1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
|
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename slib.info
@settitle SLIB
@setchapternewpage on
@c Choices for setchapternewpage are {on,off,odd}.
@paragraphindent 2
@c %**end of header
@iftex
@finalout
@c DL: lose the egregious vertical whitespace, esp. around examples
@c but paras in @defun-like things don't have parindent
@parskip 4pt plus 1pt
@end iftex
@ifinfo
This file documents SLIB, the portable Scheme library.
Copyright (C) 1993 Todd R. Eigenschink
Copyright (C) 1993, 1994, 1995 Aubrey Jaffer
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
@ignore
Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).
@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the author.
@end ifinfo
@titlepage
@title SLIB
@subtitle The Portable Scheme Library
@subtitle Version 2a3
@subtitle June 1995
@author by Todd R. Eigenschink, Dave Love, and Aubrey Jaffer
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1993, 1994, 1995 Todd R. Eigenschink and Aubrey Jaffer
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the author.
@end titlepage
@node Top, Overview, (dir), (dir)
@ifinfo
This file documents SLIB, the portable Scheme library.
@heading Good Engineering is 1% inspiration and 99% documentation.
Herein lies the good part. Many thanks to Todd Eigenschink
<eigenstr@@CS.Rose-Hulman.Edu> (who thanks Dave Love <D.Love@@dl.ac.uk>)
for creating @file{slib.texi}. I have learned much from their example.
Aubrey Jaffer
jaffer@@ai.mit.edu
@end ifinfo
@menu
* Overview:: What is SLIB?
* Data Structures:: Various data structures.
* Macros:: Extensions to Scheme syntax.
* Numerics::
* Procedures:: Miscellaneous utility procedures.
* Standards Support:: Support for Scheme Standards.
* Session Support:: Debugging, Pathnames, Require, etc.
* Optional SLIB Packages::
* Procedure and Macro Index::
* Variable Index::
@end menu
@node Overview, Data Structures, Top, Top
@chapter Overview
SLIB is a portable Scheme library meant to provide compatibility and
utility functions for all standard Scheme implementations, and fixes
several implementations which are non-conforming. SLIB conforms to
@cite{Revised^4 Report on the Algorithmic Language Scheme} and the IEEE
P1178 specification. SLIB supports Unix and similar systems, VMS, and
MS-DOS.@refill
For a summary of what each file contains, see the file @file{README}.
For a list of the features that have changed since the last SLIB
release, see the file @file{ANNOUNCE}. For a list of the features that
have changed over time, see the file @file{ChangeLog}.
The maintainer can be reached as @samp{jaffer@@ai.mit.edu}.
@menu
* Installation:: How to install SLIB on your system.
* Porting:: SLIB to new platforms
* Coding Standards:: How to write modules for SLIB.
* Copyrights:: Intellectual propery issues.
* Manual Conventions:: Conventions used in this manual.
@end menu
@node Installation, Porting, Overview, Overview
@section Installation
Check the manifest in @file{README} to find a configuration file for
your Scheme implementation. Initialization files for most IEEE P1178
compliant Scheme Implementations are included with this distribution.
If the Scheme implementation supports @code{getenv}, then the value of
the shell environment variable @var{SCHEME_LIBRARY_PATH} will be used
for @code{(library-vicinity)} if it is defined. Currently, Chez, Elk,
MITScheme, scheme->c, VSCM, and SCM support @code{getenv}.
You should check the definitions of @code{software-type},
@code{scheme-implementation-version},
@iftex
@*
@end iftex
@code{implementation-vicinity},
and @code{library-vicinity} in the initialization file. There are
comments in the file for how to configure it.
Once this is done you can modify the startup file for your Scheme
implementation to @code{load} this initialization file. SLIB is then
installed.
Multiple implementations of Scheme can all use the same SLIB directory.
Simply configure each implementation's initialization file as outlined
above.
The SCM implementation does not require any initialization file as SLIB
support is already built in to SCM. See the documentation with SCM for
installation instructions.
SLIB includes methods to create heap images for the VSCM and Scheme48
implementations. The instructions for creating a VSCM image are in
comments in @file{vscm.init}. To make a Scheme48 image, @code{cd} to
the SLIB directory and type @code{make slib48}. This will also create a
shell script with the name @code{slib48} which will invoke the saved
image.
@node Porting, Coding Standards, Installation, Overview
@section Porting
If there is no initialization file for your Scheme implementation, you
will have to create one. Your Scheme implementation must be largely
compliant with @cite{IEEE Std 1178-1990} or @cite{Revised^4 Report on
the Algorithmic Language Scheme} to support SLIB.
@file{Template.scm} is an example configuration file. The comments
inside will direct you on how to customize it to reflect your system.
Give your new initialization file the implementation's name with
@file{.init} appended. For instance, if you were porting
@code{foo-scheme} then the initialization file might be called
@file{foo.init}.
Your customized version should then be loaded as part of your scheme
implementation's initialization. It will load @file{require.scm}
(@xref{Require}) from the library; this will allow the use of
@code{provide}, @code{provided?}, and @code{require} along with the
@dfn{vicinity} functions (@code{vicinity} functions are documented in
the section on Require. @xref{Require}). The rest of the library will
then be accessible in a system independent fashion.@refill
Please mail new working configuration files to @code{jaffer@@ai.mit.edu}
so that they can be included in the SLIB distribution.@refill
@node Coding Standards, Copyrights, Porting, Overview
@section Coding Standards
All library packages are written in IEEE P1178 Scheme and assume that a
configuration file and @file{require.scm} package have already been
loaded. Other versions of Scheme can be supported in library packages
as well by using, for example, @code{(provided? 'rev3-report)} or
@code{(require 'rev3-report)} (@xref{Require}).@refill
@file{require.scm} defines @code{*catalog*}, an association list of
module names and filenames. When a new package is added to the library,
an entry should be added to @file{require.scm}. Local packages can also
be added to @code{*catalog*} and even shadow entries already in the
table.@refill
The module name and @samp{:} should prefix each symbol defined in the
package. Definitions for external use should then be exported by having
@code{(define foo module-name:foo)}.@refill
Submitted code should not duplicate routines which are already in SLIB
files. Use @code{require} to force those features to be supported in
your package. Care should be taken that there are no circularities in
the @code{require}s and @code{load}s between the library
packages.@refill
Documentation should be provided in Emacs Texinfo format if possible,
But documentation must be provided.
Your package will be released sooner with SLIB if you send me a file
which tests your code. Please run this test @emph{before} you send me
the code!
@subheading Modifications
Please document your changes. A line or two for @file{ChangeLog} is
sufficient for simple fixes or extensions. Look at the format of
@file{ChangeLog} to see what information is desired. Please send me
@code{diff} files from the latest SLIB distribution (remember to send
@code{diff}s of @file{slib.texi} and @file{ChangeLog}). This makes for
less email traffic and makes it easier for me to integrate when more
than one person is changing a file (this happens a lot with
@file{slib.texi} and @samp{*.init} files).
If someone else wrote a package you want to significantly modify, please
try to contact the author, who may be working on a new version. This
will insure against wasting effort on obsolete versions.
Please @emph{do not} reformat the source code with your favorite
beautifier, make 10 fixes, and send me the resulting source code. I do
not have the time to fish through 10000 diffs to find your 10 real fixes.
@node Copyrights, Manual Conventions, Coding Standards, Overview
@section Copyrights
This section has instructions for SLIB authors regarding copyrights.
Each package in SLIB must either be in the public domain, or come with a
statement of terms permitting users to copy, redistribute and modify it.
The comments at the beginning of @file{require.scm} and
@file{macwork.scm} illustrate copyright and appropriate terms.
If your code or changes amount to less than about 10 lines, you do not
need to add your copyright or send a disclaimer.
@subheading Putting code into the Public Domain
In order to put code in the public domain you should sign a copyright
disclaimer and send it to the SLIB maintainer. Contact
jaffer@@ai.mit.edu for the address to mail the disclaimer to.
@quotation
I, @var{name}, hereby affirm that I have placed the software package
@var{name} in the public domain.
I affirm that I am the sole author and sole copyright holder for the
software package, that I have the right to place this software package
in the public domain, and that I will do nothing to undermine this
status in the future.
@flushright
@var{signature and date}
@end flushright
@end quotation
This wording assumes that you are the sole author. If you are not the
sole author, the wording needs to be different. If you don't want to be
bothered with sending a letter every time you release or modify a
module, make your letter say that it also applies to your future
revisions of that module.
Make sure no employer has any claim to the copyright on the work you are
submitting. If there is any doubt, create a copyright disclaimer and
have your employer sign it. Mail the signed disclaimer to the SLIB
maintainer. Contact jaffer@@ai.mit.edu for the address to mail the
disclaimer to. An example disclaimer follows.
@subheading Explicit copying terms
@noindent
If you submit more than about 10 lines of code which you are not placing
into the Public Domain (by sending me a disclaimer) you need to:
@itemize @bullet
@item
Arrange that your name appears in a copyright line for the appropriate
year. Multiple copyright lines are acceptable.
@item
With your copyright line, specify any terms you require to be different
from those already in the file.
@item
Make sure no employer has any claim to the copyright on the work you are
submitting. If there is any doubt, create a copyright disclaimer and
have your employer sign it. Mail the signed disclaim to the SLIB
maintainer. Contact jaffer@@ai.mit.edu for the address to mail the
disclaimer to.
@end itemize
@subheading Example: Company Copyright Disclaimer
This disclaimer should be signed by a vice president or general manager
of the company. If you can't get at them, anyone else authorized to
license out software produced there will do. Here is a sample wording:
@quotation
@var{employer} Corporation hereby disclaims all copyright
interest in the program @var{program} written by @var{name}.
@var{employer} Corporation affirms that it has no other intellectual
property interest that would undermine this release, and will do nothing
to undermine it in the future.
@flushleft
@var{signature and date},
@var{name}, @var{title}, @var{employer} Corporation
@end flushleft
@end quotation
@node Manual Conventions, , Copyrights, Overview
@section Manual Conventions
Things that are labeled as Functions are called for their return values.
Things that are labeled as Procedures are called primarily for their
side effects.
All examples throughout this text were produced using the @code{scm}
Scheme implementation.
At the beginning of each section, there is a line that looks something
like
@code{(require 'feature)}.
@noindent
This means that, in order to use @code{feature}, you must include the
line @code{(require 'feature)} somewhere in your code prior to the use
of that feature. @code{require} will make sure that the feature is
loaded.@refill
@node Data Structures, Macros, Overview, Top
@chapter Data Structures
@menu
* Arrays:: 'array
* Array Mapping:: 'array-for-each
* Association Lists:: 'alist
* Collections:: 'collect
* Dynamic Data Type:: 'dynamic
* Hash Tables:: 'hash-table
* Hashing:: 'hash, 'sierpinski, 'soundex
* Chapter Ordering:: 'chapter-order
* Object:: 'object
* Parameter lists:: 'parameters
* Priority Queues:: 'priority-queue
* Queues:: 'queue
* Records:: 'record
* Base Table::
* Relational Database:: 'relational-database
* Weight-Balanced Trees:: 'wt-tree
* Structures:: 'struct, 'structure
@end menu
@node Arrays, Array Mapping, Data Structures, Data Structures
@section Arrays
@code{(require 'array)}
@defun array? obj
Returns @code{#t} if the @var{obj} is an array, and @code{#f} if not.
@end defun
@defun make-array initial-value bound1 bound2 @dots{}
Creates and returns an array that has as many dimensins as there are
@var{bound}s and fills it with @var{initial-value}.@refill
@end defun
When constructing an array, @var{bound} is either an inclusive range of
indices expressed as a two element list, or an upper bound expressed as
a single integer. So@refill
@lisp
(make-array 'foo 3 3) @equiv{} (make-array 'foo '(0 2) '(0 2))
@end lisp
@defun make-shared-array array mapper bound1 bound2 @dots{}
@code{make-shared-array} can be used to create shared subarrays of other
arrays. The @var{mapper} is a function that translates coordinates in
the new array into coordinates in the old array. A @var{mapper} must be
linear, and its range must stay within the bounds of the old array, but
it can be otherwise arbitrary. A simple example:@refill
@lisp
(define fred (make-array #f 8 8))
(define freds-diagonal
(make-shared-array fred (lambda (i) (list i i)) 8))
(array-set! freds-diagonal 'foo 3)
(array-ref fred 3 3)
@result{} FOO
(define freds-center
(make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
2 2))
(array-ref freds-center 0 0)
@result{} FOO
@end lisp
@end defun
@defun array-rank obj
Returns the number of dimensions of @var{obj}. If @var{obj} is not an
array, 0 is returned.
@end defun
@defun array-shape array
@code{array-shape} returns a list of inclusive bounds. So:
@lisp
(array-shape (make-array 'foo 3 5))
@result{} ((0 2) (0 4))
@end lisp
@end defun
@defun array-dimensions array
@code{array-dimensions} is similar to @code{array-shape} but replaces
elements with a 0 minimum with one greater than the maximum. So:
@lisp
(array-dimensions (make-array 'foo 3 5))
@result{} (3 5)
@end lisp
@end defun
@deffn Procedure array-in-bounds? array index1 index2 @dots{}
Returns @code{#t} if its arguments would be acceptable to
@code{array-ref}.
@end deffn
@defun array-ref array index1 index2 @dots{}
Returns the element at the @code{(@var{index1}, @var{index2})} element
in @var{array}.@refill
@end defun
@deffn Procedure array-set! array new-value index1 index2 @dots{}
@end deffn
@defun array-1d-ref array index
@defunx array-2d-ref array index index
@defunx array-3d-ref array index index index
@end defun
@deffn Procedure array-1d-set! array new-value index
@deffnx Procedure array-2d-set! array new-value index index
@deffnx Procedure array-3d-set! array new-value index index index
@end deffn
The functions are just fast versions of @code{array-ref} and
@code{array-set!} that take a fixed number of arguments, and perform no
bounds checking.@refill
If you comment out the bounds checking code, this is about as efficient
as you could ask for without help from the compiler.
An exercise left to the reader: implement the rest of APL.
@node Array Mapping, Association Lists, Arrays, Data Structures
@section Array Mapping
@code{(require 'array-for-each)}
@defun array-map! array0 proc array1 @dots{}
@var{array1}, @dots{} must have the same number of dimensions as
@var{array0} and have a range for each index which includes the range
for the corresponding index in @var{array0}. @var{proc} is applied to
each tuple of elements of @var{array1} @dots{} and the result is stored
as the corresponding element in @var{array0}. The value returned is
unspecified. The order of application is unspecified.
@end defun
@defun array-for-each @var{proc} @var{array0} @dots{}
@var{proc} is applied to each tuple of elements of @var{array0} @dots{}
in row-major order. The value returned is unspecified.
@end defun
@defun array-indexes @var{array}
Returns an array of lists of indexes for @var{array} such that, if
@var{li} is a list of indexes for which @var{array} is defined, (equal?
@var{li} (apply array-ref (array-indexes @var{array}) @var{li})).
@end defun
@defun array-copy! source destination
Copies every element from vector or array @var{source} to the
corresponding element of @var{destination}. @var{destination} must have
the same rank as @var{source}, and be at least as large in each
dimension. The order of copying is unspecified.
@end defun
@node Association Lists, Collections, Array Mapping, Data Structures
@section Association Lists
@code{(require 'alist)}
Alist functions provide utilities for treating a list of key-value pairs
as an associative database. These functions take an equality predicate,
@var{pred}, as an argument. This predicate should be repeatable,
symmetric, and transitive.@refill
Alist functions can be used with a secondary index method such as hash
tables for improved performance.
@defun predicate->asso pred
Returns an @dfn{association function} (like @code{assq}, @code{assv}, or
@code{assoc}) corresponding to @var{pred}. The returned function
returns a key-value pair whose key is @code{pred}-equal to its first
argument or @code{#f} if no key in the alist is @var{pred}-equal to the
first argument.@refill
@end defun
@defun alist-inquirer pred
Returns a procedure of 2 arguments, @var{alist} and @var{key}, which
returns the value associated with @var{key} in @var{alist} or @code{#f} if
@var{key} does not appear in @var{alist}.@refill
@end defun
@defun alist-associator pred
Returns a procedure of 3 arguments, @var{alist}, @var{key}, and
@var{value}, which returns an alist with @var{key} and @var{value}
associated. Any previous value associated with @var{key} will be
lost. This returned procedure may or may not have side effects on its
@var{alist} argument. An example of correct usage is:@refill
@lisp
(define put (alist-associator string-ci=?))
(define alist '())
(set! alist (put alist "Foo" 9))
@end lisp
@end defun
@defun alist-remover pred
Returns a procedure of 2 arguments, @var{alist} and @var{key}, which
returns an alist with an association whose @var{key} is key removed.
This returned procedure may or may not have side effects on its
@var{alist} argument. An example of correct usage is:@refill
@lisp
(define rem (alist-remover string-ci=?))
(set! alist (rem alist "foo"))
@end lisp
@end defun
@defun alist-map proc alist
Returns a new association list formed by mapping @var{proc} over the
keys and values of @var{alist}. @var{proc} must be a function of 2
arguments which returns the new value part.
@end defun
@defun alist-for-each proc alist
Applies @var{proc} to each pair of keys and values of @var{alist}.
@var{proc} must be a function of 2 arguments. The returned value is
unspecified.
@end defun
@node Collections, Dynamic Data Type, Association Lists, Data Structures
@section Collections
@c Much of the documentation in this section was written by Dave Love
@c (d.love@dl.ac.uk) -- don't blame Ken Dickey for its faults.
@c but we can blame him for not writing it!
@code{(require 'collect)}
Routines for managing collections. Collections are aggregate data
structures supporting iteration over their elements, similar to the
Dylan(TM) language, but with a different interface. They have
@dfn{elements} indexed by corresponding @dfn{keys}, although the keys
may be implicit (as with lists).@refill
New types of collections may be defined as YASOS objects (@xref{Yasos}).
They must support the following operations:
@itemize @bullet
@item
@code{(collection? @var{self})} (always returns @code{#t});
@item
@code{(size @var{self})} returns the number of elements in the collection;
@item
@code{(print @var{self} @var{port})} is a specialized print operation
for the collection which prints a suitable representation on the given
@var{port} or returns it as a string if @var{port} is @code{#t};@refill
@item
@code{(gen-elts @var{self})} returns a thunk which on successive
invocations yields elements of @var{self} in order or gives an error if
it is invoked more than @code{(size @var{self})} times;@refill
@item
@code{(gen-keys @var{self})} is like @code{gen-elts}, but yields the
collection's keys in order.
@end itemize
They might support specialized @code{for-each-key} and
@code{for-each-elt} operations.@refill
@defun collection? obj
A predicate, true initially of lists, vectors and strings. New sorts of
collections must answer @code{#t} to @code{collection?}.@refill
@end defun
@deffn Procedure map-elts proc . collections
@deffnx Procedure do-elts proc . collections
@var{proc} is a procedure taking as many arguments as there are
@var{collections} (at least one). The @var{collections} are iterated
over in their natural order and @var{proc} is applied to the elements
yielded by each iteration in turn. The order in which the arguments are
supplied corresponds to te order in which the @var{collections} appear.
@code{do-elts} is used when only side-effects of @var{proc} are of
interest and its return value is unspecified. @code{map-elts} returns a
collection (actually a vector) of the results of the applications of
@var{proc}.@refill
Example:
@lisp
(map-elts + (list 1 2 3) (vector 1 2 3))
@result{} #(2 4 6)
@end lisp
@end deffn
@deffn Procedure map-keys proc . collections
@deffnx Procedure do-keys proc . collections
These are analogous to @code{map-elts} and @code{do-elts}, but each
iteration is over the @var{collections}' @emph{keys} rather than their
elements.@refill
Example:
@lisp
(map-keys + (list 1 2 3) (vector 1 2 3))
@result{} #(0 2 4)
@end lisp
@end deffn
@deffn Procedure for-each-key collection proc
@deffnx Procedure for-each-elt collection proc
These are like @code{do-keys} and @code{do-elts} but only for a single
collection; they are potentially more efficient.
@end deffn
@defun reduce proc seed . collections
A generalization of the list-based @code{comlist:reduce-init}
(@xref{Lists as sequences}) to collections which will shadow the
list-based version if @code{(require 'collect)} follows @code{(require
'common-list-functions)} (@xref{Common List Functions}).@refill
Examples:
@lisp
(reduce + 0 (vector 1 2 3))
@result{} 6
(reduce union '() '((a b c) (b c d) (d a)))
@result{} (c b d a).
@end lisp
@end defun
@defun any? pred . collections
A generalization of the list-based @code{some} (@xref{Lists as
sequences}) to collections.@refill
Example:
@lisp
(any? odd? (list 2 3 4 5))
@result{} #t
@end lisp
@end defun
@defun every? pred . collections
A generalization of the list-based @code{every} (@xref{Lists as
sequences}) to collections.@refill
Example:
@lisp
(every? collection? '((1 2) #(1 2)))
@result{} #t
@end lisp
@end defun
@defun empty? collection
Returns @code{#t} iff there are no elements in @var{collection}.
@code{(empty? @var{collection}) @equiv{} (zero? (size @var{collection}))}
@end defun
@defun size collection
Returns the number of elements in @var{collection}.
@end defun
@defun Setter list-ref
See @xref{Setters} for a definition of @dfn{setter}. N.B.
@code{(setter list-ref)} doesn't work properly for element 0 of a
list.@refill
@end defun
Here is a sample collection: @code{simple-table} which is also a
@code{table}.@refill
@lisp
(define-predicate TABLE?)
(define-operation (LOOKUP table key failure-object))
(define-operation (ASSOCIATE! table key value)) ;; returns key
(define-operation (REMOVE! table key)) ;; returns value
(define (MAKE-SIMPLE-TABLE)
(let ( (table (list)) )
(object
;; table behaviors
((TABLE? self) #t)
((SIZE self) (size table))
((PRINT self port) (format port "#<SIMPLE-TABLE>"))
((LOOKUP self key failure-object)
(cond
((assq key table) => cdr)
(else failure-object)
))
((ASSOCIATE! self key value)
(cond
((assq key table)
=> (lambda (bucket) (set-cdr! bucket value) key))
(else
(set! table (cons (cons key value) table))
key)
))
((REMOVE! self key);; returns old value
(cond
((null? table) (slib:error "TABLE:REMOVE! Key not found: " key))
((eq? key (caar table))
(let ( (value (cdar table)) )
(set! table (cdr table))
value)
)
(else
(let loop ( (last table) (this (cdr table)) )
(cond
((null? this)
(slib:error "TABLE:REMOVE! Key not found: " key))
((eq? key (caar this))
(let ( (value (cdar this)) )
(set-cdr! last (cdr this))
value)
)
(else
(loop (cdr last) (cdr this)))
) ) )
))
;; collection behaviors
((COLLECTION? self) #t)
((GEN-KEYS self) (collect:list-gen-elts (map car table)))
((GEN-ELTS self) (collect:list-gen-elts (map cdr table)))
((FOR-EACH-KEY self proc)
(for-each (lambda (bucket) (proc (car bucket))) table)
)
((FOR-EACH-ELT self proc)
(for-each (lambda (bucket) (proc (cdr bucket))) table)
)
) ) )
@end lisp
@node Dynamic Data Type, Hash Tables, Collections, Data Structures
@section Dynamic Data Type
@code{(require 'dynamic)}
@defun make-dynamic obj
Create and returns a new @dfn{dynamic} whose global value is @var{obj}.
@end defun
@defun dynamic? obj
Returns true if and only if @var{obj} is a dynamic. No object
satisfying @code{dynamic?} satisfies any of the other standard type
predicates.@refill
@end defun
@defun dynamic-ref dyn
Return the value of the given dynamic in the current dynamic
environment.
@end defun
@deffn Procedure dynamic-set! dyn obj
Change the value of the given dynamic to @var{obj} in the current
dynamic environment. The returned value is unspecified.@refill
@end deffn
@defun call-with-dynamic-binding dyn obj thunk
Invoke and return the value of the given thunk in a new, nested dynamic
environment in which the given dynamic has been bound to a new location
whose initial contents are the value @var{obj}. This dynamic
environment has precisely the same extent as the invocation of the thunk
and is thus captured by continuations created within that invocation and
re-established by those continuations when they are invoked.@refill
@end defun
The @code{dynamic-bind} macro is not implemented.
@node Hash Tables, Hashing, Dynamic Data Type, Data Structures
@section Hash Tables
@code{(require 'hash-table)}
@defun predicate->hash pred
Returns a hash function (like @code{hashq}, @code{hashv}, or
@code{hash}) corresponding to the equality predicate @var{pred}.
@var{pred} should be @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
@code{char=?}, @code{char-ci=?}, @code{string=?}, or
@code{string-ci=?}.@refill
@end defun
A hash table is a vector of association lists.
@defun make-hash-table k
Returns a vector of @var{k} empty (association) lists.
@end defun
Hash table functions provide utilities for an associative database.
These functions take an equality predicate, @var{pred}, as an argument.
@var{pred} should be @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
@code{char=?}, @code{char-ci=?}, @code{string=?}, or
@code{string-ci=?}.@refill
@defun predicate->hash-asso pred
Returns a hash association function of 2 arguments, @var{key} and
@var{hashtab}, corresponding to @var{pred}. The returned function
returns a key-value pair whose key is @var{pred}-equal to its first
argument or @code{#f} if no key in @var{hashtab} is @var{pred}-equal to
the first argument.@refill
@end defun
@defun hash-inquirer pred
Returns a procedure of 3 arguments, @code{hashtab} and @code{key}, which
returns the value associated with @code{key} in @code{hashtab} or
@code{#f} if key does not appear in @code{hashtab}.@refill
@end defun
@defun hash-associator pred
Returns a procedure of 3 arguments, @var{hashtab}, @var{key}, and
@var{value}, which modifies @var{hashtab} so that @var{key} and
@var{value} associated. Any previous value associated with @var{key}
will be lost.@refill
@end defun
@defun hash-remover pred
Returns a procedure of 2 arguments, @var{hashtab} and @var{key}, which
modifies @var{hashtab} so that the association whose key is @var{key} is
removed.@refill
@end defun
@defun hash-map proc hash-table
Returns a new hash table formed by mapping @var{proc} over the
keys and values of @var{hash-table}. @var{proc} must be a function of 2
arguments which returns the new value part.
@end defun
@defun hash-for-each proc hash-table
Applies @var{proc} to each pair of keys and values of @var{hash-table}.
@var{proc} must be a function of 2 arguments. The returned value is
unspecified.
