree 'wt-tree/index-datum)
(let ((node (node/index (tree/root tree) index)))
(and node (node/v node)))))
(set! wt-tree/index-pair
(lambda (tree index)
(guarantee-tree tree 'wt-tree/index-pair)
(let ((node (node/index (tree/root tree) index)))
(and node (cons (node/k node) (node/v node))))))
(set! wt-tree/rank
(lambda (tree key)
(guarantee-tree tree 'wt-tree/rank)
((tree-type/rank (tree/type tree)) tree key)))
(set! wt-tree/min
(lambda (tree)
(guarantee-tree tree 'wt-tree/min)
(node/k (node/min (tree/root tree)))))
(set! wt-tree/min-datum
(lambda (tree)
(guarantee-tree tree 'wt-tree/min-datum)
(node/v (node/min (tree/root tree)))))
(set! wt-tree/min-pair
(lambda (tree)
(guarantee-tree tree 'wt-tree/min-pair)
(let ((node (node/min (tree/root tree))))
(cons (node/k node) (node/v node)))))
(set! wt-tree/delete-min
(lambda (tree)
(guarantee-tree tree 'wt-tree/delete-min)
(%make-wt-tree (tree/type tree)
(node/delmin (tree/root tree)))))
(set! wt-tree/delete-min!
(lambda (tree)
(guarantee-tree tree 'wt-tree/delete-min!)
(set-tree/root! tree (node/delmin (tree/root tree)))))
;; < is a lexpr. Many compilers can open-code < so the lambda is faster
;; than passing <.
(set! number-wt-type (local:make-wt-tree-type (lambda (u v) (< u v))))
(set! string-wt-type (local:make-wt-tree-type string<?))
'done)
;;; Local Variables:
;;; eval: (put 'with-n-node 'scheme-indent-function 1)
;;; eval: (put 'with-n-node 'scheme-indent-hook 1)
;;; End:
|