@end defun
@node Hashing, Chapter Ordering, Hash Tables, Data Structures
@section Hashing
@code{(require 'hash)}
These hashing functions are for use in quickly classifying objects.
Hash tables use these functions.
@defun hashq obj k
@defunx hashv obj k
@defunx hash obj k
Returns an exact non-negative integer less than @var{k}. For each
non-negative integer less than @var{k} there are arguments @var{obj} for
which the hashing functions applied to @var{obj} and @var{k} returns
that integer.@refill
For @code{hashq}, @code{(eq? obj1 obj2)} implies @code{(= (hashq obj1 k)
(hashq obj2))}.@refill
For @code{hashv}, @code{(eqv? obj1 obj2)} implies @code{(= (hashv obj1 k)
(hashv obj2))}.@refill
For @code{hash}, @code{(equal? obj1 obj2)} implies @code{(= (hash obj1 k)
(hash obj2))}.@refill
@code{hash}, @code{hashv}, and @code{hashq} return in time bounded by a
constant. Notice that items having the same @code{hash} implies the
items have the same @code{hashv} implies the items have the same
@code{hashq}.@refill
@end defun
@code{(require 'sierpinski)}
@defun make-sierpinski-indexer max-coordinate
Returns a procedure (eg hash-function) of 2 numeric arguments which
preserves @emph{nearness} in its mapping from NxN to N.
@var{max-coordinate} is the maximum coordinate (a positive integer) of a
population of points. The returned procedures is a function that takes
the x and y coordinates of a point, (non-negative integers) and returns
an integer corresponding to the relative position of that point along a
Sierpinski curve. (You can think of this as computing a (pseudo-)
inverse of the Sierpinski spacefilling curve.)
Example use: Make an indexer (hash-function) for integer points lying in
square of integer grid points [0,99]x[0,99]:
@example
(define space-key (make-sierpinski-indexer 100))
@end example
Now let's compute the index of some points:
@example
(space-key 24 78) @result{} 9206
(space-key 23 80) @result{} 9172
@end example
Note that locations (24, 78) and (23, 80) are near in index and
therefore, because the Sierpinski spacefilling curve is continuous, we
know they must also be near in the plane. Nearness in the plane does
not, however, necessarily correspond to nearness in index, although it
@emph{tends} to be so.
Example applications:
@table @asis
@item
Sort points by Sierpinski index to get heuristic solution to
@emph{travelling salesman problem}. For details of performance,
see L. Platzman and J. Bartholdi, "Spacefilling curves and the
Euclidean travelling salesman problem", JACM 36(4):719--737
(October 1989) and references therein.
@item
Use Sierpinski index as key by which to store 2-dimensional data
in a 1-dimensional data structure (such as a table). Then
locations that are near each other in 2-d space will tend to
be near each other in 1-d data structure; and locations that
are near in 1-d data structure will be near in 2-d space. This
can significantly speed retrieval from secondary storage because
contiguous regions in the plane will tend to correspond to
contiguous regions in secondary storage. (This is a standard
technique for managing CAD/CAM or geographic data.)
@end table
@end defun
@code{(require 'soundex)}
@defun soundex name
Computes the @emph{soundex} hash of @var{name}. Returns a string of an
initial letter and up to three digits between 0 and 6. Soundex
supposedly has the property that names that sound similar in normal
English pronunciation tend to map to the same key.
Soundex was a classic algorithm used for manual filing of personal
records before the advent of computers. It performs adequately for
English names but has trouble with other nationalities.
See Knuth, Vol. 3 @cite{Sorting and searching}, pp 391--2
To manage unusual inputs, @code{soundex} omits all non-alphabetic
characters. Consequently, in this implementation:
@example
(soundex <string of blanks>) @result{} ""
(soundex "") @result{} ""
@end example
Examples from Knuth:
@example
(map soundex '("Euler" "Gauss" "Hilbert" "Knuth"
"Lloyd" "Lukasiewicz"))
@result{} ("E460" "G200" "H416" "K530" "L300" "L222")
(map soundex '("Ellery" "Ghosh" "Heilbronn" "Kant"
"Ladd" "Lissajous"))
@result{} ("E460" "G200" "H416" "K530" "L300" "L222")
@end example
Some cases in which the algorithm fails (Knuth):
@example
(map soundex '("Rogers" "Rodgers")) @result{} ("R262" "R326")
(map soundex '("Sinclair" "St. Clair")) @result{} ("S524" "S324")
(map soundex '("Tchebysheff" "Chebyshev")) @result{} ("T212" "C121")
@end example
@end defun
@node Chapter Ordering, Object, Hashing, Data Structures
@section Chapter Ordering
@code{(require 'chapter-order)}
The @samp{chap:} functions deal with strings which are ordered like
chapter numbers (or letters) in a book. Each section of the string
consists of consecutive numeric or consecutive aphabetic characters of
like case.
@defun chap:string<? string1 string2
Returns #t if the first non-matching run of alphabetic upper-case or the
first non-matching run of alphabetic lower-case or the first
non-matching run of numeric characters of @var{string1} is
@code{string<?} than the corresponding non-matching run of characters of
@var{string2}.
@example
(chap:string<? "a.9" "a.10") @result{} #t
(chap:string<? "4c" "4aa") @result{} #t
(chap:string<? "Revised^@{3.99@}" "Revised^@{4@}") @result{} #t
@end example
@defunx chap:string>? string1 string2
@defunx chap:string<=? string1 string2
@defunx chap:string>=? string1 string2
Implement the corresponding chapter-order predicates.
@end defun
@defun chap:next-string string
Returns the next string in the @emph{chapter order}. If @var{string}
has no alphabetic or numeric characters,
@code{(string-append @var{string} "0")} is returnd. The argument to
chap:next-string will always be @code{chap:string<?} than the result.
@example
(chap:next-string "a.9") @result{} "a.10"
(chap:next-string "4c") @result{} "4d"
(chap:next-string "4z") @result{} "4aa"
(chap:next-string "Revised^@{4@}") @result{} "Revised^@{5@}"
@end example
@end defun
@node Object, Parameter lists, Chapter Ordering, Data Structures
@section Macroless Object System
@code{(require 'object)}
This is the Macroless Object System written by Wade Humeniuk
(whumeniu@@datap.ca). Conceptual Tributes: @ref{Yasos}, MacScheme's
%object, CLOS, Lack of R4RS macros.
@subsection Concepts
@table @asis
@item OBJECT
An object is an ordered association-list (by @code{eq?}) of methods
(procedures). Methods can be added (@code{make-method!}), deleted
(@code{unmake-method!}) and retrieved (@code{get-method}). Objects may
inherit methods from other objects. The object binds to the environment
it was created in, allowing closures to be used to hide private
procedures and data.
@item GENERIC-METHOD
A generic-method associates (in terms of @code{eq?}) object's method.
This allows scheme function style to be used for objects. The calling
scheme for using a generic method is @code{(generic-method object param1
param2 ...)}.
@item METHOD
A method is a procedure that exists in the object. To use a method
get-method must be called to look-up the method. Generic methods
implement the get-method functionality. Methods may be added to an
object associated with any scheme obj in terms of eq?
@item GENERIC-PREDICATE
A generic method that returns a boolean value for any scheme obj.
@item PREDICATE
A object's method asscociated with a generic-predicate. Returns
@code{#t}.
@end table
@subsection Procedures
@defun make-object ancestor @dots{}
Returns an object. Current object implementation is a tagged vector.
@var{ancestor}s are optional and must be objects in terms of object?.
@var{ancestor}s methods are included in the object. Multiple
@var{ancestor}s might associate the same generic-method with a method.
In this case the method of the @var{ancestor} first appearing in the
list is the one returned by @code{get-method}.
@end defun
@defun object? obj
Returns boolean value whether @var{obj} was created by make-object.
@end defun
@defun make-generic-method exception-procedure
Returns a procedure which be associated with an object's methods. If
@var{exception-procedure} is specified then it is used to process
non-objects.
@end defun
@defun make-generic-predicate
Returns a boolean procedure for any scheme object.
@end defun
@defun make-method! object generic-method method
Associates @var{method} to the @var{generic-method} in the object. The
@var{method} overrides any previous association with the
@var{generic-method} within the object. Using @code{unmake-method!}
will restore the object's previous association with the
@var{generic-method}. @var{method} must be a procedure.
@end defun
@defun make-predicate! object generic-preciate
Makes a predicate method associated with the @var{generic-predicate}.
@end defun
@defun unmake-method! object generic-method
Removes an object's association with a @var{generic-method} .
@end defun
@defun get-method object generic-method
Returns the object's method associated (if any) with the
@var{generic-method}. If no associated method exists an error is
flagged.
@end defun
@subsection Examples
@example
(require 'object)
(define instantiate (make-generic-method))
(define (make-instance-object . ancestors)
(define self (apply make-object
(map (lambda (obj) (instantiate obj)) ancestors)))
(make-method! self instantiate (lambda (self) self))
self)
(define who (make-generic-method))
(define imigrate! (make-generic-method))
(define emigrate! (make-generic-method))
(define describe (make-generic-method))
(define name (make-generic-method))
(define address (make-generic-method))
(define members (make-generic-method))
(define society
(let ()
(define self (make-instance-object))
(define population '())
(make-method! self imigrate!
(lambda (new-person)
(if (not (eq? new-person self))
(set! population (cons new-person population)))))
(make-method! self emigrate!
(lambda (person)
(if (not (eq? person self))
(set! population
(comlist:remove-if (lambda (member)
(eq? member person))
population)))))
(make-method! self describe
(lambda (self)
(map (lambda (person) (describe person)) population)))
(make-method! self who
(lambda (self) (map (lambda (person) (name person))
population)))
(make-method! self members (lambda (self) population))
self))
(define (make-person %name %address)
(define self (make-instance-object society))
(make-method! self name (lambda (self) %name))
(make-method! self address (lambda (self) %address))
(make-method! self who (lambda (self) (name self)))
(make-method! self instantiate
(lambda (self)
(make-person (string-append (name self) "-son-of")
%address)))
(make-method! self describe
(lambda (self) (list (name self) (address self))))
(imigrate! self)
self)
@end example
@subsubsection Inverter Documentation
Inheritance:
@lisp
<inverter>::(<number> <description>)
@end lisp
Generic-methods
@lisp
<inverter>::value @result{} <number>::value
<inverter>::set-value! @result{} <number>::set-value!
<inverter>::describe @result{} <description>::describe
<inverter>::help
<inverter>::invert
<inverter>::inverter?
@end lisp
@subsubsection Number Documention
Inheritance
@lisp
<number>::()
@end lisp
Slots
@lisp
<number>::<x>
@end lisp
Generic Methods
@lisp
<number>::value
<number>::set-value!
@end lisp
@subsubsection Inverter code
@example
(require 'object)
(define value (make-generic-method (lambda (val) val)))
(define set-value! (make-generic-method))
(define invert (make-generic-method
(lambda (val)
(if (number? val)
(/ 1 val)
(error "Method not supported:" val)))))
(define noop (make-generic-method))
(define inverter? (make-generic-predicate))
(define describe (make-generic-method))
(define help (make-generic-method))
(define (make-number x)
(define self (make-object))
(make-method! self value (lambda (this) x))
(make-method! self set-value!
(lambda (this new-value) (set! x new-value)))
self)
(define (make-description str)
(define self (make-object))
(make-method! self describe (lambda (this) str))
(make-method! self help (lambda (this) "Help not available"))
self)
(define (make-inverter)
(define self (make-object
(make-number 1)
(make-description "A number which can be inverted")))
(define <value> (get-method self value))
(make-method! self invert (lambda (self) (/ 1 (<value> self))))
(make-predicate! self inverter?)
(unmake-method! self help)
(make-method! self help
(lambda (self)
(display "Inverter Methods:") (newline)
(display " (value inverter) ==> n") (newline)))
self)
;;;; Try it out
(define invert! (make-generic-method))
(define x (make-inverter))
(make-method! x invert! (lambda () (set-value! x (/ 1 (value x)))))
(value x) @result{} 1
(set-value! x 33) @result{} undefined
(invert! x) @result{} undefined
(value x) @result{} 1/33
(unmake-method! x invert!) @result{} undefined
(invert! x) @error{} ERROR: Method not supported: x
@end example
@node Parameter lists, Priority Queues, Object, Data Structures
@section Parameter lists
@code{(require 'parameters)}
@noindent
Arguments to procedures in scheme are distinguished from each other by
their position in the procedure call. This can be confusing when a
procedure takes many arguments, many of which are not often used.
@noindent
A @dfn{parameter-list} is a way of passing named information to a
procedure. Procedures are also defined to set unused parameters to
default values, check parameters, and combine parameter lists.
@noindent
A @var{parameter} has the form @code{(@r{parameter-name} @r{value1}
@dots{})}. This format allows for more than one value per
parameter-name.
@noindent
A @var{parameter-list} is a list of @var{parameter}s, each with a
different @var{parameter-name}.
@deffn Function make-parameter-list parameter-names
Returns an empty parameter-list with slots for @var{parameter-names}.
@end deffn
@deffn Function parameter-list-ref parameter-list parameter-name
@var{parameter-name} must name a valid slot of @var{parameter-list}.
@code{parameter-list-ref} returns the value of parameter
@var{parameter-name} of @var{parameter-list}.
@end deffn
@deffn Procedure adjoin-parameters! parameter-list parameter1 @dots{}
Returns @var{parameter-list} with @var{parameter1} @dots{} merged in.
@end deffn
@deffn Procedure parameter-list-expand expanders parameter-list
@var{expanders} is a list of procedures whose order matches the order of
the @var{parameter-name}s in the call to @code{make-parameter-list}
which created @var{parameter-list}. For each non-false element of
@var{expanders} that procedure is mapped over the corresponding
parameter value and the returned parameter lists are merged into
@var{parameter-list}.
This process is repeated until @var{parameter-list} stops growing. The
value returned from @code{parameter-list-expand} is unspecified.
@end deffn
@deffn Function fill-empty-parameters defaults parameter-list
@var{defaults} is a list of lists whose order matches the order of the
@var{parameter-name}s in the call to @code{make-parameter-list} which
created @var{parameter-list}. @code{fill-empty-parameters} returns a
new parameter-list with each empty parameter filled with the
corresponding @var{default}.
@end deffn
@deffn Function check-parameters checks parameter-list
@var{checks} is a list of procedures whose order matches the order of
the @var{parameter-name}s in the call to @code{make-parameter-list}
which created @var{parameter-list}.
@code{check-parameters} returns @var{parameter-list} if each @var{check}
of the corresponding @var{parameter-list} returns non-false. If some
@var{check} returns @code{#f} an error is signaled.
@end deffn
@noindent
In the following procedures @var{arities} is a list of symbols. The
elements of @code{arities} can be:
@table @code
@item single
Requires a single parameter.
@item optional
A single parameter or no parameter is acceptable.
@item boolean
A single boolean parameter or zero parameters is acceptable.
@item nary
Any number of parameters are acceptable.
@item nary1
One or more of parameters are acceptable.
@end table
@deffn Function parameter-list->arglist positions arities types parameter-list
Returns @var{parameter-list} converted to an argument list. Parameters
of @var{arity} type @code{single} and @code{boolean} are converted to
the single value associated with them. The other @var{arity} types are
converted to lists of the value(s) of type @var{types}.
@var{positions} is a list of positive integers whose order matches the
order of the @var{parameter-name}s in the call to
@code{make-parameter-list} which created @var{parameter-list}. The
integers specify in which argument position the corresponding parameter
should appear.
@end deffn
@deffn Function getopt->parameter-list argc argv optnames arities types aliases
Returns @var{argv} converted to a parameter-list. @var{optnames} are
the parameter-names. @var{aliases} is a list of lists of strings and
elements of @var{optnames}. Each of these strings which have length of
1 will be treated as a single @key{-} option by @code{getopt}. Longer
strings will be treated as long-named options (@pxref{Getopt, getopt--}).
@end deffn
@deffn Function getopt->arglist argc argv optnames positions arities types defaults checks aliases
Like @code{getopt->parameter-list}, but converts @var{argv} to an
argument-list as specified by @var{optnames}, @var{positions},
@var{arities}, @var{types}, @var{defaults}, @var{checks}, and
@var{aliases}.
@end deffn
These @code{getopt} functions can be used with SLIB relational
databases. For an example, @xref{Database Utilities,
make-command-server}.
@node Priority Queues, Queues, Parameter lists, Data Structures
@section Priority Queues
@code{(require 'priority-queue)}
@defun make-heap pred<?
Returns a binary heap suitable which can be used for priority queue
operations.
@end defun
@defun heap-length heap
Returns the number of elements in @var{heap}.@refill
@end defun
@deffn Procedure heap-insert! heap item
Inserts @var{item} into @var{heap}. @var{item} can be inserted multiple
times. The value returned is unspecified.@refill
@end deffn
@defun heap-extract-max! heap
Returns the item which is larger than all others according to the
@var{pred<?} argument to @code{make-heap}. If there are no items in
@var{heap}, an error is signaled.@refill
@end defun
The algorithm for priority queues was taken from @cite{Introduction to
Algorithms} by T. Cormen, C. Leiserson, R. Rivest. 1989 MIT Press.
@node Queues, Records, Priority Queues, Data Structures
@section Queues
@code{(require 'queue)}
A @dfn{queue} is a list where elements can be added to both the front
and rear, and removed from the front (i.e., they are what are often
called @dfn{dequeues}). A queue may also be used like a stack.@refill
@defun make-queue
Returns a new, empty queue.
@end defun
@defun queue? obj
Returns @code{#t} if @var{obj} is a queue.
@end defun
@defun queue-empty? q
Returns @code{#t} if the queue @var{q} is empty.
@end defun
@deffn Procedure queue-push! q datum
Adds @var{datum} to the front of queue @var{q}.
@end deffn
@deffn Procedure enquque! q datum
Adds @var{datum} to the rear of queue @var{q}.
@end deffn
All of the following functions raise an error if the queue @var{q} is
empty.@refill
@defun queue-front q
Returns the datum at the front of the queue @var{q}.
@end defun
@defun queue-rear q
Returns the datum at the rear of the queue @var{q}.
@end defun
@deffn Prcoedure queue-pop! q
@deffnx Procedure dequeue! q
Both of these procedures remove and return the datum at the front of the
queue. @code{queue-pop!} is used to suggest that the queue is being
used like a stack.@refill
@end deffn
@node Records, Base Table, Queues, Data Structures
@section Records
@code{(require 'record)}
The Record package provides a facility for user to define their own
record data types.
@defun make-record-type type-name field-names
Returns a @dfn{record-type descriptor}, a value representing a new data
type disjoint from all others. The @var{type-name} argument must be a
string, but is only used for debugging purposes (such as the printed
representation of a record of the new type). The @var{field-names}
argument is a list of symbols naming the @dfn{fields} of a record of the
new type. It is an error if the list contains any duplicates. It is
unspecified how record-type descriptors are represented.@refill
@end defun
@c @defun make-record-sub-type type-name field-names rtd
@c Returns a @dfn{record-type descriptor}, a value representing a new data
@c type, disjoint from all others. The @var{type-name} argument must be a
@c string. The @var{field-names} argument is a list of symbols naming the
@c additional @dfn{fields} to be appended to @var{field-names} of
@c @var{rtd}. It is an error if the combinded list contains any
@c duplicates.@refill
@c
@c Record-modifiers and record-accessors for @var{rtd} work for the new
@c record-sub-type as well. But record-modifiers and record-accessors for
@c the new record-sub-type will not neccessarily work for @var{rtd}.@refill
@c @end defun
@defun record-constructor rtd [field-names]
Returns a procedure for constructing new members of the type represented
by @var{rtd}. The returned procedure accepts exactly as many arguments
as there are symbols in the given list, @var{field-names}; these are
used, in order, as the initial values of those fields in a new record,
which is returned by the constructor procedure. The values of any
fields not named in that list are unspecified. The @var{field-names}
argument defaults to the list of field names in the call to
@code{make-record-type} that created the type represented by @var{rtd};
if the @var{field-names} argument is provided, it is an error if it
contains any duplicates or any symbols not in the default list.@refill
@end defun
@defun record-predicate rtd
Returns a procedure for testing membership in the type represented by
@var{rtd}. The returned procedure accepts exactly one argument and
returns a true value if the argument is a member of the indicated record
type; it returns a false value otherwise.@refill
@end defun
@c @defun record-sub-predicate rtd
@c Returns a procedure for testing membership in the type represented by
@c @var{rtd} or its parents. The returned procedure accepts exactly one
@c argument and returns a true value if the argument is a member of the
@c indicated record type or its parents; it returns a false value
@c otherwise.@refill
@c @end defun
@defun record-accessor rtd field-name
Returns a procedure for reading the value of a particular field of a
member of the type represented by @var{rtd}. The returned procedure
accepts exactly one argument which must be a record of the appropriate
type; it returns the current value of the field named by the symbol
@var{field-name} in that record. The symbol @var{field-name} must be a
member of the list of field-names in the call to @code{make-record-type}
that created the type represented by @var{rtd}.@refill
@end defun
@defun record-modifier rtd field-name
Returns a procedure for writing the value of a particular field of a
member of the type represented by @var{rtd}. The returned procedure
accepts exactly two arguments: first, a record of the appropriate type,
and second, an arbitrary Scheme value; it modifies the field named by
the symbol @var{field-name} in that record to contain the given value.
The returned value of the modifier procedure is unspecified. The symbol
@var{field-name} must be a member of the list of field-names in the call
to @code{make-record-type} that created the type represented by
@var{rtd}.@refill
@end defun
@defun record? obj
Returns a true value if @var{obj} is a record of any type and a false
value otherwise. Note that @code{record?} may be true of any Scheme
value; of course, if it returns true for some particular value, then
@code{record-type-descriptor} is applicable to that value and returns an
appropriate descriptor.@refill
@end defun
@defun record-type-descriptor record
Returns a record-type descriptor representing the type of the given
record. That is, for example, if the returned descriptor were passed to
@code{record-predicate}, the resulting predicate would return a true
value when passed the given record. Note that it is not necessarily the
case that the returned descriptor is the one that was passed to
@code{record-constructor} in the call that created the constructor
procedure that created the given record.@refill
@end defun
@defun record-type-name rtd
Returns the type-name associated with the type represented by rtd. The
returned value is @code{eqv?} to the @var{type-name} argument given in
the call to @code{make-record-type} that created the type represented by
@var{rtd}.@refill
@end defun
@defun record-type-field-names rtd
Returns a list of the symbols naming the fields in members of the type
represented by @var{rtd}. The returned value is @code{equal?} to the
field-names argument given in the call to @code{make-record-type} that
created the type represented by @var{rtd}.@refill
@end defun
@node Base Table, Relational Database, Records, Data Structures
@section Base Table
A base table implementation using Scheme association lists is available
as the value of the identifier @code{alist-table} after doing:
@example
(require 'alist-table)
@end example
Association list base tables are suitable for small databases and
support all Scheme types when temporary and readable/writeable Scheme
types when saved. I hope support for other base table implementations
will be added in the future.
This rest of this section documents the interface for a base table
implementation from which the @ref{Relational Database} package
constructs a Relational system. It will be of interest primarily to
those wishing to port or write new base-table implementations.
All of these functions are accessed through a single procedure by
calling that procedure with the symbol name of the operation. A
procedure will be returned if that operation is supported and @code{#f}
otherwise. For example:
@example
@group
(require 'alist-table)
(define open-base (alist-table 'make-base))
make-base @result{} *a procedure*
(define foo (alist-table 'foo))
foo @result{} #f
@end group
@end example
@defun make-base filename key-dimension column-types
Returns a new, open, low-level database (collection of tables)
associated with @var{filename}. This returned database has an empty
table associated with @var{catalog-id}. The positive integer
@var{key-dimension} is the number of keys composed to make a
@var{primary-key} for the catalog table. The list of symbols
@var{column-types} describes the types of each column for that table.
If the database cannot be created as specified, @code{#f} is returned.
Calling the @code{close-base} method on this database and possibly other
operations will cause @var{filename} to be written to. If
@var{filename} is @code{#f} a temporary, non-disk based database will be
created if such can be supported by the base table implelentation.
@end defun
@defun open-base filename mutable
Returns an open low-level database associated with @var{filename}. If
@var{mutable?} is @code{#t}, this database will have methods capable of
effecting change to the database. If @var{mutable?} is @code{#f}, only
methods for inquiring the database will be available. If the database
cannot be opened as specified @code{#f} is returned.
Calling the @code{close-base} (and possibly other) method on a
@var{mutable?} database will cause @var{filename} to be written to.
@end defun
@defun write-base lldb filename
Causes the low-level database @var{lldb} to be written to
@var{filename}. If the write is successful, also causes @var{lldb} to
henceforth be associated with @var{filename}. Calling the
@code{close-database} (and possibly other) method on @var{lldb} may
cause @var{filename} to be written to. If @var{filename} is @code{#f}
this database will be changed to a temporary, non-disk based database if
such can be supported by the underlying base table implelentation. If
the operations completed successfully, @code{#t} is returned.
Otherwise, @code{#f} is returned.
@end defun
@defun sync-base lldb
Causes the file associated with the low-level database @var{lldb} to be
updated to reflect its current state. If the associated filename is
@code{#f}, no action is taken and @code{#f} is returned. If this
operation completes successfully, @code{#t} is returned. Otherwise,
@code{#f} is returned.
@end defun
@defun close-base lldb
Causes the low-level database @var{lldb} to be written to its associated
file (if any). If the write is successful, subsequent operations to
@var{lldb} will signal an error. If the operations complete
successfully, @code{#t} is returned. Otherwise, @code{#f} is returned.
@end defun
@defun make-table lldb key-dimension column-types
Returns the @var{base-id} for a new base table, otherwise returns
@code{#f}. The base table can then be opened using @code{(open-table
@var{lldb} @var{base-id})}. The positive integer @var{key-dimension} is
the number of keys composed to make a @var{primary-key} for this table.
The list of symbols @var{column-types} describes the types of each
column.
@end defun
@defvr Constant catalog-id
A constant @var{base-id} suitable for passing as a parameter to
@code{open-table}. @var{catalog-id} will be used as the base table for
the system catalog.
@end defvr
@defun open-table lldb base-id key-dimension column-types
Returns a @var{handle} for an existing base table in the low-level
database @var{lldb} if that table exists and can be opened in the mode
indicated by @var{mutable?}, otherwise returns @code{#f}.
As with @code{make-table}, the positive integer @var{key-dimension} is
the number of keys composed to make a @var{primary-key} for this table.
The list of symbols @var{column-types} describes the types of each
column.
@end defun
@defun kill-table lldb base-id key-dimension column-types
Returns @code{#t} if the base table associated with @var{base-id} was
removed from the low level database @var{lldb}, and @code{#f} otherwise.
@end defun
@defun make-keyifier-1 type
Returns a procedure which accepts a single argument which must be of
type @var{type}. This returned procedure returns an object suitable for
being a @var{key} argument in the functions whose descriptions follow.
Any 2 arguments of the supported type passed to the returned function
which are not @code{equal?} must result in returned values which are not
@code{equal?}.
@end defun
@defun make-list-keyifier key-dimension types
The list of symbols @var{types} must have at least @var{key-dimension}
elements. Returns a procedure which accepts a list of length
@var{key-dimension} and whose types must corresopond to the types named
by @var{types}. This returned procedure combines the elements of its
list argument into an object suitable for being a @var{key} argument in
the functions whose descriptions follow.
Any 2 lists of supported types (which must at least include symbols and
non-negative integers) passed to the returned function which are not
@code{equal?} must result in returned values which are not
@code{equal?}.
@end defun
@defun make-key-extractor key-dimension types column-number
Returns a procedure which accepts objects produced by application of the
result of @code{(make-list-keyifier @var{key-dimension} @var{types})}.
This procedure returns a @var{key} which is @code{equal?} to the
@var{column-number}th element of the list which was passed to create
@var{combined-key}. The list @var{types} must have at least
@var{key-dimension} elements.
@end defun
@defun make-key->list key-dimension types
Returns a procedure which accepts objects produced by application of the
result of @code{(make-list-keyifier @var{key-dimension} @var{types})}.
This procedure returns a list of @var{key}s which are elementwise
@code{equal?} to the list which was passed to create @var{combined-key}.
@end defun
@noindent
In the following functions, the @var{key} argument can always be assumed
to be the value returned by a call to a @emph{keyify} routine.
@defun for-each-key handle procedure
Calls @var{procedure} once with each @var{key} in the table opened in
@var{handle} in an unspecified order. An unspecified value is returned.
@end defun
@defun map-key handle procedure
Returns a list of the values returned by calling @var{procedure} once
with each @var{key} in the table opened in @var{handle} in an
unspecified order.
@end defun
@defun ordered-for-each-key handle procedure
Calls @var{procedure} once with each @var{key} in the table opened in
@var{handle} in the natural order for the types of the primary key
fields of that table. An unspecified value is returned.
@end defun
@defun present? handle key
Returns a non-@code{#f} value if there is a row associated with
@var{key} in the table opened in @var{handle} and @code{#f} otherwise.
@end defun
@defun delete handle key
Removes the row associated with @var{key} from the table opened in
@var{handle}. An unspecified value is returned.
@end defun
@defun make-getter key-dimension types
Returns a procedure which takes arguments @var{handle} and @var{key}.
This procedure returns a list of the non-primary values of the relation
(in the base table opened in @var{handle}) whose primary key is
@var{key} if it exists, and @code{#f} otherwise.
@end defun
@defun make-putter key-dimension types
Returns a procedure which takes arguments @var{handle} and @var{key} and
@var{value-list}. This procedure associates the primary key @var{key}
with the values in @var{value-list} (in the base table opened in
@var{handle}) and returns an unspecified value.
@end defun
@defun supported-type? symbol
Returns @code{#t} if @var{symbol} names a type allowed as a column value
by the implementation, and @code{#f} otherwise. At a minimum, an
implementation must support the types @code{integer}, @code{symbol},
@code{string}, @code{boolean}, and @code{base-id}.
@end defun
@defun supported-key-type? symbol
Returns @code{#t} if @var{symbol} names a type allowed as a key value by
the implementation, and @code{#f} otherwise. At a minimum, an
implementation must support the types @code{integer}, and @code{symbol}.
@end defun
@table @code
@item integer
Scheme exact integer.
@item symbol
Scheme symbol.
@item boolean
@code{#t} or @code{#f}.
@item base-id
Objects suitable for passing as the @var{base-id} parameter to
@code{open-table}. The value of @var{catalog-id} must be an acceptable
@code{base-id}.
@end table
@node Relational Database, Weight-Balanced Trees, Base Table, Data Structures
@section Relational Database
@code{(require 'relational-database)}
This package implements a database system inspired by the Relational
Model (@cite{E. F. Codd, A Relational Model of Data for Large Shared
Data Banks}). An SLIB relational database implementation can be created
from any @ref{Base Table} implementation.
@menu
* Motivations:: Database Manifesto
* Creating and Opening Relational Databases::
* Relational Database Operations::
* Table Operations::
* Catalog Representation::
* Unresolved Issues::
* Database Utilities:: 'database-utilities
@end menu
@node Motivations, Creating and Opening Relational Databases, Relational Database, Relational Database
@subsection Motivations
Most nontrivial programs contain databases: Makefiles, configure
scripts, file backup, calendars, editors, source revision control, CAD
systems, display managers, menu GUIs, games, parsers, debuggers,
profilers, and even error reporting are all rife with databases. Coding
databases is such a common activity in programming that many may not be
aware of how often they do it.
A database often starts as a dispatch in a program. The author, perhaps
because of the need to make the dispatch configurable, the need for
correlating dispatch in other routines, or because of changes or growth,
devises a data structure to contain the information, a routine for
interpreting that data structure, and perhaps routines for augmenting
and modifying the stored data. The dispatch must be converted into this
form and tested.
The programmer may need to devise an interactive program for enabling
easy examination and modification of the information contained in this
database. Often, in an attempt to foster modularity and avoid delays in
release, intermediate file formats for the database information are
devised. It often turns out that users prefer modifying these
intermediate files with a text editor to using the interactive program
in order to do operations (such as global changes) not forseen by the
program's author.
In order to address this need, the concientous software engineer may
even provide a scripting language to allow users to make repetitive
database changes. Users will grumble that they need to read a large
manual and learn yet another programming language (even if it
@emph{almost} has language "xyz" syntax) in order to do simple
configuration.
All of these facilities need to be designed, coded, debugged,
documented, and supported; often causing what was very simple in concept
to become a major developement project.
This view of databases just outlined is somewhat the reverse of the view
of the originators of the @dfn{Relational Model} of database
abstraction. The relational model was devised to unify and allow
interoperation of large multi-user databases running on diverse
platforms. A fairly general purpose "Comprehensive Language" for
database manipulations is mandated (but not specified) as part of the
relational model for databases.
One aspect of the Relational Model of some importance is that the
"Comprehensive Language" must be expressible in some form which can be
stored in the database. This frees the programmer from having to make
programs data-driven in order to use a database.
This package includes as one of its basic supported types Scheme
@dfn{expression}s. This type allows expressions as defined by the
Scheme standards to be stored in the database. Using @code{slib:eval}
retrieved expressions can be evaluated (in the top-level environment).
Scheme's @code{lambda} facilitates closure of environments, modularity,
etc. so that procedures (which could not be stored directly most
databases) can still be effectively retrieved. Since @code{slib:eval}
evaluates expressions in the top-level environment, built-in and user
defined procedures can be easily accessed by name.
This package's purpose is to standardize (through a common interface)
database creation and usage in Scheme programs. The relational model's
provision for inclusion of language expressions as data as well as the
description (in tables, of course) of all of its tables assures that
relational databases are powerful enough to assume the roles currently
played by thousands of ad-hoc routines and data formats.
@noindent
Such standardization to a relational-like model brings many benefits:
@itemize @bullet
@item
Tables, fields, domains, and types can be dealt with by name in
programs.
@item
The underlying database implementation can be changed (for
performance or other reasons) by changing a single line of code.
@item
The formats of tables can be easily extended or changed without
altering code.
@item
Consistency checks are specified as part of the table descriptions.
Changes in checks need only occur in one place.
@item
All the configuration information which the developer wishes to group
together is easily grouped, without needing to change programs aware of
only some of these tables.
@item
Generalized report generators, interactive entry programs, and other
database utilities can be part of a shared library. The burden of
adding configurability to a program is greatly reduced.
@item
Scheme is the "comprehensive language" for these databases. Scripting
for configuration no longer needs to be in a separate language with
additional documentation.
@item
Scheme's latent types mesh well with the strict typing and logical
requirements of the relational model.
@item
Portable formats allow easy interchange of data. The included table
descriptions help prevent misinterpretation of format.
@end itemize
@node Creating and Opening Relational Databases, Relational Database Operations, Motivations, Relational Database
@subsection Creating and Opening Relational Databases
@defun make-relational-system base-table-implementation
Returns a procedure implementing a relational database using the
@var{base-table-implementation}.
All of the operations of a base table implementation are accessed
through a procedure defined by @code{require}ing that implementation.
Similarly, all of the operations of the relational database
implementation are accessed through the procedure returned by
@code{make-relational-system}. For instance, a new relational database
could be created from the procedure returned by
@code{make-relational-system} by:
@example
(require 'alist-table)
(define relational-alist-system
(make-relational-system alist-table))
(define create-alist-database
(relational-alist-system 'create-database))
(define my-database
(create-alist-database "mydata.db"))
@end example
@end defun
@noindent
What follows are the descriptions of the methods available from
relational system returned by a call to @code{make-relational-system}.
@defun create-database filename
Returns an open, nearly empty relational database associated with
@var{filename}. The only tables defined are the system catalog and
domain table. Calling the @code{close-database} method on this database
and possibly other operations will cause @var{filename} to be written
to. If @var{filename} is @code{#f} a temporary, non-disk based database
will be created if such can be supported by the underlying base table
implelentation. If the database cannot be created as specified
@code{#f} is returned. For the fields and layout of descriptor tables,
@xref{Catalog Representation}
@end defun
@defun open-database filename mutable?
Returns an open relational database associated with @var{filename}. If
@var{mutable?} is @code{#t}, this database will have methods capable of
effecting change to the database. If @var{mutable?} is @code{#f}, only
methods for inquiring the database will be available. Calling the
@code{close-database} (and possibly other) method on a @var{mutable?}
database will cause @var{filename} to be written to. If the database
cannot be opened as specified @code{#f} is returned.
@end defun
@node Relational Database Operations, Table Operations, Creating and Opening Relational Databases, Relational Database
@subsection Relational Database Operations
@noindent
These are the descriptions of the methods available from an open
relational database. A method is retrieved from a database by calling
the database with the symbol name of the operation. For example:
@example
(define my-database
(create-alist-database "mydata.db"))
(define telephone-table-desc
((my-database 'create-table) 'telephone-table-desc))
@end example
@defun close-database
Causes the relational database to be written to its associated file (if
any). If the write is successful, subsequent operations to this
database will signal an error. If the operations completed
successfully, @code{#t} is returned. Otherwise, @code{#f} is returned.
@end defun
@defun write-database filename
Causes the relational database to be written to @var{filename}. If the
write is successful, also causes the database to henceforth be
associated with @var{filename}. Calling the @code{close-database} (and
possibly other) method on this database will cause @var{filename} to be
written to. If @var{filename} is @code{#f} this database will be
changed to a temporary, non-disk based database if such can be supported
by the underlying base table implelentation. If the operations
completed successfully, @code{#t} is returned. Otherwise, @code{#f} is
returned.
@end defun
@defun table-exists? table-name
Returns @code{#t} if @var{table-name} exists in the system catalog,
otherwise returns @code{#f}.
@end defun
@defun open-table table-name mutable?
Returns a @dfn{methods} procedure for an existing relational table in
this database if it exists and can be opened in the mode indicated by
@var{mutable?}, otherwise returns @code{#f}.
@end defun
@noindent
These methods will be present only in databases which are
@var{mutable?}.
@defun delete-table table-name
Removes and returns the @var{table-name} row from the system catalog if
the table or view associated with @var{table-name} gets removed from the
database, and @code{#f} otherwise.
@end defun
@defun create-table table-desc-name
Returns a methods procedure for a new (open) relational table for
describing the columns of a new base table in this database, otherwise
returns @code{#f}. For the fields and layout of descriptor tables,
@xref{Catalog Representation}.
@defunx create-table table-name table-desc-name
Returns a methods procedure for a new (open) relational table with
columns as described by @var{table-desc-name}, otherwise returns
@code{#f}.
@end defun
@defun create-view ??
@defunx project-table ??
@defunx restrict-table ??
@defunx cart-prod-tables ??
Not yet implemented.
@end defun
@node Table Operations, Catalog Representation, Relational Database Operations, Relational Database
@subsection Table Operations
@noindent
These are the descriptions of the methods available from an open
relational table. A method is retrieved from a table by calling
the table with the symbol name of the operation. For example:
@example
@group
(define telephone-table-desc
((my-database 'create-table) 'telephone-table-desc))
(require 'common-list-functions)
(define ndrp (telephone-table-desc 'row:insert))
(ndrp '(1 #t name #f string))
(ndrp '(2 #f telephone
(lambda (d)
(and (string? d) (> (string-length d) 2)
(every
(lambda (c)
(memv c '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9
#\+ #\( #\ #\) #\-)))
(string->list d))))
string))
@end group
@end example
@noindent
Operations on a single column of a table are retrieved by giving the
column name as the second argument to the methods procedure. For
example:
@example
(define column-ids ((telephone-table-desc 'get* 'column-number)))
@end example
@noindent
Some operations described below require primary key arguments. Primary
keys arguments are denoted @var{key1} @var{key2} @dots{}. It is an
error to call an operation for a table which takes primary key arguments
with the wrong number of primary keys for that table.
@noindent
The term @dfn{row} used below refers to a Scheme list of values (one for
each column) in the order specified in the descriptor (table) for this
table. Missing values appear as @code{#f}. Primary keys may not
be missing.
@defun get key1 key2 @dots{}
Returns the value for the specified column of the row associated with
primary keys @var{key1}, @var{key2} @dots{} if it exists, or @code{#f}
otherwise.
@defunx get*
Returns a list of the values for the specified column for all rows in
this table.
@defunx row:retrieve key1 key2 @dots{}
Returns the row associated with primary keys @var{key1}, @var{key2}
@dots{} if it exists, or @code{#f} otherwise.
@defunx row:retrieve*
Returns a list of all rows in this table.
@end defun
@defun row:remove key1 key2 @dots{}
Removes and returns the row associated with primary keys @var{key1},
@var{key2} @dots{} if it exists, or @code{#f} otherwise.
@defunx row:remove*
Removes and returns a list of all rows in this table.
@end defun
@defun row:delete key1 key2 @dots{}
Deletes the row associated with primary keys @var{key1}, @var{key2}
@dots{} if it exists. The value returned is unspecified.
@defunx row:delete*
Deletes all rows in this table. The value returned is unspecified. The
descriptor table and catalog entry for this table are not affected.
@end defun
@defun row:update row
Adds the row, @var{row}, to this table. If a row for the primary key(s)
specified by @var{row} already exists in this table, it will be
overwritten. The value returned is unspecified.
@defunx row:update* rows
Adds each row in the list @var{rows}, to this table. If a row for the
primary key specified by an element of @var{rows} already exists in this
table, it will be overwritten. The value returned is unspecified.
@end defun
@defun row:insert row
Adds the row @var{row} to this table. If a row for the primary key(s)
specified by @var{row} already exists in this table an error is
signaled. The value returned is unspecified.
@defunx row:insert* rows
Adds each row in the list @var{rows}, to this table. If a row for the
primary key specified by an element of @var{rows} already exists in this
table, an error is signaled. The value returned is unspecified.
@end defun
@defun for-each-row proc
Calls @var{proc} with each @var{row} in this table in the natural
ordering for the primary key types. @emph{Real} relational programmers
would use some least-upper-bound join for every row to get them in
order; But we don't have joins yet.
@end defun
@defun close-table
Subsequent operations to this table will signal an error.
@end defun
@defvr Constant column-names
@defvrx Constant column-foreigns
@defvrx Constant column-domains
@defvrx Constant column-types
Return a list of the column names, foreign-key table names, domain
names, or type names respectively for this table. These 4 methods are
different from the others in that the list is returned, rather than a
procedure to obtain the list.
@defvrx Constant primary-limit
Returns the number of primary keys fields in the relations in this
table.
@end defvr
@node Catalog Representation, Unresolved Issues, Table Operations, Relational Database
@subsection Catalog Representation
@noindent
Each database (in an implementation) has a @dfn{system catalog} which
describes all the user accessible tables in that database (including
itself).
@noindent
The system catalog base table has the following fields. @code{PRI}
indicates a primary key for that table.
@example
@group
PRI table-name
column-limit the highest column number
coltab-name descriptor table name
bastab-id data base table identifier
user-integrity-rule
view-procedure A scheme thunk which, when called,
produces a handle for the view. coltab
and bastab are specified if and only if
view-procedure is not.
@end group
@end example
@noindent
Descriptors for base tables (not views) are tables (pointed to by
system catalog). Descriptor (base) tables have the fields:
@example
@group
PRI column-number sequential integers from 1
primary-key? boolean TRUE for primary key components
column-name
column-integrity-rule
domain-name
@end group
@end example
@noindent
A @dfn{primary key} is any column marked as @code{primary-key?} in the
corresponding descriptor table. All the @code{primary-key?} columns
must have lower column numbers than any non-@code{primary-key?} columns.
Every table must have at least one primary key. Primary keys must be
sufficient to distinguish all rows from each other in the table. All of
the system defined tables have a single primary key.
@noindent
This package currently supports tables having from 1 to 4 primary keys
if there are non-primary columns, and any (natural) number if @emph{all}
columns are primary keys. If you need more than 4 primary keys, I would
like to hear what you are doing!
@noindent
A @dfn{domain} is a category describing the allowable values to occur in
a column. It is described by a (base) table with the fields:
@example
@group
PRI domain-name
foreign-table
domain-integrity-rule
type-id
type-param
@end group
@end example
@noindent
The @dfn{type-id} field value is a symbol. This symbol may be used by
the underlying base table implementation in storing that field.
@noindent
If the @code{foreign-table} field is non-@code{#f} then that field names
a table from the catalog. The values for that domain must match a
primary key of the table referenced by the @var{type-param} (or
@code{#f}, if allowed). This package currently does not support
composite foreign-keys.
@noindent
The types for which support is planned are:
@example
@group
atom
symbol
string [<length>]
number [<base>]
money <currency>
date-time
boolean
foreign-key <table-name>
expression
virtual <expression>
@end group
@end example
@node Unresolved Issues, Database Utilities, Catalog Representation, Relational Database
@subsection Unresolved Issues
Although @file{rdms.scm} is not large I found it very difficult to write
(six rewrites). I am not aware of any other examples of a generalized
relational system (although there is little new in CS). I left out
several aspects of the Relational model in order to simplify the job.
The major features lacking (which might be addressed portably) are
views, transaction boundaries, and protection.
Protection needs a model for specifying priveledges. Given how
operations are accessed from handles it should not be difficult to
restrict table accesses to those allowed for that user.
The system catalog has a field called @code{view-procedure}. This
should allow a purely functional implementation of views. This will
work but is unsatisfying for views resulting from a @dfn{select}ion
(subset of rows); for whole table operations it will not be possible to
reduce the number of keys scanned over when the selection is specified
only by an opaque procedure.
Transaction boundaries present the most intriguing area. Transaction
boundaries are actually a feature of the "Comprehensive Language" of the
Relational database and not of the database. Scheme would seem to
provide the opportunity for an extremely clean semantics for transaction
boundaries since the builtin procedures with side effects are small in
number and easily identified.
These side-effect builtin procedures might all be portably redefined to
versions which properly handled transactions. Compiled library routines
would need to be recompiled as well. Many system extensions
(delete-file, system, etc.) would also need to be redefined.
@noindent
There are 2 scope issues that must be resolved for multiprocess
transaction boundaries:
@table @asis
@item Process scope
The actions captured by a transaction should be only for the process
which invoked the start of transaction. Although standard Scheme does
not provide process primitives as such, @code{dynamic-wind} would
provide a workable hook into process switching for many implementations.
@item Shared utilities with state
Some shared utilities have state which should @emph{not} be part of a
transaction. An example would be calling a pseudo-random number
generator. If the success of a transaction depended on the
pseudo-random number and failed, the state of the generator would be set
back. Subsequent calls would keep returning the same number and keep
failing.
Pseudo-random number generators are not reentrant and so would require
locks in order to operate properly in a multiprocess environment. Are
all examples of utilities whose state should not part of transactions
also non-reentrant? If so, perhaps suspending transaction capture for
the duration of locks would fix it.
@end table
@node Database Utilities, , Unresolved Issues, Relational Database
@subsection Database Utilities
@code{(require 'database-utilities)}
@noindent
This enhancement wraps a utility layer on @code{relational-database}
which provides:
@itemize @bullet
@item
Automatic loading of the appropriate base-table package when opening a
database.
@item
Automatic execution of initialization commands stored in database.
@item
Transparent execution of database commands stored in @code{*commands*}
table in database.
@end itemize
@noindent
Also included are utilities which provide:
@itemize @bullet
@item
Data definition from Scheme lists and
@item
Report generation
@end itemize
@noindent
for any SLIB relational database.
@defun create-database filename base-table-type
Returns an open, nearly empty enhanced (with @code{*commands*} table)
relational database (with base-table type @var{base-table-type})
associated with @var{filename}.
@end defun
@defun open-database filename
@defunx open-database filename base-table-type
Returns an open enchanced relational database associated with
@var{filename}. The database will be opened with base-table type
@var{base-table-type}) if supplied. If @var{base-table-type} is not
supplied, @code{open-database} will attempt to deduce the correct
base-table-type. If the database can not be opened or if it lacks the
@code{*commands*} table, @code{#f} is returned.
@defunx open-database! filename
@defunx open-database! filename base-table-type
Returns @emph{mutable} open enchanced relational database @dots{}
@end defun
@noindent
The table @code{*commands*} in an @dfn{enhanced} relational-database has
the fields (with domains):
@example
@group
PRI name symbol
parameters parameter-list
procedure expression
documentation string
@end group
@end example
The @code{parameters} field is a foreign key (domain
@code{parameter-list}) of the @code{*catalog-data*} table and should
have the value of a table described by @code{*parameter-columns*}. This
@code{parameter-list} table describes the arguments suitable for passing
to the associated command. The intent of this table is to be of a form
such that different user-interfaces (for instance, pull-down menus or
plain-text queries) can operate from the same table. A
@code{parameter-list} table has the following fields:
@example
@group
PRI index uint
name symbol
arity parameter-arity
domain domain
default expression
documentation string
@end group
@end example
The @code{arity} field can take the values:
@table @code
@item single
Requires a single parameter of the specified domain.
@item optional
A single parameter of the specified domain or zero parameters is
acceptable.
@item boolean
A single boolean parameter or zero parameters (in which case @code{#f}
is substituted) is acceptable.
@item nary
Any number of parameters of the specified domain are acceptable. The
argument passed to the command function is always a list of the
parameters.
@item nary1
One or more of parameters of the specified domain are acceptable. The
argument passed to the command function is always a list of the
parameters.
@end table
The @code{domain} field specifies the domain which a parameter or
parameters in the @code{index}th field must satisfy.
The @code{default} field is an expression whose value is either
@code{#f} or a procedure of no arguments which returns a parameter or
parameter list as appropriate. If the expression's value is @code{#f}
then no default is appropriate for this parameter. Note that since the
@code{default} procedure is called every time a default parameter is
needed for this column, @dfn{sticky} defaults can be implemented using
shared state with the domain-integrity-rule.
@subsubheading Invoking Commands
When an enhanced relational-database is called with a symbol which
matches a @var{name} in the @code{*commands*} table, the associated
procedure expression is evaluated and applied to the enhanced
relational-database. A procedure should then be returned which the user
can invoke on (optional) arguments.
The command @code{*initialize*} is special. If present in the
@code{*commands*} table, @code{open-database} or @code{open-database!}
will return the value of the @code{*initialize*} command. Notice that
arbitrary code can be run when the @code{*initialize*} procedure is
automatically applied to the enhanced relational-database.
Note also that if you wish to shadow or hide from the user
relational-database methods described in @ref{Relational Database
Operations}, this can be done by a dispatch in the closure returned by
the @code{*initialize*} expression rather than by entries in the
@code{*commands*} table if it is desired that the underlying methods
remain accessible to code in the @code{*commands*} table.
@defun make-command-server rdb table-name
Returns a procedure of 2 arguments, a (symbol) command and a call-back
procedure. When this returned procedure is called, it looks up
@var{command} in table @var{table-name} and calls the call-back
procedure with arguments:
@table @var
@item command
The @var{command}
@item command-value
The result of evaluating the expression in the @var{procedure} field of
@var{table-name} and calling it with @var{rdb}.
@item parameter-name
A list of the @dfn{official} name of each parameter. Corresponds to the
@code{name} field of the @var{command}'s parameter-table.
@item positions
A list of the positive integer index of each parameter. Corresponds to
the @code{index} field of the @var{command}'s parameter-table.
@item arities
A list of the arities of each parameter. Corresponds to the
@code{arity} field of the @var{command}'s parameter-table. For a
description of @code{arity} see table above.
@item defaults
A list of the defaults for each parameter. Corresponds to
the @code{defaults} field of the @var{command}'s parameter-table.
@item domain-integrity-rules
A list of procedures (one for each parameter) which tests whether a
value for a parameter is acceptable for that parameter. The procedure
should be called with each datum in the list for @code{nary} arity
parameters.
@item aliases
A list of lists of @code{(@r{alias} @r{parameter-name})}. There can be
more than one alias per @var{parameter-name}.
@end table
@end defun
For information about parameters, @xref{Parameter lists}. Here is an
example of setting up a command with arguments and parsing those
arguments from a @code{getopt} style argument list (@pxref{Getopt}).
@example
(require 'database-utilities)
(require 'parameters)
(require 'getopt)
(define my-rdb (create-database #f 'alist-table))
(define-tables my-rdb
'(foo-params
*parameter-columns*
*parameter-columns*
((1 first-argument single string "hithere" "first argument")
(2 flag boolean boolean #f "a flag")))
'(foo-pnames
((name string))
((parameter-index uint))
(("l" 1)
("a" 2)))
'(my-commands
((name symbol))
((parameters parameter-list)
(parameter-names parameter-name-translation)
(procedure expression)
(documentation string))
((foo
foo-params
foo-pnames
(lambda (rdb) (lambda (foo aflag) (print foo aflag)))
"test command arguments"))))
(define (dbutil:serve-command-line rdb command-table
command argc argv)
(set! argv (if (vector? argv) (vector->list argv) argv))
((make-command-server rdb command-table)
command
(lambda (comname comval options positions
arities types defaults dirs aliases)
(apply comval (getopt->arglist argc argv options positions
arities types defaults dirs aliases)))))
(define (test)
(set! *optind* 1)
(dbutil:serve-command-line
my-rdb 'my-commands 'foo 4 '("dummy" "-l" "foo" "-a")))
(test)
@print{}
"foo" #t
@end example
Some commands are defined in all extended relational-databases. The are
called just like @ref{Relational Database Operations}.
@defun add-domain domain-row
Adds @var{domain-row} to the @dfn{domains} table if there is no row in
the domains table associated with key @code{(car @var{domain-row})} and
returns @code{#t}. Otherwise returns @code{#f}.
For the fields and layout of the domain table, @xref{Catalog
Representation}
@end defun
@defun delete-domain domain-name
Removes and returns the @var{domain-name} row from the @dfn{domains}
table.
@end defun
@defun domain-checker domain
Returns a procedure to check an argument for conformance to domain
@var{domain}.
@end defun
@subheading Defining Tables
@deffn Procedure define-tables rdb spec-0 @dots{}
Adds tables as specified in @var{spec-0} @dots{} to the open
relational-database @var{rdb}. Each @var{spec} has the form:
@lisp
(@r{<name>} @r{<descriptor-name>} @r{<descriptor-name>} @r{<rows>})
@end lisp
or
@lisp
(@r{<name>} @r{<primary-key-fields>} @r{<other-fields>} @r{<rows>})
@end lisp
where @r{<name>} is the table name, @r{<descriptor-name>} is the symbol
name of a descriptor table, @r{<primary-key-fields>} and
@r{<other-fields>} describe the primary keys and other fields
respectively, and @r{<rows>} is a list of data rows to be added to the
table.
@r{<primary-key-fields>} and @r{<other-fields>} are lists of field
descriptors of the form:
@lisp
(@r{<column-name>} @r{<domain>})
@end lisp
or
@lisp
(@r{<column-name>} @r{<domain>} @r{<column-integrity-rule>})
@end lisp
where @r{<column-name>} is the column name, @r{<domain>} is the domain
of the column, and @r{<column-integrity-rule>} is an expression whose
value is a procedure of one argument (and returns non-@code{#f} to
signal an error).
If @r{<domain>} is not a defined domain name and it matches the name of
this table or an already defined (in one of @var{spec-0} @dots{}) single
key field table, a foriegn-key domain will be created for it.
@end deffn
@deffn Procedure create-report rdb destination report-name table
@deffnx Procedure create-report rdb destination report-name
The symbol @var{report-name} must be primary key in the table named
@code{*reports*} in the relational database @var{rdb}.
@var{destination} is a port, string, or symbol. If @var{destination} is
a:
@table @asis
@item port
The table is created as ascii text and written to that port.
@item string
The table is created as ascii text and written to the file named by
@var{destination}.
@item symbol
@var{destination} is the primary key for a row in the table named *printers*.
@end table
Each row in the table *reports* has the fields:
@table @asis
@item name
The report name.
@item default-table
The table to report on if none is specified.
@item header, footer
A @code{format} string. At the beginning and end of each page
respectively, @code{format} is called with this string and the (list of)
column-names of this table.
@item reporter
A @code{format} string. For each row in the table, @code{format} is
called with this string and the row.
@item minimum-break
The minimum number of lines into which the report lines for a row can be
broken. Use @code{0} if a row's lines should not be broken over page
boundaries.
@end table
Each row in the table *printers* has the fields:
@table @asis
@item name
The printer name.
@item print-procedure
The procedure to call to actually print.
@end table
The report is prepared as follows:
@itemize
@item
@code{Format} (@pxref{Format}) is called with the @code{header} field
and the (list of) @code{column-names} of the table.
@item
@code{Format} is called with the @code{reporter} field and (on
successive calls) each record in the natural order for the table. A
count is kept of the number of newlines output by format. When the
number of newlines to be output exceeds the number of lines per page,
the set of lines will be broken if there are more than
@code{minimum-break} left on this page and the number of lines for this
row is larger or equal to twice @code{minimum-break}.
@item
@code{Format} is called with the @code{footer} field and the (list of)
@code{column-names} of the table. The footer field should not output a
newline.
@item
A new page is output.
@item
This entire process repeats until all the rows are output.
@end itemize
@end deffn
@noindent
The following example shows a new database with the name of
@file{foo.db} being created with tables describing processor families
and processor/os/compiler combinations.
@noindent
The database command @code{define-tables} is defined to call
@code{define-tables} with its arguments. The database is also
configured to print @samp{Welcome} when the database is opened. The
database is then closed and reopened.
@example
(require 'database-utilities)
(define my-rdb (create-database "foo.db" 'alist-table))
(define-tables my-rdb
'(*commands*
((name symbol))
((parameters parameter-list)
(procedure expression)
(documentation string))
((define-tables
no-parameters
no-parameter-names
(lambda (rdb) (lambda specs (apply define-tables rdb specs)))
"Create or Augment tables from list of specs")
(*initialize*
no-parameters
no-parameter-names
(lambda (rdb) (display "Welcome") (newline) rdb)
"Print Welcome"))))
((my-rdb 'define-tables)
'(processor-family
((family atom))
((also-ran processor-family))
((m68000 #f)
(m68030 m68000)
(i386 8086)
(8086 #f)
(powerpc #f)))
'(platform
((name symbol))
((processor processor-family)
(os symbol)
(compiler symbol))
((aix powerpc aix -)
(amiga-dice-c m68000 amiga dice-c)
(amiga-aztec m68000 amiga aztec)
(amiga-sas/c-5.10 m68000 amiga sas/c)
(atari-st-gcc m68000 atari gcc)
(atari-st-turbo-c m68000 atari turbo-c)
(borland-c-3.1 8086 ms-dos borland-c)
(djgpp i386 ms-dos gcc)
(linux i386 linux gcc)
(microsoft-c 8086 ms-dos microsoft-c)
(os/2-emx i386 os/2 gcc)
(turbo-c-2 8086 ms-dos turbo-c)
(watcom-9.0 i386 ms-dos watcom))))
((my-rdb 'close-database))
(set! my-rdb (open-database "foo.db" 'alist-table))
@print{}
Welcome
@end example
@node Weight-Balanced Trees, Structures, Relational Database, Data Structures
@section Weight-Balanced Trees
@code{(require 'wt-tree)}
@cindex trees, balanced binary
@cindex balanced binary trees
@cindex binary trees
@cindex weight-balanced binary trees
Balanced binary trees are a useful data structure for maintaining large
sets of ordered objects or sets of associations whose keys are ordered.
MIT Scheme has an comprehensive implementation of weight-balanced binary
trees which has several advantages over the other data structures for
large aggregates:
@itemize @bullet
@item
In addition to the usual element-level operations like insertion,
deletion and lookup, there is a full complement of collection-level
operations, like set intersection, set union and subset test, all of
which are implemented with good orders of growth in time and space.
This makes weight balanced trees ideal for rapid prototyping of
functionally derived specifications.
@item
An element in a tree may be indexed by its position under the ordering
of the keys, and the ordinal position of an element may be determined,
both with reasonable efficiency.
@item
Operations to find and remove minimum element make weight balanced trees
simple to use for priority queues.
@item
The implementation is @emph{functional} rather than @emph{imperative}.
This means that operations like `inserting' an association in a tree do
not destroy the old tree, in much the same way that @code{(+ 1 x)}
modifies neither the constant 1 nor the value bound to @code{x}. The
trees are referentially transparent thus the programmer need not worry
about copying the trees. Referential transparency allows space
efficiency to be achieved by sharing subtrees.
@end itemize
These features make weight-balanced trees suitable for a wide range of
applications, especially those that
require large numbers of sets or discrete maps. Applications that have
a few global databases and/or concentrate on element-level operations like
insertion and lookup are probably better off using hash-tables or
red-black trees.
The @emph{size} of a tree is the number of associations that it
contains. Weight balanced binary trees are balanced to keep the sizes
of the subtrees of each node within a constant factor of each other.
This ensures logarithmic times for single-path operations (like lookup
and insertion). A weight balanced tree takes space that is proportional
to the number of associations in the tree. For the current
implementation, the constant of proportionality is six words per
association.
@cindex binary trees, as sets
@cindex binary trees, as discrete maps
@cindex sets, using binary trees
@cindex discrete maps, using binary trees
Weight balanced trees can be used as an implementation for either
discrete sets or discrete maps (associations). Sets are implemented by
ignoring the datum that is associated with the key. Under this scheme
if an associations exists in the tree this indicates that the key of the
association is a member of the set. Typically a value such as
@code{()}, @code{#t} or @code{#f} is associated with the key.
Many operations can be viewed as computing a result that, depending on
whether the tree arguments are thought of as sets or maps, is known by
two different names.
An example is @code{wt-tree/member?}, which, when
regarding the tree argument as a set, computes the set membership operation, but,
when regarding the tree as a discrete map, @code{wt-tree/member?} is the
predicate testing if the map is defined at an element in its domain.
Most names in this package have been chosen based on interpreting the
trees as sets, hence the name @code{wt-tree/member?} rather than
@code{wt-tree/defined-at?}.
@cindex run-time-loadable option
@cindex option, run-time-loadable
The weight balanced tree implementation is a run-time-loadable option.
To use weight balanced trees, execute
@example
(load-option 'wt-tree)
@end example
@findex load-option
@noindent
once before calling any of the procedures defined here.
@menu
* Construction of Weight-Balanced Trees::
* Basic Operations on Weight-Balanced Trees::
* Advanced Operations on Weight-Balanced Trees::
* Indexing Operations on Weight-Balanced Trees::
@end menu
@node Construction of Weight-Balanced Trees, Basic Operations on Weight-Balanced Trees, Weight-Balanced Trees, Weight-Balanced Trees
@subsection Construction of Weight-Balanced Trees
Binary trees require there to be a total order on the keys used to
arrange the elements in the tree. Weight balanced trees are organized
by @emph{types}, where the type is an object encapsulating the ordering
relation. Creating a tree is a two-stage process. First a tree type
must be created from the predicate which gives the ordering. The tree type
is then used for making trees, either empty or singleton trees or trees
from other aggregate structures like association lists. Once created, a
tree `knows' its type and the type is used to test compatibility between
trees in operations taking two trees. Usually a small number of tree
types are created at the beginning of a program and used many times
throughout the program's execution.
@deffn {procedure+} make-wt-tree-type key<?
This procedure creates and returns a new tree type based on the ordering
predicate @var{key<?}.
@var{Key<?} must be a total ordering, having the property that for all
key values @code{a}, @code{b} and @code{c}:
@example
(key<? a a) @result{} #f
(and (key<? a b) (key<? b a)) @result{} #f
(if (and (key<? a b) (key<? b c))
(key<? a c)
#t) @result{} #t
@end example
@noindent
Two key values are assumed to be equal if neither is less than the other
by @var{key<?}.
Each call to @code{make-wt-tree-type} returns a distinct value, and
trees are only compatible if their tree types are @code{eq?}.
A consequence is
that trees that are intended to be used in binary tree operations must all be
created with a tree type originating from the same call to
@code{make-wt-tree-type}.
@end deffn
@defvr {variable+} number-wt-type
A standard tree type for trees with numeric keys. @code{Number-wt-type}
could have been defined by
@example
(define number-wt-type (make-wt-tree-type <))
@end example
@end defvr
@defvr {variable+} string-wt-type
A standard tree type for trees with string keys. @code{String-wt-type}
could have been defined by
@example
(define string-wt-type (make-wt-tree-type string<?))
@end example
@end defvr
@deffn {procedure+} make-wt-tree wt-tree-type
This procedure creates and returns a newly allocated weight balanced
tree. The tree is empty, i.e. it contains no associations.
@var{Wt-tree-type} is a weight balanced tree type obtained by calling
@code{make-wt-tree-type}; the returned tree has this type.
@end deffn
@deffn {procedure+} singleton-wt-tree wt-tree-type key datum
This procedure creates and returns a newly allocated weight balanced
tree. The tree contains a single association, that of @var{datum} with
@var{key}. @var{Wt-tree-type} is a weight balanced tree type obtained
by calling @code{make-wt-tree-type}; the returned tree has this type.
@end deffn
@deffn {procedure+} alist->wt-tree tree-type alist
Returns a newly allocated weight-balanced tree that contains the same
associations as @var{alist}. This procedure is equivalent to:
@example
(lambda (type alist)
(let ((tree (make-wt-tree type)))
(for-each (lambda (association)
(wt-tree/add! tree
(car association)
(cdr association)))
alist)
tree))
@end example
@end deffn
@node Basic Operations on Weight-Balanced Trees, Advanced Operations on Weight-Balanced Trees, Construction of Weight-Balanced Trees, Weight-Balanced Trees
@subsection Basic Operations on Weight-Balanced Trees
This section describes the basic tree operations on weight balanced
trees. These operations are the usual tree operations for insertion,
deletion and lookup, some predicates and a procedure for determining the
number of associations in a tree.
@deffn {procedure+} wt-tree? object
Returns @code{#t} if @var{object} is a weight-balanced tree, otherwise
returns @code{#f}.
@end deffn
@deffn {procedure+} wt-tree/empty? wt-tree
Returns @code{#t} if @var{wt-tree} contains no associations, otherwise
returns @code{#f}.
@end deffn
@deffn {procedure+} wt-tree/size wt-tree
Returns the number of associations in @var{wt-tree}, an exact
non-negative integer. This operation takes constant time.
@end deffn
@deffn {procedure+} wt-tree/add wt-tree key datum
Returns a new tree containing all the associations in @var{wt-tree} and
the association of @var{datum} with @var{key}. If @var{wt-tree} already
had an association for @var{key}, the new association overrides the old.
The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in
@var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/add! wt-tree key datum
Associates @var{datum} with @var{key} in @var{wt-tree} and returns an
unspecified value. If @var{wt-tree} already has an association for
@var{key}, that association is replaced. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/member? key wt-tree
Returns @code{#t} if @var{wt-tree} contains an association for
@var{key}, otherwise returns @code{#f}. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/lookup wt-tree key default
Returns the datum associated with @var{key} in @var{wt-tree}. If
@var{wt-tree} doesn't contain an association for @var{key},
@var{default} is returned. The average and worst-case times required by
this operation are proportional to the logarithm of the number of
associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/delete wt-tree key
Returns a new tree containing all the associations in @var{wt-tree},
except that if @var{wt-tree} contains an association for @var{key}, it
is removed from the result. The average and worst-case times required
by this operation are proportional to the logarithm of the number of
associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/delete! wt-tree key
If @var{wt-tree} contains an association for @var{key} the association
is removed. Returns an unspecified value. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in @var{wt-tree}.
@end deffn
@node Advanced Operations on Weight-Balanced Trees, Indexing Operations on Weight-Balanced Trees, Basic Operations on Weight-Balanced Trees, Weight-Balanced Trees
@subsection Advanced Operations on Weight-Balanced Trees
In the following the @emph{size} of a tree is the number of associations
that the tree contains, and a @emph{smaller} tree contains fewer
associations.
@deffn {procedure+} wt-tree/split< wt-tree bound
Returns a new tree containing all and only the associations in
@var{wt-tree} which have a key that is less than @var{bound} in the
ordering relation of the tree type of @var{wt-tree}. The average and
worst-case times required by this operation are proportional to the
logarithm of the size of @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/split> wt-tree bound
Returns a new tree containing all and only the associations in
@var{wt-tree} which have a key that is greater than @var{bound} in the
ordering relation of the tree type of @var{wt-tree}. The average and
worst-case times required by this operation are proportional to the
logarithm of size of @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/union wt-tree-1 wt-tree-2
Returns a new tree containing all the associations from both trees.
This operation is asymmetric: when both trees have an association for
the same key, the returned tree associates the datum from @var{wt-tree-2}
with the key. Thus if the trees are viewed as discrete maps then
@code{wt-tree/union} computes the map override of @var{wt-tree-1} by
@var{wt-tree-2}. If the trees are viewed as sets the result is the set
union of the arguments.
The worst-case time required by this operation
is proportional to the sum of the sizes of both trees.
If the minimum key of one tree is greater than the maximum key of
the other tree then the time required is at worst proportional to
the logarithm of the size of the larger tree.
@end deffn
@deffn {procedure+} wt-tree/intersection wt-tree-1 wt-tree-2
Returns a new tree containing all and only those associations from
@var{wt-tree-1} which have keys appearing as the key of an association
in @var{wt-tree-2}. Thus the associated data in the result are those
from @var{wt-tree-1}. If the trees are being used as sets the result is
the set intersection of the arguments. As a discrete map operation,
@code{wt-tree/intersection} computes the domain restriction of
@var{wt-tree-1} to (the domain of) @var{wt-tree-2}.
The time required by this operation is never worse that proportional to
the sum of the sizes of the trees.
@end deffn
@deffn {procedure+} wt-tree/difference wt-tree-1 wt-tree-2
Returns a new tree containing all and only those associations from
@var{wt-tree-1} which have keys that @emph{do not} appear as the key of
an association in @var{wt-tree-2}. If the trees are viewed as sets the
result is the asymmetric set difference of the arguments. As a discrete
map operation, it computes the domain restriction of @var{wt-tree-1} to
the complement of (the domain of) @var{wt-tree-2}.
The time required by this operation is never worse that proportional to
the sum of the sizes of the trees.
@end deffn
@deffn {procedure+} wt-tree/subset? wt-tree-1 wt-tree-2
Returns @code{#t} iff the key of each association in @var{wt-tree-1} is
the key of some association in @var{wt-tree-2}, otherwise returns @code{#f}.
Viewed as a set operation, @code{wt-tree/subset?} is the improper subset
predicate.
A proper subset predicate can be constructed:
@example
(define (proper-subset? s1 s2)
(and (wt-tree/subset? s1 s2)
(< (wt-tree/size s1) (wt-tree/size s2))))
@end example
As a discrete map operation, @code{wt-tree/subset?} is the subset
test on the domain(s) of the map(s). In the worst-case the time
required by this operation is proportional to the size of
@var{wt-tree-1}.
@end deffn
@deffn {procedure+} wt-tree/set-equal? wt-tree-1 wt-tree-2
Returns @code{#t} iff for every association in @var{wt-tree-1} there is
an association in @var{wt-tree-2} that has the same key, and @emph{vice
versa}.
Viewing the arguments as sets @code{wt-tree/set-equal?} is the set
equality predicate. As a map operation it determines if two maps are
defined on the same domain.
This procedure is equivalent to
@example
(lambda (wt-tree-1 wt-tree-2)
(and (wt-tree/subset? wt-tree-1 wt-tree-2
(wt-tree/subset? wt-tree-2 wt-tree-1)))
@end example
In the worst-case the time required by this operation is proportional to
the size of the smaller tree.
@end deffn
@deffn {procedure+} wt-tree/fold combiner initial wt-tree
This procedure reduces @var{wt-tree} by combining all the associations,
using an reverse in-order traversal, so the associations are visited in
reverse order. @var{Combiner} is a procedure of three arguments: a key,
a datum and the accumulated result so far. Provided @var{combiner}
takes time bounded by a constant, @code{wt-tree/fold} takes time
proportional to the size of @var{wt-tree}.
A sorted association list can be derived simply:
@example
(wt-tree/fold (lambda (key datum list)
(cons (cons key datum) list))
'()
@var{wt-tree}))
@end example
The data in the associations can be summed like this:
@example
(wt-tree/fold (lambda (key datum sum) (+ sum datum))
0
@var{wt-tree})
@end example
@end deffn
@deffn {procedure+} wt-tree/for-each action wt-tree
This procedure traverses the tree in-order, applying @var{action} to
each association.
The associations are processed in increasing order of their keys.
@var{Action} is a procedure of two arguments which take the key and
datum respectively of the association.
Provided @var{action} takes time bounded by a constant,
@code{wt-tree/for-each} takes time proportional to in the size of
@var{wt-tree}.
The example prints the tree:
@example
(wt-tree/for-each (lambda (key value)
(display (list key value)))
@var{wt-tree}))
@end example
@end deffn
@node Indexing Operations on Weight-Balanced Trees, , Advanced Operations on Weight-Balanced Trees, Weight-Balanced Trees
@subsection Indexing Operations on Weight-Balanced Trees
Weight balanced trees support operations that view the tree as sorted
sequence of associations. Elements of the sequence can be accessed by
position, and the position of an element in the sequence can be
determined, both in logarthmic time.
@deffn {procedure+} wt-tree/index wt-tree index
@deffnx {procedure+} wt-tree/index-datum wt-tree index
@deffnx {procedure+} wt-tree/index-pair wt-tree index
Returns the 0-based @var{index}th association of @var{wt-tree} in the
sorted sequence under the tree's ordering relation on the keys.
@code{wt-tree/index} returns the @var{index}th key,
@code{wt-tree/index-datum} returns the datum associated with the
@var{index}th key and @code{wt-tree/index-pair} returns a new pair
@code{(@var{key} . @var{datum})} which is the @code{cons} of the @var{index}th
key and its datum. The average and worst-case times required by this
operation are proportional to the logarithm of the number of
associations in the tree.
These operations signal an error if the tree is empty, if
@var{index}@code{<0}, or if @var{index} is greater than or equal to the
number of associations in the tree.
Indexing can be used to find the median and maximum keys in the tree as
follows:
@example
median: (wt-tree/index @var{wt-tree} (quotient (wt-tree/size @var{wt-tree}) 2))
maximum: (wt-tree/index @var{wt-tree} (-1+ (wt-tree/size @var{wt-tree})))
@end example
@end deffn
@deffn {procedure+} wt-tree/rank wt-tree key
Determines the 0-based position of @var{key} in the sorted sequence of
the keys under the tree's ordering relation, or @code{#f} if the tree
has no association with for @var{key}. This procedure returns either an
exact non-negative integer or @code{#f}. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in the tree.
@end deffn
@deffn {procedure+} wt-tree/min wt-tree
@deffnx {procedure+} wt-tree/min-datum wt-tree
@deffnx {procedure+} wt-tree/min-pair wt-tree
Returns the association of @var{wt-tree} that has the least key under the tree's ordering relation.
@code{wt-tree/min} returns the least key,
@code{wt-tree/min-datum} returns the datum associated with the
least key and @code{wt-tree/min-pair} returns a new pair
@code{(key . datum)} which is the @code{cons} of the minimum key and its datum.
The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in the tree.
These operations signal an error if the tree is empty.
They could be written
@example
(define (wt-tree/min tree) (wt-tree/index tree 0))
(define (wt-tree/min-datum tree) (wt-tree/index-datum tree 0))
(define (wt-tree/min-pair tree) (wt-tree/index-pair tree 0))
@end example
@end deffn
@deffn {procedure+} wt-tree/delete-min wt-tree
Returns a new tree containing all of the associations in @var{wt-tree}
except the association with the least key under the @var{wt-tree}'s
ordering relation. An error is signalled if the tree is empty. The
average and worst-case times required by this operation are proportional
to the logarithm of the number of associations in the tree. This
operation is equivalent to
@example
(wt-tree/delete @var{wt-tree} (wt-tree/min @var{wt-tree}))
@end example
@end deffn
@deffn {procedure+} wt-tree/delete-min! wt-tree
Removes the association with the least key under the @var{wt-tree}'s
ordering relation. An error is signalled if the tree is empty. The
average and worst-case times required by this operation are proportional
to the logarithm of the number of associations in the tree. This
operation is equivalent to
@example
(wt-tree/delete! @var{wt-tree} (wt-tree/min @var{wt-tree}))
@end example
@end deffn
@node Structures, , Weight-Balanced Trees, Data Structures
@section Structures
@code{(require 'struct)} (uses defmacros)
@code{defmacro}s which implement @dfn{records} from the book
@cite{Essentials of Programming Languages} by Daniel P. Friedman, M.
Wand and C.T. Haynes. Copyright 1992 Jeff Alexander, Shinnder Lee, and
Lewis Patterson@refill
Matthew McDonald <mafm@@cs.uwa.edu.au> added field setters.
@defmac define-record tag (var1 var2 @dots{})
Defines several functions pertaining to record-name @var{tag}:
@defun make-@var{tag} var1 var2 @dots{}
@end defun
@defun @var{tag}? obj
@end defun
@defun @var{tag}->var1 obj
@end defun
@defun @var{tag}->var2 obj
@end defun
@dots{}
@defun set-@var{@var{tag}}-var1! obj val
@end defun
@defun set-@var{@var{tag}}-var2! obj val
@end defun
@dots{}
Here is an example of its use.
@example
(define-record term (operator left right))
@result{} #<unspecified>
(define foo (make-term 'plus 1 2))
@result{} foo
(term-left foo)
@result{} 1
(set-term-left! foo 2345)
@result{} #<unspecified>
(term-left foo)
@result{} 2345
@end example
@end defmac
@defmac variant-case exp (tag (var1 var2 @dots{}) body) @dots{}
executes the following for the matching clause:
@example
((lambda (@var{var1} @var{var} @dots{}) @var{body})
(@var{tag->var1} @var{exp})
(@var{tag->var2} @var{exp}) @dots{})
@end example
@end defmac
@node Macros, Numerics, Data Structures, Top
@chapter Macros
@menu
* Defmacro:: Supported by all implementations
* R4RS Macros:: 'macro
* Macro by Example:: 'macro-by-example
* Macros That Work:: 'macros-that-work
* Syntactic Closures:: 'syntactic-closures
* Syntax-Case Macros:: 'syntax-case
Syntax extensions (macros) included with SLIB. Also @xref{Structures}.
* Fluid-Let:: 'fluid-let
* Yasos:: 'yasos, 'oop, 'collect
@end menu
@node Defmacro, R4RS Macros, Macros, Macros
@section Defmacro
Defmacros are supported by all implementations.
@c See also @code{gentemp}, in @ref{Macros}.
@defun gentemp
Returns a new (interned) symbol each time it is called. The symbol
names are implementation-dependent
@lisp
(gentemp) @result{} scm:G0
(gentemp) @result{} scm:G1
@end lisp
@end defun
@defun defmacro:eval e
Returns the @code{slib:eval} of expanding all defmacros in scheme
expression @var{e}.
@end defun
@defun defmacro:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{defmacro:load} procedure reads Scheme source code expressions
and definitions from the file and evaluates them sequentially. These
source code expressions and definitions may contain defmacro
definitions. The @code{macro:load} procedure does not affect the values
returned by @code{current-input-port} and
@code{current-output-port}.@refill
@end defun
@defun defmacro? sym
Returns @code{#t} if @var{sym} has been defined by @code{defmacro},
@code{#f} otherwise.
@end defun
@defun macroexpand-1 form
@defunx macroexpand form
If @var{form} is a macro call, @code{macroexpand-1} will expand the
macro call once and return it. A @var{form} is considered to be a macro
call only if it is a cons whose @code{car} is a symbol for which a
@code{defmacr} has been defined.
@code{macroexpand} is similar to @code{macroexpand-1}, but repeatedly
expands @var{form} until it is no longer a macro call.
@end defun
@defmac defmacro name lambda-list form @dots{}
When encountered by @code{defmacro:eval}, @code{defmacro:macroexpand*},
or @code{defmacro:load} defines a new macro which will henceforth be
expanded when encountered by @code{defmacro:eval},
@code{defmacro:macroexpand*}, or @code{defmacro:load}.
@end defmac
@subsection Defmacroexpand
@code{(require 'defmacroexpand)}
@defun defmacro:expand* e
Returns the result of expanding all defmacros in scheme expression
@var{e}.
@end defun
@node R4RS Macros, Macro by Example, Defmacro, Macros
@section R4RS Macros
@code{(require 'macro)} is the appropriate call if you want R4RS
high-level macros but don't care about the low level implementation. If
an SLIB R4RS macro implementation is already loaded it will be used.
Otherwise, one of the R4RS macros implemetations is loaded.
The SLIB R4RS macro implementations support the following uniform
interface:
@defun macro:expand sexpression
Takes an R4RS expression, macro-expands it, and returns the result of
the macro expansion.
@end defun
@defun macro:eval sexpression
Takes an R4RS expression, macro-expands it, evals the result of the
macro expansion, and returns the result of the evaluation.
@end defun
@deffn Procedure macro:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These source
code expressions and definitions may contain macro definitions. The
@code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
@node Macro by Example, Macros That Work, R4RS Macros, Macros
@section Macro by Example
@code{(require 'macro-by-example)}
A vanilla implementation of @cite{Macro by Example} (Eugene Kohlbecker,
R4RS) by Dorai Sitaram, (dorai@@cs.rice.edu) using @code{defmacro}.
@itemize @bullet
@item
generating hygienic global @code{define-syntax} Macro-by-Example macros
@strong{cheaply}.
@item
can define macros which use @code{...}.
@item
needn't worry about a lexical variable in a macro definition
clashing with a variable from the macro use context
@item
don't suffer the overhead of redefining the repl if @code{defmacro}
natively supported (most implementations)
@end itemize
@subsection Caveat
These macros are not referentially transparent (@pxref{Macros, , ,r4rs,
Revised(4) Scheme}). Lexically scoped macros (i.e., @code{let-syntax}
and @code{letrec-syntax}) are not supported. In any case, the problem
of referential transparency gains poignancy only when @code{let-syntax}
and @code{letrec-syntax} are used. So you will not be courting
large-scale disaster unless you're using system-function names as local
variables with unintuitive bindings that the macro can't use. However,
if you must have the full @cite{r4rs} macro functionality, look to the
more featureful (but also more expensive) versions of syntax-rules
available in slib @ref{Macros That Work}, @ref{Syntactic Closures}, and
@ref{Syntax-Case Macros}.
@defmac define-syntax keyword transformer-spec
The @var{keyword} is an identifier, and the @var{transformer-spec}
should be an instance of @code{syntax-rules}.
The top-level syntactic environment is extended by binding the
@var{keyword} to the specified transformer.
@example
(define-syntax let*
(syntax-rules ()
((let* () body1 body2 ...)
(let () body1 body2 ...))
((let* ((name1 val1) (name2 val2) ...)
body1 body2 ...)
(let ((name1 val1))
(let* (( name2 val2) ...)
body1 body2 ...)))))
@end example
@end defmac
@defmac syntax-rules literals syntax-rule @dots{}
@var{literals} is a list of identifiers, and each @var{syntax-rule}
should be of the form
@code{(@var{pattern} @var{template})}
where the @var{pattern} and @var{template} are as in the grammar above.
An instance of @code{syntax-rules} produces a new macro transformer by
specifying a sequence of hygienic rewrite rules. A use of a macro whose
keyword is associated with a transformer specified by
@code{syntax-rules} is matched against the patterns contained in the
@var{syntax-rule}s, beginning with the leftmost @var{syntax-rule}.
When a match is found, the macro use is trancribed hygienically
according to the template.
Each pattern begins with the keyword for the macro. This keyword is not
involved in the matching and is not considered a pattern variable or
literal identifier.
@end defmac
@node Macros That Work, Syntactic Closures, Macro by Example, Macros
@section Macros That Work
@code{(require 'macros-that-work)}
@cite{Macros That Work} differs from the other R4RS macro
implementations in that it does not expand derived expression types to
primitive expression types.
@defun macro:expand expression
@defunx macwork:expand expression
Takes an R4RS expression, macro-expands it, and returns the result of
the macro expansion.
@end defun
@defun macro:eval expression
@defunx macwork:eval expression
@code{macro:eval} returns the value of @var{expression} in the current
top level environment. @var{expression} can contain macro definitions.
Side effects of @var{expression} will affect the top level
environment.@refill
@end defun
@deffn Procedure macro:load filename
@deffnx Procedure macwork:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These source
code expressions and definitions may contain macro definitions. The
@code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
References:
The @cite{Revised^4 Report on the Algorithmic Language Scheme} Clinger
and Rees [editors]. To appear in LISP Pointers. Also available as a
technical report from the University of Oregon, MIT AI Lab, and
Cornell.@refill
@center Macros That Work. Clinger and Rees. POPL '91.
The supported syntax differs from the R4RS in that vectors are allowed
as patterns and as templates and are not allowed as pattern or template
data.
@example
transformer spec @expansion{} (syntax-rules literals rules)
rules @expansion{} ()
| (rule . rules)
rule @expansion{} (pattern template)
pattern @expansion{} pattern_var ; a symbol not in literals
| symbol ; a symbol in literals
| ()
| (pattern . pattern)
| (ellipsis_pattern)
| #(pattern*) ; extends R4RS
| #(pattern* ellipsis_pattern) ; extends R4RS
| pattern_datum
template @expansion{} pattern_var
| symbol
| ()
| (template2 . template2)
| #(template*) ; extends R4RS
| pattern_datum
template2 @expansion{} template
| ellipsis_template
pattern_datum @expansion{} string ; no vector
| character
| boolean
| number
ellipsis_pattern @expansion{} pattern ...
ellipsis_template @expansion{} template ...
pattern_var @expansion{} symbol ; not in literals
literals @expansion{} ()
| (symbol . literals)
@end example
@subsection Definitions
@table @asis
@item Scope of an ellipsis
Within a pattern or template, the scope of an ellipsis (@code{...}) is
the pattern or template that appears to its left.
@item Rank of a pattern variable
The rank of a pattern variable is the number of ellipses within whose
scope it appears in the pattern.
@item Rank of a subtemplate
The rank of a subtemplate is the number of ellipses within whose scope
it appears in the template.
@item Template rank of an occurrence of a pattern variable
The template rank of an occurrence of a pattern variable within a
template is the rank of that occurrence, viewed as a subtemplate.
@item Variables bound by a pattern
The variables bound by a pattern are the pattern variables that appear
within it.
@item Referenced variables of a subtemplate
The referenced variables of a subtemplate are the pattern variables that
appear within it.
@item Variables opened by an ellipsis template
The variables opened by an ellipsis template are the referenced pattern
variables whose rank is greater than the rank of the ellipsis template.
@end table
@subsection Restrictions
No pattern variable appears more than once within a pattern.
For every occurrence of a pattern variable within a template, the
template rank of the occurrence must be greater than or equal to the
pattern variable's rank.
Every ellipsis template must open at least one variable.
For every ellipsis template, the variables opened by an ellipsis
template must all be bound to sequences of the same length.
The compiled form of a @var{rule} is
@example
rule @expansion{} (pattern template inserted)
pattern @expansion{} pattern_var
| symbol
| ()
| (pattern . pattern)
| ellipsis_pattern
| #(pattern)
| pattern_datum
template @expansion{} pattern_var
| symbol
| ()
| (template2 . template2)
| #(pattern)
| pattern_datum
template2 @expansion{} template
| ellipsis_template
pattern_datum @expansion{} string
| character
| boolean
| number
pattern_var @expansion{} #(V symbol rank)
ellipsis_pattern @expansion{} #(E pattern pattern_vars)
ellipsis_template @expansion{} #(E template pattern_vars)
inserted @expansion{} ()
| (symbol . inserted)
pattern_vars @expansion{} ()
| (pattern_var . pattern_vars)
rank @expansion{} exact non-negative integer
@end example
where V and E are unforgeable values.
The pattern variables associated with an ellipsis pattern are the
variables bound by the pattern, and the pattern variables associated
with an ellipsis template are the variables opened by the ellipsis
template.
If the template contains a big chunk that contains no pattern variables
or inserted identifiers, then the big chunk will be copied
unnecessarily. That shouldn't matter very often.
@node Syntactic Closures, Syntax-Case Macros, Macros That Work, Macros
@section Syntactic Closures
@code{(require 'syntactic-closures)}
@defun macro:expand expression
@defunx synclo:expand expression
Returns scheme code with the macros and derived expression types of
@var{expression} expanded to primitive expression types.@refill
@end defun
@defun macro:eval expression
@defunx synclo:eval expression
@code{macro:eval} returns the value of @var{expression} in the current
top level environment. @var{expression} can contain macro definitions.
Side effects of @var{expression} will affect the top level
environment.@refill
@end defun
@deffn Procedure macro:load filename
@deffnx Procedure synclo:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These
source code expressions and definitions may contain macro definitions.
The @code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
@subsection Syntactic Closure Macro Facility
@center A Syntactic Closures Macro Facility
@center by Chris Hanson
@center 9 November 1991
This document describes @dfn{syntactic closures}, a low-level macro
facility for the Scheme programming language. The facility is an
alternative to the low-level macro facility described in the
@cite{Revised^4 Report on Scheme.} This document is an addendum to that
report.
The syntactic closures facility extends the BNF rule for
@var{transformer spec} to allow a new keyword that introduces a
low-level macro transformer:@refill
@example
@var{transformer spec} := (transformer @var{expression})
@end example
Additionally, the following procedures are added:
@lisp
make-syntactic-closure
capture-syntactic-environment
identifier?
identifier=?
@end lisp
The description of the facility is divided into three parts. The first
part defines basic terminology. The second part describes how macro
transformers are defined. The third part describes the use of
@dfn{identifiers}, which extend the syntactic closure mechanism to be
compatible with @code{syntax-rules}.@refill
@subsubsection Terminology
This section defines the concepts and data types used by the syntactic
closures facility.
@itemize
@item @dfn{Forms} are the syntactic entities out of which programs are
recursively constructed. A form is any expression, any definition, any
syntactic keyword, or any syntactic closure. The variable name that
appears in a @code{set!} special form is also a form. Examples of
forms:@refill
@lisp
17
#t
car
(+ x 4)
(lambda (x) x)
(define pi 3.14159)
if
define
@end lisp
@item An @dfn{alias} is an alternate name for a given symbol. It can
appear anywhere in a form that the symbol could be used, and when quoted
it is replaced by the symbol; however, it does not satisfy the predicate
@code{symbol?}. Macro transformers rarely distinguish symbols from
aliases, referring to both as identifiers.@refill
@item A @dfn{syntactic} environment maps identifiers to their
meanings. More precisely, it determines whether an identifier is a
syntactic keyword or a variable. If it is a keyword, the meaning is an
interpretation for the form in which that keyword appears. If it is a
variable, the meaning identifies which binding of that variable is
referenced. In short, syntactic environments contain all of the
contextual information necessary for interpreting the meaning of a
particular form.@refill
@item A @dfn{syntactic closure} consists of a form, a syntactic
environment, and a list of identifiers. All identifiers in the form
take their meaning from the syntactic environment, except those in the
given list. The identifiers in the list are to have their meanings
determined later. A syntactic closure may be used in any context in
which its form could have been used. Since a syntactic closure is also
a form, it may not be used in contexts where a form would be illegal.
For example, a form may not appear as a clause in the cond special form.
A syntactic closure appearing in a quoted structure is replaced by its
form.@refill
@end itemize
@subsubsection Transformer Definition
This section describes the @code{transformer} special form and the
procedures @code{make-syntactic-closure} and
@code{capture-syntactic-environment}.@refill
@deffn Syntax transformer expression
Syntax: It is an error if this syntax occurs except as a
@var{transformer spec}.@refill
Semantics: The @var{expression} is evaluated in the standard transformer
environment to yield a macro transformer as described below. This macro
transformer is bound to a macro keyword by the special form in which the
@code{transformer} expression appears (for example,
@code{let-syntax}).@refill
A @dfn{macro transformer} is a procedure that takes two arguments, a
form and a syntactic environment, and returns a new form. The first
argument, the @dfn{input form}, is the form in which the macro keyword
occurred. The second argument, the @dfn{usage environment}, is the
syntactic environment in which the input form occurred. The result of
the transformer, the @dfn{output form}, is automatically closed in the
@dfn{transformer environment}, which is the syntactic environment in
which the @code{transformer} expression occurred.@refill
For example, here is a definition of a push macro using
@code{syntax-rules}:@refill
@lisp
(define-syntax push
(syntax-rules ()
((push item list)
(set! list (cons item list)))))
@end lisp
Here is an equivalent definition using @code{transformer}:
@lisp
(define-syntax push
(transformer
(lambda (exp env)
(let ((item
(make-syntactic-closure env '() (cadr exp)))
(list
(make-syntactic-closure env '() (caddr exp))))
`(set! ,list (cons ,item ,list))))))
@end lisp
In this example, the identifiers @code{set!} and @code{cons} are closed
in the transformer environment, and thus will not be affected by the
meanings of those identifiers in the usage environment
@code{env}.@refill
Some macros may be non-hygienic by design. For example, the following
defines a loop macro that implicitly binds @code{exit} to an escape
procedure. The binding of @code{exit} is intended to capture free
references to @code{exit} in the body of the loop, so @code{exit} must
be left free when the body is closed:@refill
@lisp
(define-syntax loop
(transformer
(lambda (exp env)
(let ((body (cdr exp)))
`(call-with-current-continuation
(lambda (exit)
(let f ()
,@@(map (lambda (exp)
(make-syntactic-closure env '(exit)
exp))
body)
(f))))))))
@end lisp
To assign meanings to the identifiers in a form, use
@code{make-syntactic-closure} to close the form in a syntactic
environment.@refill
@end deffn
@defun make-syntactic-closure environment free-names form
@var{environment} must be a syntactic environment, @var{free-names} must
be a list of identifiers, and @var{form} must be a form.
@code{make-syntactic-closure} constructs and returns a syntactic closure
of @var{form} in @var{environment}, which can be used anywhere that
@var{form} could have been used. All the identifiers used in
@var{form}, except those explicitly excepted by @var{free-names}, obtain
their meanings from @var{environment}.@refill
Here is an example where @var{free-names} is something other than the
empty list. It is instructive to compare the use of @var{free-names} in
this example with its use in the @code{loop} example above: the examples
are similar except for the source of the identifier being left
free.@refill
@lisp
(define-syntax let1
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(exp (cadddr exp)))
`((lambda (,id)
,(make-syntactic-closure env (list id) exp))
,(make-syntactic-closure env '() init))))))
@end lisp
@code{let1} is a simplified version of @code{let} that only binds a
single identifier, and whose body consists of a single expression. When
the body expression is syntactically closed in its original syntactic
environment, the identifier that is to be bound by @code{let1} must be
left free, so that it can be properly captured by the @code{lambda} in
the output form.@refill
To obtain a syntactic environment other than the usage environment, use
@code{capture-syntactic-environment}.@refill
@end defun
@defun capture-syntactic-environment procedure
@code{capture-syntactic-environment} returns a form that will, when
transformed, call @var{procedure} on the current syntactic environment.
@var{procedure} should compute and return a new form to be transformed,
in that same syntactic environment, in place of the form.@refill
An example will make this clear. Suppose we wanted to define a simple
@code{loop-until} keyword equivalent to@refill
@lisp
(define-syntax loop-until
(syntax-rules ()
((loop-until id init test return step)
(letrec ((loop
(lambda (id)
(if test return (loop step)))))
(loop init)))))
@end lisp
The following attempt at defining @code{loop-until} has a subtle bug:
@lisp
(define-syntax loop-until
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
`(letrec ((loop
(lambda (,id)
(if ,(close test (list id))
,(close return (list id))
(loop ,(close step (list id)))))))
(loop ,(close init '())))))))
@end lisp
This definition appears to take all of the proper precautions to prevent
unintended captures. It carefully closes the subexpressions in their
original syntactic environment and it leaves the @code{id} identifier
free in the @code{test}, @code{return}, and @code{step} expressions, so
that it will be captured by the binding introduced by the @code{lambda}
expression. Unfortunately it uses the identifiers @code{if} and
@code{loop} within that @code{lambda} expression, so if the user of
@code{loop-until} just happens to use, say, @code{if} for the
identifier, it will be inadvertently captured.@refill
The syntactic environment that @code{if} and @code{loop} want to be
exposed to is the one just outside the @code{lambda} expression: before
the user's identifier is added to the syntactic environment, but after
the identifier loop has been added.
@code{capture-syntactic-environment} captures exactly that environment
as follows:@refill
@lisp
(define-syntax loop-until
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
`(letrec ((loop
,(capture-syntactic-environment
(lambda (env)
`(lambda (,id)
(,(make-syntactic-closure env '() `if)
,(close test (list id))
,(close return (list id))
(,(make-syntactic-closure env '()
`loop)
,(close step (list id)))))))))
(loop ,(close init '())))))))
@end lisp
In this case, having captured the desired syntactic environment, it is
convenient to construct syntactic closures of the identifiers @code{if}
and the @code{loop} and use them in the body of the
@code{lambda}.@refill
A common use of @code{capture-syntactic-environment} is to get the
transformer environment of a macro transformer:@refill
@lisp
(transformer
(lambda (exp env)
(capture-syntactic-environment
(lambda (transformer-env)
...))))
@end lisp
@end defun
@subsubsection Identifiers
This section describes the procedures that create and manipulate
identifiers. Previous syntactic closure proposals did not have an
identifier data type -- they just used symbols. The identifier data
type extends the syntactic closures facility to be compatible with the
high-level @code{syntax-rules} facility.@refill
As discussed earlier, an identifier is either a symbol or an
@dfn{alias}. An alias is implemented as a syntactic closure whose
@dfn{form} is an identifier:@refill
@lisp
(make-syntactic-closure env '() 'a)
@result{} an @dfn{alias}
@end lisp
Aliases are implemented as syntactic closures because they behave just
like syntactic closures most of the time. The difference is that an
alias may be bound to a new value (for example by @code{lambda} or
@code{let-syntax}); other syntactic closures may not be used this way.
If an alias is bound, then within the scope of that binding it is looked
up in the syntactic environment just like any other identifier.@refill
Aliases are used in the implementation of the high-level facility
@code{syntax-rules}. A macro transformer created by @code{syntax-rules}
uses a template to generate its output form, substituting subforms of
the input form into the template. In a syntactic closures
implementation, all of the symbols in the template are replaced by
aliases closed in the transformer environment, while the output form
itself is closed in the usage environment. This guarantees that the
macro transformation is hygienic, without requiring the transformer to
know the syntactic roles of the substituted input subforms.
@defun identifier? object
Returns @code{#t} if @var{object} is an identifier, otherwise returns
@code{#f}. Examples:@refill
@lisp
(identifier? 'a)
@result{} #t
(identifier? (make-syntactic-closure env '() 'a))
@result{} #t
(identifier? "a")
@result{} #f
(identifier? #\a)
@result{} #f
(identifier? 97)
@result{} #f
(identifier? #f)
@result{} #f
(identifier? '(a))
@result{} #f
(identifier? '#(a))
@result{} #f
@end lisp
The predicate @code{eq?} is used to determine if two identifers are
``the same''. Thus @code{eq?} can be used to compare identifiers
exactly as it would be used to compare symbols. Often, though, it is
useful to know whether two identifiers ``mean the same thing''. For
example, the @code{cond} macro uses the symbol @code{else} to identify
the final clause in the conditional. A macro transformer for
@code{cond} cannot just look for the symbol @code{else}, because the
@code{cond} form might be the output of another macro transformer that
replaced the symbol @code{else} with an alias. Instead the transformer
must look for an identifier that ``means the same thing'' in the usage
environment as the symbol @code{else} means in the transformer
environment.@refill
@end defun
@defun identifier=? environment1 identifier1 environment2 identifier2
@var{environment1} and @var{environment2} must be syntactic
environments, and @var{identifier1} and @var{identifier2} must be
identifiers. @code{identifier=?} returns @code{#t} if the meaning of
@var{identifier1} in @var{environment1} is the same as that of
@var{identifier2} in @var{environment2}, otherwise it returns @code{#f}.
Examples:@refill
@lisp
(let-syntax
((foo
(transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env 'x env 'x)))))))
(list (foo)
(let ((x 3))
(foo))))
@result{} (#t #f)
@end lisp
@lisp
(let-syntax ((bar foo))
(let-syntax
((foo
(transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env 'foo
env (cadr form))))))))
(list (foo foo)
(foobar))))
@result{} (#f #t)
@end lisp
@end defun
@subsubsection Acknowledgements
The syntactic closures facility was invented by Alan Bawden and Jonathan
Rees. The use of aliases to implement @code{syntax-rules} was invented
by Alan Bawden (who prefers to call them @dfn{synthetic names}). Much
of this proposal is derived from an earlier proposal by Alan
Bawden.@refill
@node Syntax-Case Macros, Fluid-Let, Syntactic Closures, Macros
@section Syntax-Case Macros
@code{(require 'syntax-case)}
@defun macro:expand expression
@defunx syncase:expand expression
Returns scheme code with the macros and derived expression types of
@var{expression} expanded to primitive expression types.@refill
@end defun
@defun macro:eval expression
@defunx syncase:eval expression
@code{macro:eval} returns the value of @var{expression} in the current
top level environment. @var{expression} can contain macro definitions.
Side effects of @var{expression} will affect the top level
environment.@refill
@end defun
@deffn Procedure macro:load filename
@deffnx Procedure syncase:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These
source code expressions and definitions may contain macro definitions.
The @code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
This is version 2.1 of @code{syntax-case}, the low-level macro facility
proposed and implemented by Robert Hieb and R. Kent Dybvig.
This version is further adapted by Harald Hanche-Olsen
<hanche@@imf.unit.no> to make it compatible with, and easily usable
with, SLIB. Mainly, these adaptations consisted of:
@itemize @bullet
@item
Removing white space from @file{expand.pp} to save space in the
distribution. This file is not meant for human readers anyway@dots{}
@item
Removed a couple of Chez scheme dependencies.
@item
Renamed global variables used to minimize the possibility of name
conflicts.
@item
Adding an SLIB-specific initialization file.
@item
Removing a couple extra files, most notably the documentation (but see
below).
@end itemize
If you wish, you can see exactly what changes were done by reading the
shell script in the file @file{syncase.sh}.
The two PostScript files were omitted in order to not burden the SLIB
distribution with them. If you do intend to use @code{syntax-case},
however, you should get these files and print them out on a PostScript
printer. They are available with the original @code{syntax-case}
distribution by anonymous FTP in
@file{cs.indiana.edu:/pub/scheme/syntax-case}.@refill
In order to use syntax-case from an interactive top level, execute:
@lisp
(require 'syntax-case)
(require 'repl)
(repl:top-level macro:eval)
@end lisp
See the section Repl (@xref{Repl}) for more information.
To check operation of syntax-case get
@file{cs.indiana.edu:/pub/scheme/syntax-case}, and type
@lisp
(require 'syntax-case)
(syncase:sanity-check)
@end lisp
Beware that @code{syntax-case} takes a long time to load -- about 20s on
a SPARCstation SLC (with SCM) and about 90s on a Macintosh SE/30 (with
Gambit).
@subsection Notes
All R4RS syntactic forms are defined, including @code{delay}. Along
with @code{delay} are simple definitions for @code{make-promise} (into
which @code{delay} expressions expand) and @code{force}.@refill
@code{syntax-rules} and @code{with-syntax} (described in @cite{TR356})
are defined.@refill
@code{syntax-case} is actually defined as a macro that expands into
calls to the procedure @code{syntax-dispatch} and the core form
@code{syntax-lambda}; do not redefine these names.@refill
Several other top-level bindings not documented in TR356 are created:
@itemize
@item the ``hooks'' in @file{hooks.ss}
@item the @code{build-} procedures in @file{output.ss}
@item @code{expand-syntax} (the expander)
@end itemize
The syntax of define has been extended to allow @code{(define @var{id})},
which assigns @var{id} to some unspecified value.@refill
We have attempted to maintain R4RS compatibility where possible. The
incompatibilities should be confined to @file{hooks.ss}. Please let us
know if there is some incompatibility that is not flagged as such.@refill
Send bug reports, comments, suggestions, and questions to Kent Dybvig
(dyb@@iuvax.cs.indiana.edu).
@subsection Note from maintainer
Included with the @code{syntax-case} files was @file{structure.scm}
which defines a macro @code{define-structure}. There is no
documentation for this macro and it is not used by any code in SLIB.
@node Fluid-Let, Yasos, Syntax-Case Macros, Macros
@section Fluid-Let
@code{(require 'fluid-let)}
@deffn Syntax fluid-let @code{(@var{bindings} @dots{})} @var{forms}@dots{}
@end deffn
@lisp
(fluid-let ((@var{variable} @var{init}) @dots{})
@var{expression} @var{expression} @dots{})
@end lisp
The @var{init}s are evaluated in the current environment (in some
unspecified order), the current values of the @var{variable}s are saved,
the results are assigned to the @var{variable}s, the @var{expression}s
are evaluated sequentially in the current environment, the
@var{variable}s are restored to their original values, and the value of
the last @var{expression} is returned.@refill
The syntax of this special form is similar to that of @code{let}, but
@code{fluid-let} temporarily rebinds existing @var{variable}s. Unlike
@code{let}, @code{fluid-let} creates no new bindings; instead it
@emph{assigns} the values of each @var{init} to the binding (determined
by the rules of lexical scoping) of its corresponding
@var{variable}.@refill
@node Yasos, , Fluid-Let, Macros
@section Yasos
@c Much of the documentation in this section was written by Dave Love
@c (d.love@dl.ac.uk) -- don't blame Ken Dickey for its faults.
@c but we can blame him for not writing it!
@code{(require 'oop)} or @code{(require 'yasos)}
`Yet Another Scheme Object System' is a simple object system for Scheme
based on the paper by Norman Adams and Jonathan Rees: @cite{Object
Oriented Programming in Scheme}, Proceedings of the 1988 ACM Conference
on LISP and Functional Programming, July 1988 [ACM #552880].@refill
Another reference is:
Ken Dickey.
@ifset html
<A HREF="ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/swob.txt">
@end ifset
Scheming with Objects
@ifset html
</A>
@end ifset
@cite{AI Expert} Volume 7, Number 10 (October 1992), pp. 24-33.
@menu
* Yasos terms:: Definitions and disclaimer.
* Yasos interface:: The Yasos macros and procedures.
* Setters:: Dylan-like setters in Yasos.
* Yasos examples:: Usage of Yasos and setters.
@end menu
@node Yasos terms, Yasos interface, Yasos, Yasos
@subsection Terms
@table @asis
@item @dfn{Object}
Any Scheme data object.
@item @dfn{Instance}
An instance of the OO system; an @dfn{object}.
@item @dfn{Operation}
A @var{method}.
@end table
@table @emph
@item Notes:
The object system supports multiple inheritance. An instance can
inherit from 0 or more ancestors. In the case of multiple inherited
operations with the same identity, the operation used is that from the
first ancestor which contains it (in the ancestor @code{let}). An
operation may be applied to any Scheme data object---not just instances.
As code which creates instances is just code, there are no @dfn{classes}
and no meta-@var{anything}. Method dispatch is by a procedure call a la
CLOS rather than by @code{send} syntax a la Smalltalk.@refill
@item Disclaimer:
There are a number of optimizations which can be made. This
implementation is expository (although performance should be quite
reasonable). See the L&FP paper for some suggestions.@refill
@end table
@node Yasos interface, Setters, Yasos terms, Yasos
@subsection Interface
@deffn Syntax define-operation @code{(}opname self arg @dots{}@code{)} @var{default-body}
Defines a default behavior for data objects which don't handle the
operation @var{opname}. The default default behavior (for an empty
@var{default-body}) is to generate an error.@refill
@end deffn
@deffn Syntax define-predicate opname?
Defines a predicate @var{opname?}, usually used for determining the
@dfn{type} of an object, such that @code{(@var{opname?} @var{object})}
returns @code{#t} if @var{object} has an operation @var{opname?} and
@code{#f} otherwise.@refill
@end deffn
@deffn Syntax object @code{((@var{name} @var{self} @var{arg} @dots{}) @var{body})} @dots{}
Returns an object (an instance of the object system) with operations.
Invoking @code{(@var{name} @var{object} @var{arg} @dots{}} executes the
@var{body} of the @var{object} with @var{self} bound to @var{object} and
with argument(s) @var{arg}@dots{}.@refill
@end deffn
@deffn Syntax object-with-ancestors @code{((}ancestor1 init1@code{)} @dots{}@code{)} operation @dots{}
A @code{let}-like form of @code{object} for multiple inheritance. It
returns an object inheriting the behaviour of @var{ancestor1} etc. An
operation will be invoked in an ancestor if the object itself does not
provide such a method. In the case of multiple inherited operations
with the same identity, the operation used is the one found in the first
ancestor in the ancestor list.
@end deffn
@deffn Syntax operate-as component operation self arg @dots{}
Used in an operation definition (of @var{self}) to invoke the
@var{operation} in an ancestor @var{component} but maintain the object's
identity. Also known as ``send-to-super''.@refill
@end deffn
@deffn Procedure print obj port
A default @code{print} operation is provided which is just @code{(format
@var{port} @var{obj})} (@xref{Format}) for non-instances and prints
@var{obj} preceded by @samp{#<INSTANCE>} for instances.
@end deffn
@defun size obj
The default method returns the number of elements in @var{obj} if it is
a vector, string or list, @code{2} for a pair, @code{1} for a character
and by default id an error otherwise. Objects such as collections
(@xref{Collections}) may override the default in an obvious way.@refill
@end defun
@node Setters, Yasos examples, Yasos interface, Yasos
@subsection Setters
@dfn{Setters} implement @dfn{generalized locations} for objects
associated with some sort of mutable state. A @dfn{getter} operation
retrieves a value from a generalized location and the corresponding
setter operation stores a value into the location. Only the getter is
named -- the setter is specified by a procedure call as below. (Dylan
uses special syntax.) Typically, but not necessarily, getters are
access operations to extract values from Yasos objects (@xref{Yasos}).
Several setters are predefined, corresponding to getters @code{car},
@code{cdr}, @code{string-ref} and @code{vector-ref} e.g., @code{(setter
car)} is equivalent to @code{set-car!}.
This implementation of setters is similar to that in Dylan(TM)
(@cite{Dylan: An object-oriented dynamic language}, Apple Computer
Eastern Research and Technology). Common LISP provides similar
facilities through @code{setf}.
@defun setter getter
Returns the setter for the procedure @var{getter}. E.g., since
@code{string-ref} is the getter corresponding to a setter which is
actually @code{string-set!}:
@example
(define foo "foo")
((setter string-ref) foo 0 #\F) ; set element 0 of foo
foo @result{} "Foo"
@end example
@end defun
@deffn Syntax set place new-value
If @var{place} is a variable name, @code{set} is equivalent to
@code{set!}. Otherwise, @var{place} must have the form of a procedure
call, where the procedure name refers to a getter and the call indicates
an accessible generalized location, i.e., the call would return a value.
The return value of @code{set} is usually unspecified unless used with a
setter whose definition guarantees to return a useful value.
@example
(set (string-ref foo 2) #\O) ; generalized location with getter
foo @result{} "FoO"
(set foo "foo") ; like set!
foo @result{} "foo"
@end example
@end deffn
@deffn Procedure add-setter getter setter
Add procedures @var{getter} and @var{setter} to the (inaccessible) list
of valid setter/getter pairs. @var{setter} implements the store
operation corresponding to the @var{getter} access operation for the
relevant state. The return value is unspecified.
@end deffn
@deffn Procedure remove-setter-for getter
Removes the setter corresponding to the specified @var{getter} from the
list of valid setters. The return value is unspecified.
@end deffn
@deffn Syntax define-access-operation getter-name
Shorthand for a Yasos @code{define-operation} defining an operation
@var{getter-name} that objects may support to return the value of some
mutable state. The default operation is to signal an error. The return
value is unspecified.
@end deffn
@node Yasos examples, , Setters, Yasos
@subsection Examples
@lisp
(define-operation (print obj port)
(format port
(if (instance? obj) "#<instance>" "~s")
obj))
(define-operation (SIZE obj)
(cond
((vector? obj) (vector-length obj))
((list? obj) (length obj))
((pair? obj) 2)
((string? obj) (string-length obj))
((char? obj) 1)
(else
(error "Operation not supported: size" obj))))
(define-predicate cell?)
(define-operation (fetch obj))
(define-operation (store! obj newValue))
(define (make-cell value)
(object
((cell? self) #t)
((fetch self) value)
((store! self newValue)
(set! value newValue)
newValue)
((size self) 1)
((print self port)
(format port "#<Cell: ~s>" (fetch self)))))
(define-operation (discard obj value)
(format #t "Discarding ~s~%" value))
(define (make-filtered-cell value filter)
(object-with-ancestors ((cell (make-cell value)))
((store! self newValue)
(if (filter newValue)
(store! cell newValue)
(discard self newValue)))))
(define-predicate array?)
(define-operation (array-ref array index))
(define-operation (array-set! array index value))
(define (make-array num-slots)
(let ((anArray (make-vector num-slots)))
(object
((array? self) #t)
((size self) num-slots)
((array-ref self index) (vector-ref anArray index))
((array-set! self index newValue) (vector-set! anArray index newValue))
((print self port) (format port "#<Array ~s>" (size self))))))
(define-operation (position obj))
(define-operation (discarded-value obj))
(define (make-cell-with-history value filter size)
(let ((pos 0) (most-recent-discard #f))
(object-with-ancestors
((cell (make-filtered-call value filter))
(sequence (make-array size)))
((array? self) #f)
((position self) pos)
((store! self newValue)
(operate-as cell store! self newValue)
(array-set! self pos newValue)
(set! pos (+ pos 1)))
((discard self value)
(set! most-recent-discard value))
((discarded-value self) most-recent-discard)
((print self port)
(format port "#<Cell-with-history ~s>" (fetch self))))))
(define-access-operation fetch)
(add-setter fetch store!)
(define foo (make-cell 1))
(print foo #f)
@result{} "#<Cell: 1>"
(set (fetch foo) 2)
@result{}
(print foo #f)
@result{} "#<Cell: 2>"
(fetch foo)
@result{} 2
@end lisp
@node Numerics, Procedures, Macros, Top
@chapter Numerics
@menu
* Bit-Twiddling:: 'logical
* Modular Arithmetic:: 'modular
* Prime Testing and Generation:: 'primes
* Prime Factorization:: 'factor
* Random Numbers:: 'random
* Cyclic Checksum:: 'make-crc
* Plotting:: 'charplot
* Root Finding::
@end menu
@node Bit-Twiddling, Modular Arithmetic, Numerics, Numerics
@section Bit-Twiddling
@code{(require 'logical)}
The bit-twiddling functions are made available through the use of the
@code{logical} package. @code{logical} is loaded by inserting
@code{(require 'logical)} before the code that uses these
functions.@refill
@defun logand n1 n1
Returns the integer which is the bit-wise AND of the two integer
arguments.
Example:
@lisp
(number->string (logand #b1100 #b1010) 2)
@result{} "1000"
@end lisp
@end defun
@defun logior n1 n2
Returns the integer which is the bit-wise OR of the two integer
arguments.
Example:
@lisp
(number->string (logior #b1100 #b1010) 2)
@result{} "1110"
@end lisp
@end defun
@defun logxor n1 n2
Returns the integer which is the bit-wise XOR of the two integer
arguments.
Example:
@lisp
(number->string (logxor #b1100 #b1010) 2)
@result{} "110"
@end lisp
@end defun
@defun lognot n
Returns the integer which is the 2s-complement of the integer argument.
Example:
@lisp
(number->string (lognot #b10000000) 2)
@result{} "-10000001"
(number->string (lognot #b0) 2)
@result{} "-1"
@end lisp
@end defun
@defun logtest j k
@example
(logtest j k) @equiv{} (not (zero? (logand j k)))
(logtest #b0100 #b1011) @result{} #f
(logtest #b0100 #b0111) @result{} #t
@end example
@end defun
@defun logbit? index j
@example
(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)
(logbit? 0 #b1101) @result{} #t
(logbit? 1 #b1101) @result{} #f
(logbit? 2 #b1101) @result{} #t
(logbit? 3 #b1101) @result{} #t
(logbit? 4 #b1101) @result{} #f
@end example
@end defun
@defun ash int count
Returns an integer equivalent to
@code{(inexact->exact (floor (* @var{int} (expt 2 @var{count}))))}.@refill
Example:
@lisp
(number->string (ash #b1 3) 2)
@result{} "1000"
(number->string (ash #b1010 -1) 2)
@result{} "101"
@end lisp
@end defun
@defun logcount n
Returns the number of bits in integer @var{n}. If integer is positive,
the 1-bits in its binary representation are counted. If negative, the
0-bits in its two's-complement binary representation are counted. If 0,
0 is returned.
Example:
@lisp
(logcount #b10101010)
@result{} 4
(logcount 0)
@result{} 0
(logcount -2)
@result{} 1
@end lisp
@end defun
@defun integer-length n
Returns the number of bits neccessary to represent @var{n}.
Example:
@lisp
(integer-length #b10101010)
@result{} 8
(integer-length 0)
@result{} 0
(integer-length #b1111)
@result{} 4
@end lisp
@end defun
@defun integer-expt n k
Returns @var{n} raised to the non-negative integer exponent @var{k}.
Example:
@lisp
(integer-expt 2 5)
@result{} 32
(integer-expt -3 3)
@result{} -27
@end lisp
@end defun
@defun bit-extract n start end
Returns the integer composed of the @var{start} (inclusive) through
@var{end} (exclusive) bits of @var{n}. The @var{start}th bit becomes
the 0-th bit in the result.@refill
Example:
@lisp
(number->string (bit-extract #b1101101010 0 4) 2)
@result{} "1010"
(number->string (bit-extract #b1101101010 4 9) 2)
@result{} "10110"
@end lisp
@end defun
@node Modular Arithmetic, Prime Testing and Generation, Bit-Twiddling, Numerics
@section Modular Arithmetic
@code{(require 'modular)}
@defun extended-euclid n1 n2
Returns a list of 3 integers @code{(d x y)} such that d = gcd(@var{n1},
@var{n2}) = @var{n1} * x + @var{n2} * y.@refill
@end defun
@defun symmetric:modulus n
Returns @code{(quotient (+ -1 n) -2)} for positive odd integer @var{n}.
@end defun
@defun modulus->integer modulus
Returns the non-negative integer characteristic of the ring formed when
@var{modulus} is used with @code{modular:} procedures.
@end defun
@defun modular:normalize modulus n
Returns the integer @code{(modulo @var{n} (modulus->integer
@var{modulus}))} in the representation specified by @var{modulus}.
@end defun
@noindent
The rest of these functions assume normalized arguments; That is, the
arguments are constrained by the following table:
@noindent
For all of these functions, if the first argument (@var{modulus}) is:
@table @code
@item positive?
Work as before. The result is between 0 and @var{modulus}.
@item zero?
The arguments are treated as integers. An integer is returned.
@item negative?
The arguments and result are treated as members of the integers modulo
@code{(+ 1 (* -2 @var{modulus}))}, but with @dfn{symmetric}
representation; i.e. @code{(<= (- @var{modulus}) @var{n}
@var{modulus})}.
@end table
@noindent
If all the arguments are fixnums the computation will use only fixnums.
@defun modular:invertable? modulus k
Returns @code{#t} if there exists an integer n such that @var{k} * n
@equiv{} 1 mod @var{modulus}, and @code{#f} otherwise.
@end defun
@defun modular:invert modulus k2
Returns an integer n such that 1 = (n * @var{k2}) mod @var{modulus}. If
@var{k2} has no inverse mod @var{modulus} an error is signaled.
@end defun
@defun modular:negate modulus k2
Returns (@minus{}@var{k2}) mod @var{modulus}.
@end defun
@defun modular:+ modulus k2 k3
Returns (@var{k2} + @var{k3}) mod @var{modulus}.
@end defun
@defun modular:@minus{} modulus k2 k3
Returns (@var{k2} @minus{} @var{k3}) mod @var{modulus}.
@end defun
@defun modular:* modulus k2 k3
Returns (@var{k2} * @var{k3}) mod @var{modulus}.
The Scheme code for @code{modular:*} with negative @var{modulus} is not
completed for fixnum-only implementations.
@end defun
@defun modular:expt modulus k2 k3
Returns (@var{k2} ^ @var{k3}) mod @var{modulus}.
@end defun
@node Prime Testing and Generation, Prime Factorization, Modular Arithmetic, Numerics
@section Prime Testing and Generation
@code{(require 'primes)}
This package tests and generates prime numbers. The strategy used is
as follows:
@itemize
@item
First, use trial division by small primes (primes less than 1000) to
quickly weed out composites with small factors. As a side benefit, this
makes the test precise for numbers up to one million.
@item
Second, apply the Miller-Rabin primality test to detect (with high
probability) any remaining composites.
@end itemize
The Miller-Rabin test is a Monte-Carlo test---in other words, it's fast
and it gets the right answer with high probability. For a candidate
that @emph{is} prime, the Miller-Rabin test is certain to report
"prime"; it will never report "composite". However, for a candidate
that is composite, there is a (small) probability that the Miller-Rabin
test will erroneously report "prime". This probability can be made
arbitarily small by adjusting the number of iterations of the
Miller-Rabin test.
@defun probably-prime? candidate
@defunx probably-prime? candidate iter
Returns @code{#t} if @code{candidate} is probably prime. The optional
parameter @code{iter} controls the number of iterations of the
Miller-Rabin test. The probability of a composite candidate being
mistaken for a prime is at most @code{(1/4)^iter}. The default value of
@code{iter} is 15, which makes the probability less than 1 in 10^9.
@end defun
@defun primes< start count
@defunx primes< start count iter
@defunx primes> start count
@defunx primes> start count iter
Returns a list of the first @code{count} odd probable primes less (more)
than or equal to @code{start}. The optional parameter @code{iter}
controls the number of iterations of the Miller-Rabin test for each
candidate. The probability of a composite candidate being mistaken for
a prime is at most @code{(1/4)^iter}. The default value of @code{iter}
is 15, which makes the probability less than 1 in 10^9.
@end defun
@menu
* The Miller-Rabin Test:: How the Miller-Rabin test works
@end menu
@node The Miller-Rabin Test, , Prime Testing and Generation, Prime Testing and Generation
@subsection Theory
Rabin and Miller's result can be summarized as follows. Let @code{p}
(the candidate prime) be any odd integer greater than 2. Let @code{b}
(the "base") be an integer in the range @code{2 ... p-1}. There is a
fairly simple Boolean function---call it @code{C}, for
"Composite"---with the following properties:
@itemize
@item
If @code{p} is prime, @code{C(p, b)} is false for all @code{b} in the range
@code{2 ... p-1}.
@item
If @code{p} is composite, @code{C(p, b)} is false for at most 1/4 of all
@code{b} in the range @code{ 2 ... p-1}. (If the test fails for base
@code{b}, @code{p} is called a @emph{strong pseudo-prime to base
@code{b}}.)
@end itemize
For details of @code{C}, and why it fails for at most 1/4 of the
potential bases, please consult a book on number theory or cryptography
such as "A Course in Number Theory and Cryptography" by Neal Koblitz,
published by Springer-Verlag 1994.
There is nothing probablistic about this result. It's true for all
@code{p}. If we had time to test @code{(1/4)p + 1} different bases, we
could definitively determine the primality of @code{p}. For large
candidates, that would take much too long---much longer than the simple
approach of dividing by all numbers up to @code{sqrt(p)}. This is
where probability enters the picture.
Suppose we have some candidate prime @code{p}. Pick a random integer
@code{b} in the range @code{2 ... p-1}. Compute @code{C(p,b)}. If
@code{p} is prime, the result will certainly be false. If @code{p} is
composite, the probability is at most 1/4 that the result will be false
(demonstrating that @code{p} is a strong pseudoprime to base @code{b}).
The test can be repeated with other random bases. If @code{p} is prime,
each test is certain to return false. If @code{p} is composite, the
probability of @code{C(p,b)} returning false is at most 1/4 for each
test. Since the @code{b} are chosen at random, the tests outcomes are
independent. So if @code{p} is composite and the test is repeated, say,
15 times, the probability of it returning false all fifteen times is at
most (1/4)^15, or about 10^-9. If the test is repeated 30 times, the
probability of failure drops to at most 8.3e-25.
Rabin and Miller's result holds for @emph{all} candidates @code{p}.
However, if the candidate @code{p} is picked at random, the probability
of the Miller-Rabin test failing is much less than the computed bound.
This is because, for @emph{most} composite numbers, the fraction of
bases that cause the test to fail is much less than 1/4. For example,
if you pick a random odd number less than 1000 and apply the
Miller-Rabin test with only 3 random bases, the computed failure bound
is (1/4)^3, or about 1.6e-2. However, the actual probability of failure
is much less---about 7.2e-5. If you accidentally pick 703 to test for
primality, the probability of failure is (161/703)^3, or about 1.2e-2,
which is almost as high as the computed bound. This is because 703 is a
strong pseudoprime to 161 bases. But if you pick at random there is
only a small chance of picking 703, and no other number less than 1000
has that high a percentage of pseudoprime bases.
The Miller-Rabin test is sometimes used in a slightly different fashion,
where it can, at least in principle, cause problems. The weaker version
uses small prime bases instead of random bases. If you are picking
candidates at random and testing for primality, this works well since
very few composites are strong pseudo-primes to small prime bases. (For
example, there is only one composite less than 2.5e10 that is a strong
pseudo-prime to the bases 2, 3, 5, and 7.) The problem with this
approach is that once a candidate has been picked, the test is
deterministic. This distinction is subtle, but real. With the
randomized test, for @emph{any} candidate you pick---even if your
candidate-picking procedure is strongly biased towards troublesome
numbers, the test will work with high probability. With the
deterministic version, for any particular candidate, the test will
either work (with probability 1), or fail (with probability 1). It
won't fail for very many candidates, but that won't be much consolation
if your candidate-picking procedure is somehow biased toward troublesome
numbers.
@node Prime Factorization, Random Numbers, Prime Testing and Generation, Numerics
@section Prime Factorization
@code{(require 'factor)}
@defun factor k
Returns a list of the prime factors of @var{k}. The order of the
factors is unspecified. In order to obtain a sorted list do
@code{(sort! (factor k) <)}.@refill
@end defun
@emph{Note:} The rest of these procedures implement the Solovay-Strassen
primality test. This test has been superseeded by the faster
@xref{Prime Testing and Generation, probably-prime?}. However these are
left here as they take up little space and may be of use to an
implementation without bignums.
See Robert Solovay and Volker Strassen, @cite{A Fast Monte-Carlo Test
for Primality}, SIAM Journal on Computing, 1977, pp 84-85.
@defun jacobi-symbol p q
Returns the value (+1, @minus{}1, or 0) of the Jacobi-Symbol of exact
non-negative integer @var{p} and exact positive odd integer
@var{q}.@refill
@end defun
@defun prime? p
Returns @code{#f} if @var{p} is composite; @code{#t} if @var{p} is
prime. There is a slight chance @code{(expt 2 (- prime:trials))} that a
composite will return @code{#t}.@refill
@end defun
@defun prime:trials
Is the maxinum number of iterations of Solovay-Strassen that will be
done to test a number for primality.
@end defun
@node Random Numbers, Cyclic Checksum, Prime Factorization, Numerics
@section Random Numbers
@code{(require 'random)}
@deffn Procedure random n
@deffnx Procedure random n state
Accepts a positive integer or real @var{n} and returns a number of the
same type between zero (inclusive) and @var{n} (exclusive). The values
returned have a uniform distribution.@refill
The optional argument @var{state} must be of the type produced by
@code{(make-random-state)}. It defaults to the value of the variable
@code{*random-state*}. This object is used to maintain the state of the
pseudo-random-number generator and is altered as a side effect of the
@code{random} operation.@refill
@end deffn
@defvar *random-state*
Holds a data structure that encodes the internal state of the
random-number generator that @code{random} uses by default. The nature
of this data structure is implementation-dependent. It may be printed
out and successfully read back in, but may or may not function correctly
as a random-number state object in another implementation.@refill
@end defvar
@deffn Procedure make-random-state
@deffnx Procedure make-random-state state
Returns a new object of type suitable for use as the value of the
variable @code{*random-state*} and as a second argument to
@code{random}. If argument @var{state} is given, a copy of it is
returned. Otherwise a copy of @code{*random-state*} is returned.@refill
@end deffn
If inexact numbers are support by the Scheme implementation,
@file{randinex.scm} will be loaded as well. @file{randinex.scm}
contains procedures for generating inexact distributions.@refill
@deffn Procedure random:uniform state
Returns an uniformly distributed inexact real random number in the
range between 0 and 1.
@end deffn
@deffn Procedure random:solid-sphere! vect
@deffnx Procedure random:solid-sphere! vect state
Fills @var{vect} with inexact real random numbers the sum of whose
squares is less than 1.0. Thinking of @var{vect} as coordinates in
space of dimension @var{n} = @code{(vector-length @var{vect})}, the
coordinates are uniformly distributed within the unit @var{n}-shere.
The sum of the squares of the numbers is returned.@refill
@end deffn
@deffn Procedure random:hollow-sphere! vect
@deffnx Procedure random:hollow-sphere! vect state
Fills @var{vect} with inexact real random numbers the sum of whose
squares is equal to 1.0. Thinking of @var{vect} as coordinates in space
of dimension n = @code{(vector-length @var{vect})}, the coordinates are
uniformly distributed over the surface of the unit n-shere.@refill
@end deffn
@deffn Procedure random:normal
@deffnx Procedure random:normal state
Returns an inexact real in a normal distribution with mean 0 and
standard deviation 1. For a normal distribution with mean @var{m} and
standard deviation @var{d} use @code{(+ @var{m} (* @var{d}
(random:normal)))}.@refill
@end deffn
@deffn Procedure random:normal-vector! vect
@deffnx Procedure random:normal-vector! vect state
Fills @var{vect} with inexact real random numbers which are independent
and standard normally distributed (i.e., with mean 0 and variance 1).
@end deffn
@deffn Procedure random:exp
@deffnx Procedure random:exp state
Returns an inexact real in an exponential distribution with mean 1. For
an exponential distribution with mean @var{u} use (* @var{u}
(random:exp)).@refill
@end deffn
@node Cyclic Checksum, Plotting, Random Numbers, Numerics
@section Cyclic Checksum
@code{(require 'make-crc)}
@defun make-port-crc
@defunx make-port-crc degree
@defunx make-port-crc degree generator
Returns an expression for a procedure of one argument, a port. This
procedure reads characters from the port until the end of file and
returns the integer checksum of the bytes read.
The integer @var{degree}, if given, specifies the degree of the
polynomial being computed -- which is also the number of bits computed
in the checksums. The default value is 32.
The integer @var{generator} specifies the polynomial being computed.
The power of 2 generating each 1 bit is the exponent of a term of the
polynomial. The bit at position @var{degree} is implicit and should not
be part of @var{generator}. This allows systems with numbers limited to
32 bits to calculate 32 bit checksums. The default value of
@var{generator} when @var{degree} is 32 (its default) is:
@example
(make-port-crc 32 #b00000100110000010001110110110111)
@end example
Creates a procedure to calculate the P1003.2/D11.2 (POSIX.2) 32-bit
checksum from the polynomial:
@example
32 26 23 22 16 12 11
( x + x + x + x + x + x + x +
10 8 7 5 4 2 1
x + x + x + x + x + x + x + 1 ) mod 2
@end example
@end defun
@example
(require 'make-crc)
(define crc32 (slib:eval (make-port-crc)))
(define (file-check-sum file) (call-with-input-file file crc32))
(file-check-sum (in-vicinity (library-vicinity) "ratize.scm"))
@result{} 3553047446
@end example
@node Plotting, Root Finding, Cyclic Checksum, Numerics
@section Plotting on Character Devices
@code{(require 'charplot)}
The plotting procedure is made available through the use of the
@code{charplot} package. @code{charplot} is loaded by inserting
@code{(require 'charplot)} before the code that uses this
procedure.@refill
@defvar charplot:height
The number of rows to make the plot vertically.
@end defvar
@defvar charplot:width
The number of columns to make the plot horizontally.
@end defvar
@deffn Procedure plot! coords x-label y-label
@var{coords} is a list of pairs of x and y coordinates. @var{x-label}
and @var{y-label} are strings with which to label the x and y
axes.@refill
Example:
@example
(require 'charplot)
(set! charplot:height 19)
(set! charplot:width 45)
(define (make-points n)
(if (zero? n)
'()
(cons (cons (/ n 6) (sin (/ n 6))) (make-points (1- n)))))
(plot! (make-points 37) "x" "Sin(x)")
@print{}
@group
Sin(x) ______________________________________________
1.25|- |
| |
1|- **** |
| ** ** |
750.0e-3|- * * |
| * * |
500.0e-3|- * * |
| * |
250.0e-3|- * |
| * * |
0|-------------------*--------------------------|
| * |
-250.0e-3|- * * |
| * * |
-500.0e-3|- * |
| * * |
-750.0e-3|- * * |
| ** ** |
-1|- **** |
|____________:_____._____:_____._____:_________|
x 2 4
@end group
@end example
@end deffn
@node Root Finding, , Plotting, Numerics
@section Root Finding
@code{(require 'root)}
@defun newtown:find-integer-root f df/dx x0
Given integer valued procedure @var{f}, its derivative (with respect to
its argument) @var{df/dx}, and initial integer value @var{x0} for which
@var{df/dx}(@var{x0}) is non-zero, returns an integer @var{x} for which
@var{f}(@var{x}) is closer to zero than either of the integers adjacent
to @var{x}; or returns @code{#f} if such an integer can't be found.
To find the closest integer to a given integers square root:
@example
(define (integer-sqrt y)
(newton:find-integer-root
(lambda (x) (- (* x x) y))
(lambda (x) (* 2 x))
(ash 1 (quotient (integer-length y) 2))))
(integer-sqrt 15) @result{} 4
@end example
@end defun
@defun integer-sqrt y
Given a non-negative integer @var{y}, returns the rounded square-root of
@var{y}.
@end defun
@defun newton:find-root f df/dx x0 prec
Given real valued procedures @var{f}, @var{df/dx} of one (real)
argument, initial real value @var{x0} for which @var{df/dx}(@var{x0}) is
non-zero, and positive real number @var{prec}, returns a real @var{x}
for which @code{abs}(@var{f}(@var{x})) is less than @var{prec}; or
returns @code{#f} if such a real can't be found.
If @code{prec} is instead a negative integer, @code{newton:find-root}
returns the result of -@var{prec} iterations.
@end defun
@noindent
H. J. Orchard, @cite{The Laguerre Method for Finding the Zeros of
Polynomials}, IEEE Transactions on Circuits and Systems, Vol. 36,
No. 11, November 1989, pp 1377-1381.
@quotation
There are 2 errors in Orchard's Table II. Line k=2 for starting
value of 1000+j0 should have Z_k of 1.0475 + j4.1036 and line k=2
for starting value of 0+j1000 should have Z_k of 1.0988 + j4.0833.
@end quotation
@defun laguerre:find-root f df/dz ddf/dz^2 z0 prec
Given complex valued procedure @var{f} of one (complex) argument, its
derivative (with respect to its argument) @var{df/dx}, its second
derivative @var{ddf/dz^2}, initial complex value @var{z0}, and positive
real number @var{prec}, returns a complex number @var{z} for which
@code{magnitude}(@var{f}(@var{z})) is less than @var{prec}; or returns
@code{#f} if such a number can't be found.
If @code{prec} is instead a negative integer, @code{laguerre:find-root}
returns the result of -@var{prec} iterations.
@end defun
@defun laguerre:find-polynomial-root deg f df/dz ddf/dz^2 z0 prec
Given polynomial procedure @var{f} of integer degree @var{deg} of one
argument, its derivative (with respect to its argument) @var{df/dx}, its
second derivative @var{ddf/dz^2}, initial complex value @var{z0}, and
positive real number @var{prec}, returns a complex number @var{z} for
which @code{magnitude}(@var{f}(@var{z})) is less than @var{prec}; or
returns @code{#f} if such a number can't be found.
If @code{prec} is instead a negative integer,
@code{laguerre:find-polynomial-root} returns the result of -@var{prec}
iterations.
@end defun
@node Procedures, Standards Support, Numerics, Top
@chapter Procedures
Anything that doesn't fall neatly into any of the other categories winds
up here.
@menu
* Batch:: 'batch
* Common List Functions:: 'common-list-functions
* Format:: 'format
* Generic-Write:: 'generic-write
* Line I/O:: 'line-i/o
* Multi-Processing:: 'process
* Object-To-String:: 'object->string
* Pretty-Print:: 'pretty-print, 'pprint-file
* Sorting:: 'sort
* Topological Sort::
* Standard Formatted I/O:: 'printf, 'scanf
* String-Case:: 'string-case
* String Ports:: 'string-port
* String Search::
* Tektronix Graphics Support::
* Tree Operations:: 'tree
@end menu
@node Batch, Common List Functions, Procedures, Procedures
@section Batch
@code{(require 'batch)}
@noindent
The batch procedures provide a way to write and execute portable scripts
for a variety of operating systems. Each @code{batch:} procedure takes
as its first argument a parameter-list (@pxref{Parameter lists}). This
parameter-list argument @var{parms} contains named associations. Batch
currently uses 2 of these:
@table @code
@item batch-port
The port on which to write lines of the batch file.
@item batch-dialect
The syntax of batch file to generate. Currently supported are:
@itemize @bullet
@item
unix
@item
dos
@item
vms
@item
system
@item
*unknown*
@end itemize
@end table
@noindent
@file{batch.scm} uses 2 enhanced relational tables (@pxref{Database
Utilities}) to store information linking the names of
@code{operating-system}s to @code{batch-dialect}es.
@defun batch:initialize! database
Defines @code{operating-system} and @code{batch-dialect} tables and adds
the domain @code{operating-system} to the enhanced relational database
@var{database}.
@end defun
@defvar batch:platform
Is batch's best guess as to which operating-system it is running under.
@code{batch:platform} is set to @code{(software-type)}
(@pxref{Configuration}) unless @code{(software-type)} is @code{unix},
in which case finer distinctions are made.
@end defvar
@defun batch:call-with-output-script parms file proc
@var{proc} should be a procedure of one argument. If @var{file} is an
output-port, @code{batch:call-with-output-script} writes an appropriate
header to @var{file} and then calls @var{proc} with @var{file} as the
only argument. If @var{file} is a string,
@code{batch:call-with-output-script} opens a output-file of name
@var{file}, writes an appropriate header to @var{file}, and then calls
@var{proc} with the newly opened port as the only argument. Otherwise,
@code{batch:call-with-output-script} acts as if it was called with the
result of @code{(current-output-port)} as its third argument.
@end defun
@defun batch:apply-chop-to-fit proc arg1 arg2 @dots{} list
The procedure @var{proc} must accept at least one argument and return
@code{#t} if successful, @code{#f} if not.
@code{batch:apply-chop-to-fit} calls @var{proc} with @var{arg1},
@var{arg2}, @dots{}, and @var{chunk}, where @var{chunk} is a subset of
@var{list}. @code{batch:apply-chop-to-fit} tries @var{proc} with
successively smaller subsets of @var{list} until either @var{proc}
returns non-false, or the @var{chunk}s become empty.
@end defun
@noindent
The rest of the @code{batch:} procedures write (or execute if
@code{batch-dialect} is @code{system}) commands to the batch port which
has been added to @var{parms} or @code{(copy-tree @var{parms})} by the
code:
@example
(adjoin-parameters! @var{parms} (list 'batch-port @var{port}))
@end example
@defun batch:system parms string1 string2 @dots{}
Calls @code{batch:try-system} (below) with arguments, but signals an
error if @code{batch:try-system} returns @code{#f}.
@end defun
@noindent
These functions return a non-false value if the command was successfully
translated into the batch dialect and @code{#f} if not. In the case of
the @code{system} dialect, the value is non-false if the operation
suceeded.
@defun batch:try-system parms string1 string2 @dots{}
Writes a command to the @code{batch-port} in @var{parms} which executes
the program named @var{string1} with arguments @var{string2} @dots{}.
@end defun
@defun batch:run-script parms string1 string2 @dots{}
Writes a command to the @code{batch-port} in @var{parms} which executes
the batch script named @var{string1} with arguments @var{string2}
@dots{}.
@emph{Note:} @code{batch:run-script} and @code{batch:try-system} are not the
same for some operating systems (VMS).
@end defun
@defun batch:comment parms line1 @dots{}
Writes comment lines @var{line1} @dots{} to the @code{batch-port} in
@var{parms}.
@end defun
@defun batch:lines->file parms file line1 @dots{}
Writes commands to the @code{batch-port} in @var{parms} which create a
file named @var{file} with contents @var{line1} @dots{}.
@end defun
@defun batch:delete-file parms file
Writes a command to the @code{batch-port} in @var{parms} which deletes
the file named @var{file}.
@end defun
@defun batch:rename-file parms old-name new-name
Writes a command to the @code{batch-port} in @var{parms} which renames
the file @var{old-name} to @var{new-name}.
@end defun
@noindent
In addition, batch provides some small utilities very useful for writing
scripts:
@defun replace-suffix str old new
Returns a new string similar to @code{str} but with the suffix string
@var{old} removed and the suffix string @var{new} appended. If the end
of @var{str} does not match @var{old}, an error is signaled.
@end defun
@defun string-join joiner string1 @dots{}
Returns a new string consisting of all the strings @var{string1} @dots{}
in order appended together with the string @var{joiner} between each
adjacent pair.
@end defun
@defun must-be-first list1 list2
Returns a new list consisting of the elements of @var{list2} ordered so
that if some elements of @var{list1} are @code{equal?} to elements of
@var{list2}, then those elements will appear first and in the order of
@var{list1}.
@end defun
@defun must-be-last list1 list2
Returns a new list consisting of the elements of @var{list1} ordered so
that if some elements of @var{list2} are @code{equal?} to elements of
@var{list1}, then those elements will appear last and in the order of
@var{list2}.
@end defun
@defun os->batch-dialect osname
Returns its best guess for the @code{batch-dialect} to be used for the
operating-system named @var{osname}. @code{os->batch-dialect} uses the
tables added to @var{database} by @code{batch:initialize!}.
@end defun
@noindent
Here is an example of the use of most of batch's procedures:
@example
(require 'database-utilities)
(require 'parameters)
(require 'batch)
(define batch (create-database #f 'alist-table))
(batch:initialize! batch)
(define my-parameters
(list (list 'batch-dialect (os->batch-dialect batch:platform))
(list 'platform batch:platform)
(list 'batch-port (current-output-port)))) ;gets filled in later
(batch:call-with-output-script
my-parameters
"my-batch"
(lambda (batch-port)
(adjoin-parameters! my-parameters (list 'batch-port batch-port))
(and
(batch:comment my-parameters
"================ Write file with C program.")
(batch:rename-file my-parameters "hello.c" "hello.c~")
(batch:lines->file my-parameters "hello.c"
"#include <stdio.h>"
"int main(int argc, char **argv)"
"@{"
" printf(\"hello world\\n\");"
" return 0;"
"@}" )
(batch:system my-parameters "cc" "-c" "hello.c")
(batch:system my-parameters "cc" "-o" "hello"
(replace-suffix "hello.c" ".c" ".o"))
(batch:system my-parameters "hello")
(batch:delete-file my-parameters "hello")
(batch:delete-file my-parameters "hello.c")
(batch:delete-file my-parameters "hello.o")
(batch:delete-file my-parameters "my-batch")
)))
@end example
@noindent
Produces the file @file{my-batch}:
@example
#!/bin/sh
# "my-batch" build script created Sat Jun 10 21:20:37 1995
# ================ Write file with C program.
mv -f hello.c hello.c~
rm -f hello.c
echo '#include <stdio.h>'>>hello.c
echo 'int main(int argc, char **argv)'>>hello.c
echo '@{'>>hello.c
echo ' printf("hello world\n");'>>hello.c
echo ' return 0;'>>hello.c
echo '@}'>>hello.c
cc -c hello.c
cc -o hello hello.o
hello
rm -f hello
rm -f hello.c
rm -f hello.o
rm -f my-batch
@end example
@noindent
When run, @file{my-batch} prints:
@example
bash$ my-batch
mv: hello.c: No such file or directory
hello world
@end example
@node Common List Functions, Format, Batch, Procedures
@section Common List Functions
@code{(require 'common-list-functions)}
The procedures below follow the Common LISP equivalents apart from
optional arguments in some cases.
@menu
* List construction::
* Lists as sets::
* Lists as sequences::
* Destructive list operations::
* Non-List functions::
@end menu
@node List construction, Lists as sets, Common List Functions, Common List Functions
@subsection List construction
@defun make-list k . init
@code{make-list} creates and returns a list of @var{k} elements. If
@var{init} is included, all elements in the list are initialized to
@var{init}.@refill
Example:
@lisp
(make-list 3)
@result{} (#<unspecified> #<unspecified> #<unspecified>)
(make-list 5 'foo)
@result{} (foo foo foo foo foo)
@end lisp
@end defun
@defun list* x . y
Works like @code{list} except that the cdr of the last pair is the last
argument unless there is only one argument, when the result is just that
argument. Sometimes called @code{cons*}. E.g.:@refill
@lisp
(list* 1)
@result{} 1
(list* 1 2 3)
@result{} (1 2 . 3)
(list* 1 2 '(3 4))
@result{} (1 2 3 4)
(list* @var{args} '())
@equiv{} (list @var{args})
@end lisp
@end defun
@defun copy-list lst
@code{copy-list} makes a copy of @var{lst} using new pairs and returns
it. Only the top level of the list is copied, i.e., pairs forming
elements of the copied list remain @code{eq?} to the corresponding
elements of the original; the copy is, however, not @code{eq?} to the
original, but is @code{equal?} to it.@refill
Example:
@lisp
(copy-list '(foo foo foo))
@result{} (foo foo foo)
(define q '(foo bar baz bang))
(define p q)
(eq? p q)
@result{} #t
(define r (copy-list q))
(eq? q r)
@result{} #f
(equal? q r)
@result{} #t
(define bar '(bar))
(eq? bar (car (copy-list (list bar 'foo))))
@result{} #t
@end lisp
@end defun
@node Lists as sets, Lists as sequences, List construction, Common List Functions
@subsection Lists as sets
@code{eq?} is used to test for membership by all the procedures below
which treat lists as sets.@refill
@defun adjoin e l
@code{adjoin} returns the adjoint of the element @var{e} and the list
@var{l}. That is, if @var{e} is in @var{l}, @code{adjoin} returns
@var{l}, otherwise, it returns @code{(cons @var{e} @var{l})}.@refill
Example:
@lisp
(adjoin 'baz '(bar baz bang))
@result{} (bar baz bang)
(adjoin 'foo '(bar baz bang))
@result{} (foo bar baz bang)
@end lisp
@end defun
@defun union l1 l2
@code{union} returns the combination of @var{l1} and @var{l2}.
Duplicates between @var{l1} and @var{l2} are culled. Duplicates within
@var{l1} or within @var{l2} may or may not be removed.@refill
Example:
@lisp
(union '(1 2 3 4) '(5 6 7 8))
@result{} (4 3 2 1 5 6 7 8)
(union '(1 2 3 4) '(3 4 5 6))
@result{} (2 1 3 4 5 6)
@end lisp
@end defun
@defun intersection l1 l2
@code{intersection} returns all elements that are in both @var{l1} and
@var{l2}.@refill
Example:
@lisp
(intersection '(1 2 3 4) '(3 4 5 6))
@result{} (3 4)
(intersection '(1 2 3 4) '(5 6 7 8))
@result{} ()
@end lisp
@end defun
@defun set-difference l1 l2
@code{set-difference} returns the union of all elements that are in
@var{l1} but not in @var{l2}.@refill
Example:
@lisp
(set-difference '(1 2 3 4) '(3 4 5 6))
@result{} (1 2)
(set-difference '(1 2 3 4) '(1 2 3 4 5 6))
@result{} ()
@end lisp
@end defun
@defun member-if pred lst
@code{member-if} returns @var{lst} if @code{(@var{pred} @var{element})}
is @code{#t} for any @var{element} in @var{lst}. Returns @code{#f} if
@var{pred} does not apply to any @var{element} in @var{lst}.@refill
Example:
@lisp
(member-if vector? '(1 2 3 4))
@result{} #f
(member-if number? '(1 2 3 4))
@result{} (1 2 3 4)
@end lisp
@end defun
@defun some pred lst . more-lsts
@var{pred} is a boolean function of as many arguments as there are list
arguments to @code{some} i.e., @var{lst} plus any optional arguments.
@var{pred} is applied to successive elements of the list arguments in
order. @code{some} returns @code{#t} as soon as one of these
applications returns @code{#t}, and is @code{#f} if none returns
@code{#t}. All the lists should have the same length.@refill
Example:
@lisp
(some odd? '(1 2 3 4))
@result{} #t
(some odd? '(2 4 6 8))
@result{} #f
(some > '(2 3) '(1 4))
@result{} #f
@end lisp
@end defun
@defun every pred lst . more-lsts
@code{every} is analogous to @code{some} except it returns @code{#t} if
every application of @var{pred} is @code{#t} and @code{#f}
otherwise.@refill
Example:
@lisp
(every even? '(1 2 3 4))
@result{} #f
(every even? '(2 4 6 8))
@result{} #t
(every > '(2 3) '(1 4))
@result{} #f
@end lisp
@end defun
@defun notany pred . lst
@code{notany} is analogous to @code{some} but returns @code{#t} if no
application of @var{pred} returns @code{#t} or @code{#f} as soon as any
one does.@refill
@end defun
@defun notevery pred . lst
@code{notevery} is analogous to @code{some} but returns @code{#t} as soon
as an application of @var{pred} returns @code{#f}, and @code{#f}
otherwise.@refill
Example:
@lisp
(notevery even? '(1 2 3 4))
@result{} #t
(notevery even? '(2 4 6 8))
@result{} #f
@end lisp
@end defun
@defun find-if pred lst
@code{find-if} searches for the first @var{element} in @var{lst} such
that @code{(@var{pred} @var{element})} returns @code{#t}. If it finds
any such @var{element} in @var{lst}, @var{element} is returned.
Otherwise, @code{#f} is returned.@refill
Example:
@lisp
(find-if number? '(foo 1 bar 2))
@result{} 1
(find-if number? '(foo bar baz bang))
@result{} #f
(find-if symbol? '(1 2 foo bar))
@result{} foo
@end lisp
@end defun
@defun remove elt lst
@code{remove} removes all occurrences of @var{elt} from @var{lst} using
@code{eqv?} to test for equality and returns everything that's left.
N.B.: other implementations (Chez, Scheme->C and T, at least) use
@code{equal?} as the equality test.@refill
Example:
@lisp
(remove 1 '(1 2 1 3 1 4 1 5))
@result{} (2 3 4 5)
(remove 'foo '(bar baz bang))
@result{} (bar baz bang)
@end lisp
@end defun
@defun remove-if pred lst
@code{remove-if} removes all @var{element}s from @var{lst} where
@code{(@var{pred} @var{element})} is @code{#t} and returns everything
that's left.@refill
Example:
@lisp
(remove-if number? '(1 2 3 4))
@result{} ()
(remove-if even? '(1 2 3 4 5 6 7 8))
@result{} (1 3 5 7)
@end lisp
@end defun
@defun remove-if-not pred lst
@code{remove-if-not} removes all @var{element}s from @var{lst} for which
@code{(@var{pred} @var{element})} is @code{#f} and returns everything that's
left.@refill
Example:
@lisp
(remove-if-not number? '(foo bar baz))
@result{} ()
(remove-if-not odd? '(1 2 3 4 5 6 7 8))
@result{} (1 3 5 7)
@end lisp
@end defun
@defun has-duplicates? lst
returns @code{#t} if 2 members of @var{lst} are @code{equal?}, @code{#f}
otherwise.
Example:
@lisp
(has-duplicates? '(1 2 3 4))
@result{} #f
(has-duplicates? '(2 4 3 4))
@result{} #t
@end lisp
@end defun
@node Lists as sequences, Destructive list operations, Lists as sets, Common List Functions
@subsection Lists as sequences
@defun position obj lst
@code{position} returns the 0-based position of @var{obj} in @var{lst},
or @code{#f} if @var{obj} does not occur in @var{lst}.@refill
Example:
@lisp
(position 'foo '(foo bar baz bang))
@result{} 0
(position 'baz '(foo bar baz bang))
@result{} 2
(position 'oops '(foo bar baz bang))
@result{} #f
@end lisp
@end defun
@defun reduce p lst
@code{reduce} combines all the elements of a sequence using a binary
operation (the combination is left-associative). For example, using
@code{+}, one can add up all the elements. @code{reduce} allows you to
apply a function which accepts only two arguments to more than 2
objects. Functional programmers usually refer to this as @dfn{foldl}.
@code{collect:reduce} (@xref{Collections}) provides a version of
@code{collect} generalized to collections.@refill
Example:
@lisp
(reduce + '(1 2 3 4))
@result{} 10
(define (bad-sum . l) (reduce + l))
(bad-sum 1 2 3 4)
@equiv{} (reduce + (1 2 3 4))
@equiv{} (+ (+ (+ 1 2) 3) 4)
@result{} 10
(bad-sum)
@equiv{} (reduce + ())
@result{} ()
(reduce string-append '("hello" "cruel" "world"))
@equiv{} (string-append (string-append "hello" "cruel") "world")
@result{} "hellocruelworld"
(reduce anything '())
@result{} ()
(reduce anything '(x))
@result{} x
@end lisp
What follows is a rather non-standard implementation of @code{reverse}
in terms of @code{reduce} and a combinator elsewhere called
@dfn{C}.@refill
@lisp
;;; Contributed by Jussi Piitulainen (jpiitula@@ling.helsinki.fi)
(define commute
(lambda (f)
(lambda (x y)
(f y x))))
(define reverse
(lambda (args)
(reduce-init (commute cons) args)))
@end lisp
@end defun
@defun reduce-init p init lst
@code{reduce-init} is the same as reduce, except that it implicitly
inserts @var{init} at the start of the list. @code{reduce-init} is
preferred if you want to handle the null list, the one-element, and
lists with two or more elements consistently. It is common to use the
operator's idempotent as the initializer. Functional programmers
usually call this @dfn{foldl}.@refill
Example:
@lisp
(define (sum . l) (reduce-init + 0 l))
(sum 1 2 3 4)
@equiv{} (reduce-init + 0 (1 2 3 4))
@equiv{} (+ (+ (+ (+ 0 1) 2) 3) 4)
@result{} 10
(sum)
@equiv{} (reduce-init + 0 '())
@result{} 0
(reduce-init string-append "@@" '("hello" "cruel" "world"))
@equiv{}
(string-append (string-append (string-append "@@" "hello")
"cruel")
"world")
@result{} "@@hellocruelworld"
@end lisp
Given a differentiation of 2 arguments, @code{diff}, the following will
differentiate by any number of variables.
@lisp
(define (diff* exp . vars)
(reduce-init diff exp vars))
@end lisp
Example:
@lisp
;;; Real-world example: Insertion sort using reduce-init.
(define (insert l item)
(if (null? l)
(list item)
(if (< (car l) item)
(cons (car l) (insert (cdr l) item))
(cons item l))))
(define (insertion-sort l) (reduce-init insert '() l))
(insertion-sort '(3 1 4 1 5)
@equiv{} (reduce-init insert () (3 1 4 1 5))
@equiv{} (insert (insert (insert (insert (insert () 3) 1) 4) 1) 5)
@equiv{} (insert (insert (insert (insert (3)) 1) 4) 1) 5)
@equiv{} (insert (insert (insert (1 3) 4) 1) 5)
@equiv{} (insert (insert (1 3 4) 1) 5)
@equiv{} (insert (1 1 3 4) 5)
@result{} (1 1 3 4 5)
@end lisp
@end defun
@defun butlast lst n
@code{butlast} returns all but the last @var{n} elements of
@var{lst}.@refill
Example:
@lisp
(butlast '(1 2 3 4) 3)
@result{} (1)
(butlast '(1 2 3 4) 4)
@result{} ()
@end lisp
@end defun
@defun nthcdr n lst
@code{nthcdr} takes @var{n} @code{cdr}s of @var{lst} and returns the
result. Thus @code{(nthcdr 3 @var{lst})} @equiv{} @code{(cdddr
@var{lst})}
Example:
@lisp
(nthcdr 2 '(1 2 3 4))
@result{} (3 4)
(nthcdr 0 '(1 2 3 4))
@result{} (1 2 3 4)
@end lisp
@end defun
@defun last lst n
@code{last} returns the last @var{n} elements of @var{lst}. @var{n}
must be a non-negative integer.
Example:
@lisp
(last '(foo bar baz bang) 2)
@result{} (baz bang)
(last '(1 2 3) 0)
@result{} 0
@end lisp
@end defun
@node Destructive list operations, Non-List functions, Lists as sequences, Common List Functions
@subsection Destructive list operations
These procedures may mutate the list they operate on, but any such
mutation is undefined.
@deffn Procedure nconc args
@code{nconc} destructively concatenates its arguments. (Compare this
with @code{append}, which copies arguments rather than destroying them.)
Sometimes called @code{append!} (@xref{Rev2 Procedures}).@refill
Example: You want to find the subsets of a set. Here's the obvious way:
@lisp
(define (subsets set)
(if (null? set)
'(())
(append (mapcar (lambda (sub) (cons (car set) sub))
(subsets (cdr set)))
(subsets (cdr set)))))
@end lisp
But that does way more consing than you need. Instead, you could
replace the @code{append} with @code{nconc}, since you don't have any
need for all the intermediate results.@refill
Example:
@lisp
(define x '(a b c))
(define y '(d e f))
(nconc x y)
@result{} (a b c d e f)
x
@result{} (a b c d e f)
@end lisp
@code{nconc} is the same as @code{append!} in @file{sc2.scm}.
@end deffn
@deffn Procedure nreverse lst
@code{nreverse} reverses the order of elements in @var{lst} by mutating
@code{cdr}s of the list. Sometimes called @code{reverse!}.@refill
Example:
@lisp
(define foo '(a b c))
(nreverse foo)
@result{} (c b a)
foo
@result{} (a)
@end lisp
Some people have been confused about how to use @code{nreverse},
thinking that it doesn't return a value. It needs to be pointed out
that@refill
@lisp
(set! lst (nreverse lst))
@end lisp
@noindent
is the proper usage, not
@lisp
(nreverse lst)
@end lisp
The example should suffice to show why this is the case.
@end deffn
@deffn Procedure delete elt lst
@deffnx Procedure delete-if pred lst
@deffnx Procedure delete-if-not pred lst
Destructive versions of @code{remove} @code{remove-if}, and
@code{remove-if-not}.@refill
Example:
@lisp
(define lst '(foo bar baz bang))
(delete 'foo lst)
@result{} (bar baz bang)
lst
@result{} (foo bar baz bang)
(define lst '(1 2 3 4 5 6 7 8 9))
(delete-if odd? lst)
@result{} (2 4 6 8)
lst
@result{} (1 2 4 6 8)
@end lisp
Some people have been confused about how to use @code{delete},
@code{delete-if}, and @code{delete-if}, thinking that they dont' return
a value. It needs to be pointed out that@refill
@lisp
(set! lst (delete el lst))
@end lisp
@noindent
is the proper usage, not
@lisp
(delete el lst)
@end lisp
The examples should suffice to show why this is the case.
@end deffn
@node Non-List functions, , Destructive list operations, Common List Functions
@subsection Non-List functions
@defun and? . args
@code{and?} checks to see if all its arguments are true. If they are,
@code{and?} returns @code{#t}, otherwise, @code{#f}. (In contrast to
@code{and}, this is a function, so all arguments are always evaluated
and in an unspecified order.)@refill
Example:
@lisp
(and? 1 2 3)
@result{} #t
(and #f 1 2)
@result{} #f
@end lisp
@end defun
@defun or? . args
@code{or?} checks to see if any of its arguments are true. If any is
true, @code{or?} returns @code{#t}, and @code{#f} otherwise. (To
@code{or} as @code{and?} is to @code{and}.)@refill
Example:
@lisp
(or? 1 2 #f)
@result{} #t
(or? #f #f #f)
@result{} #f
@end lisp
@end defun
@defun atom? object
Returns @code{#t} if @var{object} is not a pair and @code{#f} if it is
pair. (Called @code{atom} in Common LISP.)
@lisp
(atom? 1)
@result{} #t
(atom? '(1 2))
@result{} #f
(atom? #(1 2)) ; dubious!
@result{} #t
@end lisp
@end defun
@defun type-of object
Returns a symbol name for the type of @var{object}.
@end defun
@defun coerce object result-type
Converts and returns @var{object} of type @code{char}, @code{number},
@code{string}, @code{symbol}, @code{list}, or @code{vector} to
@var{result-type} (which must be one of these symbols).
@end defun
@node Format, Generic-Write, Common List Functions, Procedures
@section Format
@code{(require 'format)}
@menu
* Format Interface::
* Format Specification::
@end menu
@node Format Interface, Format Specification, Format, Format
@subsection Format Interface
@defun format destination format-string . arguments
An almost complete implementation of Common LISP format description
according to the CL reference book @cite{Common LISP} from Guy L.
Steele, Digital Press. Backward compatible to most of the available
Scheme format implementations.
Returns @code{#t}, @code{#f} or a string; has side effect of printing
according to @var{format-string}. If @var{destination} is @code{#t},
the output is to the current output port and @code{#t} is returned. If
@var{destination} is @code{#f}, a formatted string is returned as the
result of the call. NEW: If @var{destination} is a string,
@var{destination} is regarded as the format string; @var{format-string} is
then the first argument and the output is returned as a string. If
@var{destination} is a number, the output is to the current error port
if available by the implementation. Otherwise @var{destination} must be
an output port and @code{#t} is returned.@refill
@var{format-string} must be a string. In case of a formatting error
format returns @code{#f} and prints a message on the current output or
error port. Characters are output as if the string were output by the
@code{display} function with the exception of those prefixed by a tilde
(~). For a detailed description of the @var{format-string} syntax
please consult a Common LISP format reference manual. For a test suite
to verify this format implementation load @file{formatst.scm}. Please
send bug reports to @code{lutzeb@@cs.tu-berlin.de}.
Note: @code{format} is not reentrant, i.e. only one @code{format}-call
may be executed at a time.
@end defun
@node Format Specification, , Format Interface, Format
@subsection Format Specification (Format version 3.0)
Please consult a Common LISP format reference manual for a detailed
description of the format string syntax. For a demonstration of the
implemented directives see @file{formatst.scm}.@refill
This implementation supports directive parameters and modifiers
(@code{:} and @code{@@} characters). Multiple parameters must be
separated by a comma (@code{,}). Parameters can be numerical parameters
(positive or negative), character parameters (prefixed by a quote
character (@code{'}), variable parameters (@code{v}), number of rest
arguments parameter (@code{#}), empty and default parameters. Directive
characters are case independent. The general form of a directive
is:@refill
@noindent
@var{directive} ::= ~@{@var{directive-parameter},@}[:][@@]@var{directive-character}
@noindent
@var{directive-parameter} ::= [ [-|+]@{0-9@}+ | '@var{character} | v | # ]
@subsubsection Implemented CL Format Control Directives
Documentation syntax: Uppercase characters represent the corresponding
control directive characters. Lowercase characters represent control
directive parameter descriptions.
@table @asis
@item @code{~A}
Any (print as @code{display} does).
@table @asis
@item @code{~@@A}
left pad.
@item @code{~@var{mincol},@var{colinc},@var{minpad},@var{padchar}A}
full padding.
@end table
@item @code{~S}
S-expression (print as @code{write} does).
@table @asis
@item @code{~@@S}
left pad.
@item @code{~@var{mincol},@var{colinc},@var{minpad},@var{padchar}S}
full padding.
@end table
@item @code{~D}
Decimal.
@table @asis
@item @code{~@@D}
print number sign always.
@item @code{~:D}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}D}
padding.
@end table
@item @code{~X}
Hexadecimal.
@table @asis
@item @code{~@@X}
print number sign always.
@item @code{~:X}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}X}
padding.
@end table
@item @code{~O}
Octal.
@table @asis
@item @code{~@@O}
print number sign always.
@item @code{~:O}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}O}
padding.
@end table
@item @code{~B}
Binary.
@table @asis
@item @code{~@@B}
print number sign always.
@item @code{~:B}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}B}
padding.
@end table
@item @code{~@var{n}R}
Radix @var{n}.
@table @asis
@item @code{~@var{n},@var{mincol},@var{padchar},@var{commachar}R}
padding.
@end table
@item @code{~@@R}
print a number as a Roman numeral.
@item @code{~:R}
print a number as an ordinal English number.
@item @code{~:@@R}
print a number as a cardinal English number.
@item @code{~P}
Plural.
@table @asis
@item @code{~@@P}
prints @code{y} and @code{ies}.
@item @code{~:P}
as @code{~P but jumps 1 argument backward.}
@item @code{~:@@P}
as @code{~@@P but jumps 1 argument backward.}
@end table
@item @code{~C}
Character.
@table @asis
@item @code{~@@C}
prints a character as the reader can understand it (i.e. @code{#\} prefixing).
@item @code{~:C}
prints a character as emacs does (eg. @code{^C} for ASCII 03).
@end table
@item @code{~F}
Fixed-format floating-point (prints a flonum like @var{mmm.nnn}).
@table @asis
@item @code{~@var{width},@var{digits},@var{scale},@var{overflowchar},@var{padchar}F}
@item @code{~@@F}
If the number is positive a plus sign is printed.
@end table
@item @code{~E}
Exponential floating-point (prints a flonum like @var{mmm.nnn@code{E}ee}).
@table @asis
@item @code{~@var{width},@var{digits},@var{exponentdigits},@var{scale},@var{overflowchar},@var{padchar},@var{exponentchar}E}
@item @code{~@@E}
If the number is positive a plus sign is printed.
@end table
@item @code{~G}
General floating-point (prints a flonum either fixed or exponential).
@table @asis
@item @code{~@var{width},@var{digits},@var{exponentdigits},@var{scale},@var{overflowchar},@var{padchar},@var{exponentchar}G}
@item @code{~@@G}
If the number is positive a plus sign is printed.
@end table
@item @code{~$}
Dollars floating-point (prints a flonum in fixed with signs separated).
@table @asis
@item @code{~@var{digits},@var{scale},@var{width},@var{padchar}$}
@item @code{~@@$}
If the number is positive a plus sign is printed.
@item @code{~:@@$}
A sign is always printed and appears before the padding.
@item @code{~:$}
The sign appears before the padding.
@end table
@item @code{~%}
Newline.
@table @asis
@item @code{~@var{n}%}
print @var{n} newlines.
@end table
@item @code{~&}
print newline if not at the beginning of the output line.
@table @asis
@item @code{~@var{n}&}
prints @code{~&} and then @var{n-1} newlines.
@end table
@item @code{~|}
Page Separator.
@table @asis
@item @code{~@var{n}|}
print @var{n} page separators.
@end table
@item @code{~~}
Tilde.
@table @asis
@item @code{~@var{n}~}
print @var{n} tildes.
@end table
@item @code{~}<newline>
Continuation Line.
@table @asis
@item @code{~:}<newline>
newline is ignored, white space left.
@item @code{~@@}<newline>
newline is left, white space ignored.
@end table
@item @code{~T}
Tabulation.
@table @asis
@item @code{~@@T}
relative tabulation.
@item @code{~@var{colnum,colinc}T}
full tabulation.
@end table
@item @code{~?}
Indirection (expects indirect arguments as a list).
@table @asis
@item @code{~@@?}
extracts indirect arguments from format arguments.
@end table
@item @code{~(@var{str}~)}
Case conversion (converts by @code{string-downcase}).
@table @asis
@item @code{~:(@var{str}~)}
converts by @code{string-capitalize}.
@item @code{~@@(@var{str}~)}
converts by @code{string-capitalize-first}.
@item @code{~:@@(@var{str}~)}
converts by @code{string-upcase}.
@end table
@item @code{~*}
Argument Jumping (jumps 1 argument forward).
@table @asis
@item @code{~@var{n}*}
jumps @var{n} arguments forward.
@item @code{~:*}
jumps 1 argument backward.
@item @code{~@var{n}:*}
jumps @var{n} arguments backward.
@item @code{~@@*}
jumps to the 0th argument.
@item @code{~@var{n}@@*}
jumps to the @var{n}th argument (beginning from 0)
@end table
@item @code{~[@var{str0}~;@var{str1}~;...~;@var{strn}~]}
Conditional Expression (numerical clause conditional).
@table @asis
@item @code{~@var{n}[}
take argument from @var{n}.
@item @code{~@@[}
true test conditional.
@item @code{~:[}
if-else-then conditional.
@item @code{~;}
clause separator.
@item @code{~:;}
default clause follows.
@end table
@item @code{~@{@var{str}~@}}
Iteration (args come from the next argument (a list)).
@table @asis
@item @code{~@var{n}@{}
at most @var{n} iterations.
@item @code{~:@{}
args from next arg (a list of lists).
@item @code{~@@@{}
args from the rest of arguments.
@item @code{~:@@@{}
args from the rest args (lists).
@end table
@item @code{~^}
Up and out.
@table @asis
@item @code{~@var{n}^}
aborts if @var{n} = 0
@item @code{~@var{n},@var{m}^}
aborts if @var{n} = @var{m}
@item @code{~@var{n},@var{m},@var{k}^}
aborts if @var{n} <= @var{m} <= @var{k}
@end table
@end table
@subsubsection Not Implemented CL Format Control Directives
@table @asis
@item @code{~:A}
print @code{#f} as an empty list (see below).
@item @code{~:S}
print @code{#f} as an empty list (see below).
@item @code{~<~>}
Justification.
@item @code{~:^}
(sorry I don't understand its semantics completely)
@end table
@subsubsection Extended, Replaced and Additional Control Directives
@table @asis
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}D}
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}X}
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}O}
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}B}
@item @code{~@var{n},@var{mincol},@var{padchar},@var{commachar},@var{commawidth}R}
@var{commawidth} is the number of characters between two comma characters.
@end table
@table @asis
@item @code{~I}
print a R4RS complex number as @code{~F~@@Fi} with passed parameters for
@code{~F}.
@item @code{~Y}
Pretty print formatting of an argument for scheme code lists.
@item @code{~K}
Same as @code{~?.}
@item @code{~!}
Flushes the output if format @var{destination} is a port.
@item @code{~_}
Print a @code{#\space} character
@table @asis
@item @code{~@var{n}_}
print @var{n} @code{#\space} characters.
@end table
@item @code{~/}
Print a @code{#\tab} character
@table @asis
@item @code{~@var{n}/}
print @var{n} @code{#\tab} characters.
@end table
@item @code{~@var{n}C}
Takes @var{n} as an integer representation for a character. No arguments
are consumed. @var{n} is converted to a character by
@code{integer->char}. @var{n} must be a positive decimal number.@refill
@item @code{~:S}
Print out readproof. Prints out internal objects represented as
@code{#<...>} as strings @code{"#<...>"} so that the format output can always
be processed by @code{read}.
@refill
@item @code{~:A}
Print out readproof. Prints out internal objects represented as
@code{#<...>} as strings @code{"#<...>"} so that the format output can always
be processed by @code{read}.
@item @code{~Q}
Prints information and a copyright notice on the format implementation.
@table @asis
@item @code{~:Q}
prints format version.
@end table
@refill
@item @code{~F, ~E, ~G, ~$}
may also print number strings, i.e. passing a number as a string and
format it accordingly.
@end table
@subsubsection Configuration Variables
Format has some configuration variables at the beginning of
@file{format.scm} to suit the systems and users needs. There should be
no modification necessary for the configuration that comes with SLIB.
If modification is desired the variable should be set after the format
code is loaded. Format detects automatically if the running scheme
system implements floating point numbers and complex numbers.
@table @asis
@item @var{format:symbol-case-conv}
Symbols are converted by @code{symbol->string} so the case type of the
printed symbols is implementation dependent.
@code{format:symbol-case-conv} is a one arg closure which is either
@code{#f} (no conversion), @code{string-upcase}, @code{string-downcase}
or @code{string-capitalize}. (default @code{#f})
@item @var{format:iobj-case-conv}
As @var{format:symbol-case-conv} but applies for the representation of
implementation internal objects. (default @code{#f})
@item @var{format:expch}
The character prefixing the exponent value in @code{~E} printing. (default
@code{#\E})
@end table
@subsubsection Compatibility With Other Format Implementations
@table @asis
@item SLIB format 2.x:
See @file{format.doc}.
@item SLIB format 1.4:
Downward compatible except for padding support and @code{~A}, @code{~S},
@code{~P}, @code{~X} uppercase printing. SLIB format 1.4 uses C-style
@code{printf} padding support which is completely replaced by the CL
@code{format} padding style.
@item MIT C-Scheme 7.1:
Downward compatible except for @code{~}, which is not documented
(ignores all characters inside the format string up to a newline
character). (7.1 implements @code{~a}, @code{~s},
~@var{newline}, @code{~~}, @code{~%}, numerical and variable
parameters and @code{:/@@} modifiers in the CL sense).@refill
@item Elk 1.5/2.0:
Downward compatible except for @code{~A} and @code{~S} which print in
uppercase. (Elk implements @code{~a}, @code{~s}, @code{~~}, and
@code{~%} (no directive parameters or modifiers)).@refill
@item Scheme->C 01nov91:
Downward compatible except for an optional destination parameter: S2C
accepts a format call without a destination which returns a formatted
string. This is equivalent to a #f destination in S2C. (S2C implements
@code{~a}, @code{~s}, @code{~c}, @code{~%}, and @code{~~} (no directive
parameters or modifiers)).@refill
@end table
This implementation of format is solely useful in the SLIB context
because it requires other components provided by SLIB.@refill
@node Generic-Write, Line I/O, Format, Procedures
@section Generic-Write
@code{(require 'generic-write)}
@code{generic-write} is a procedure that transforms a Scheme data value
(or Scheme program expression) into its textual representation and
prints it. The interface to the procedure is sufficiently general to
easily implement other useful formatting procedures such as pretty
printing, output to a string and truncated output.@refill
@deffn Procedure generic-write obj display? width output
@table @var
@item obj
Scheme data value to transform.
@item display?
Boolean, controls whether characters and strings are quoted.
@item width
Extended boolean, selects format:
@table @asis
@item #f
single line format
@item integer > 0
pretty-print (value = max nb of chars per line)
@end table
@item output
Procedure of 1 argument of string type, called repeatedly with
successive substrings of the textual representation. This procedure can
return @code{#f} to stop the transformation.
@end table
The value returned by @code{generic-write} is undefined.
Examples:
@lisp
(write obj) @equiv{} (generic-write obj #f #f @var{display-string})
(display obj) @equiv{} (generic-write obj #t #f @var{display-string})
@end lisp
@noindent
where
@lisp
@var{display-string} @equiv{}
(lambda (s) (for-each write-char (string->list s)) #t)
@end lisp
@end deffn
@node Line I/O, Multi-Processing, Generic-Write, Procedures
@section Line I/O
@code{(require 'line-i/o)}
@defun read-line
@defunx read-line port
Returns a string of the characters up to, but not including a newline or
end of file, updating @var{port} to point to the character following the
newline. If no characters are available, an end of file object is
returned. @var{port} may be omitted, in which case it defaults to the
value returned by @code{current-input-port}.@refill
@end defun
@defun read-line! string
@defunx read-line! string port
Fills @var{string} with characters up to, but not including a newline or
end of file, updating the port to point to the last character read or
following the newline if it was read. If no characters are available,
an end of file object is returned. If a newline or end of file was
found, the number of characters read is returned. Otherwise, @code{#f}
is returned. @var{port} may be omitted, in which case it defaults to
the value returned by @code{current-input-port}.@refill
@end defun
@defun write-line string
@defunx write-line string port
Writes @var{string} followed by a newline to the given port and returns
an unspecified value. Port may be omited, in which case it defaults to
the value returned by @code{current-input-port}.@refill
@end defun
@node Multi-Processing, Object-To-String, Line I/O, Procedures
@section Multi-Processing
@code{(require 'process)}
@deffn Procedure add-process! proc
Adds proc, which must be a procedure (or continuation) capable of
accepting accepting one argument, to the @code{process:queue}. The
value returned is unspecified. The argument to @var{proc} should be
ignored. If @var{proc} returns, the process is killed.@refill
@end deffn
@deffn Procedure process:schedule!
Saves the current process on @code{process:queue} and runs the next
process from @code{process:queue}. The value returned is
unspecified.@refill
@end deffn
@deffn Procedure kill-process!
Kills the current process and runs the next process from
@code{process:queue}. If there are no more processes on
@code{process:queue}, @code{(slib:exit)} is called (@xref{System}).
@end deffn
@node Object-To-String, Pretty-Print, Multi-Processing, Procedures
@section Object-To-String
@code{(require 'object->string)}
@defun object->string obj
Returns the textual representation of @var{obj} as a string.
@end defun
@node Pretty-Print, Sorting, Object-To-String, Procedures
@section Pretty-Print
@code{(require 'pretty-print)}
@deffn Procedure pretty-print obj
@deffnx Procedure pretty-print obj port
@code{pretty-print}s @var{obj} on @var{port}. If @var{port} is not
specified, @code{current-output-port} is used.
Example:
@example
@group
(pretty-print '((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
(16 17 18 19 20) (21 22 23 24 25)))
@print{} ((1 2 3 4 5)
@print{} (6 7 8 9 10)
@print{} (11 12 13 14 15)
@print{} (16 17 18 19 20)
@print{} (21 22 23 24 25))
@end group
@end example
@end deffn
@code{(require 'pprint-file)}
@deffn Procedure pprint-file infile
@deffnx Procedure pprint-file infile outfile
Pretty-prints all the code in @var{infile}. If @var{outfile} is
specified, the output goes to @var{outfile}, otherwise it goes to
@code{(current-output-port)}.@refill
@end deffn
@defun pprint-filter-file infile proc outfile
@defunx pprint-filter-file infile proc
@var{infile} is a port or a string naming an existing file. Scheme
source code expressions and definitions are read from the port (or file)
and @var{proc} is applied to them sequentially.
@var{outfile} is a port or a string. If no @var{outfile} is specified
then @code{current-output-port} is assumed. These expanded expressions
are then @code{pretty-print}ed to this port.
Whitepsace and comments (introduced by @code{;}) which are not part of
scheme expressions are reproduced in the output. This procedure does
not affect the values returned by @code{current-input-port} and
@code{current-output-port}.@refill
@end defun
@code{pprint-filter-file} can be used to pre-compile macro-expansion and
thus can reduce loading time. The following will write into
@file{exp-code.scm} the result of expanding all defmacros in
@file{code.scm}.
@lisp
(require 'pprint-file)
(require 'defmacroexpand)
(defmacro:load "my-macros.scm")
(pprint-filter-file "code.scm" defmacro:expand* "exp-code.scm")
@end lisp
@node Sorting, Topological Sort, Pretty-Print, Procedures
@section Sorting
@code{(require 'sort)}
Many Scheme systems provide some kind of sorting functions. They do
not, however, always provide the @emph{same} sorting functions, and
those that I have had the opportunity to test provided inefficient ones
(a common blunder is to use quicksort which does not perform well).
Because @code{sort} and @code{sort!} are not in the standard, there is
very little agreement about what these functions look like. For
example, Dybvig says that Chez Scheme provides
@lisp
(merge predicate list1 list2)
(merge! predicate list1 list2)
(sort predicate list)
(sort! predicate list)
@end lisp
@noindent
while MIT Scheme 7.1, following Common LISP, offers unstable
@lisp
(sort list predicate)
@end lisp
@noindent
TI PC Scheme offers
@lisp
(sort! list/vector predicate?)
@end lisp
@noindent
and Elk offers
@lisp
(sort list/vector predicate?)
(sort! list/vector predicate?)
@end lisp
Here is a comprehensive catalogue of the variations I have found.
@enumerate
@item
Both @code{sort} and @code{sort!} may be provided.
@item
@code{sort} may be provided without @code{sort!}.
@item
@code{sort!} may be provided without @code{sort}.
@item
Neither may be provided.
@item
The sequence argument may be either a list or a vector.
@item
The sequence argument may only be a list.
@item
The sequence argument may only be a vector.
@item
The comparison function may be expected to behave like @code{<}.
@item
The comparison function may be expected to behave like @code{<=}.
@item
The interface may be @code{(sort predicate? sequence)}.
@item
The interface may be @code{(sort sequence predicate?)}.
@item
The interface may be @code{(sort sequence &optional (predicate? <))}.
@item
The sort may be stable.
@item
The sort may be unstable.
@end enumerate
All of this variation really does not help anybody. A nice simple merge
sort is both stable and fast (quite a lot faster than @emph{quick} sort).
I am providing this source code with no restrictions at all on its use
(but please retain D.H.D.Warren's credit for the original idea). You
may have to rename some of these functions in order to use them in a
system which already provides incompatible or inferior sorts. For each
of the functions, only the top-level define needs to be edited to do
that.
I could have given these functions names which would not clash with any
Scheme that I know of, but I would like to encourage implementors to
converge on a single interface, and this may serve as a hint. The
argument order for all functions has been chosen to be as close to
Common LISP as made sense, in order to avoid NIH-itis.
Each of the five functions has a required @emph{last} parameter which is
a comparison function. A comparison function @code{f} is a function of
2 arguments which acts like @code{<}. For example,@refill
@lisp
(not (f x x))
(and (f x y) (f y z)) @equiv{} (f x z)
@end lisp
The standard functions @code{<}, @code{>}, @code{char<?}, @code{char>?},
@code{char-ci<?}, @code{char-ci>?}, @code{string<?}, @code{string>?},
@code{string-ci<?}, and @code{string-ci>?} are suitable for use as
comparison functions. Think of @code{(less? x y)} as saying when
@code{x} must @emph{not} precede @code{y}.@refill
@defun sorted? sequence less?
Returns @code{#t} when the sequence argument is in non-decreasing order
according to @var{less?} (that is, there is no adjacent pair @code{@dots{} x
y @dots{}} for which @code{(less? y x)}).@refill
Returns @code{#f} when the sequence contains at least one out-of-order
pair. It is an error if the sequence is neither a list nor a vector.
@end defun
@defun merge list1 list2 less?
This merges two lists, producing a completely new list as result. I
gave serious consideration to producing a Common-LISP-compatible
version. However, Common LISP's @code{sort} is our @code{sort!} (well,
in fact Common LISP's @code{stable-sort} is our @code{sort!}, merge sort
is @emph{fast} as well as stable!) so adapting CL code to Scheme takes a
bit of work anyway. I did, however, appeal to CL to determine the
@emph{order} of the arguments.
@end defun
@deffn Procedure merge! list1 list2 less?
Merges two lists, re-using the pairs of @var{list1} and @var{list2} to
build the result. If the code is compiled, and @var{less?} constructs
no new pairs, no pairs at all will be allocated. The first pair of the
result will be either the first pair of @var{list1} or the first pair of
@var{list2}, but you can't predict which.
The code of @code{merge} and @code{merge!} could have been quite a bit
simpler, but they have been coded to reduce the amount of work done per
iteration. (For example, we only have one @code{null?} test per
iteration.)@refill
@end deffn
@defun sort sequence less?
Accepts either a list or a vector, and returns a new sequence which is
sorted. The new sequence is the same type as the input. Always
@code{(sorted? (sort sequence less?) less?)}. The original sequence is
not altered in any way. The new sequence shares its @emph{elements}
with the old one; no elements are copied.@refill
@end defun
@deffn Procedure sort! sequence less?
Returns its sorted result in the original boxes. If the original
sequence is a list, no new storage is allocated at all. If the original
sequence is a vector, the sorted elements are put back in the same
vector.
Some people have been confused about how to use @code{sort!}, thinking
that it doesn't return a value. It needs to be pointed out that
@lisp
(set! slist (sort! slist <))
@end lisp
@noindent
is the proper usage, not
@lisp
(sort! slist <)
@end lisp
@end deffn
Note that these functions do @emph{not} accept a CL-style @samp{:key}
argument. A simple device for obtaining the same expressiveness is to
define@refill
@lisp
(define (keyed less? key)
(lambda (x y) (less? (key x) (key y))))
@end lisp
@noindent
and then, when you would have written
@lisp
(sort a-sequence #'my-less :key #'my-key)
@end lisp
@noindent
in Common LISP, just write
@lisp
(sort! a-sequence (keyed my-less? my-key))
@end lisp
@noindent
in Scheme.
@node Topological Sort, Standard Formatted I/O, Sorting, Procedures
@section Topological Sort
@code{(require 'topological-sort)} or @code{(require 'tsort)}
@noindent
The algorithm is inspired by Cormen, Leiserson and Rivest (1990)
@cite{Introduction to Algorithms}, chapter 23.
@defun tsort dag pred
@defunx topological-sort dag pred
where
@table @var
@item dag
is a list of sublists. The car of each sublist is a vertex. The cdr is
the adjacency list of that vertex, i.e. a list of all vertices to which
there exists an edge from the car vertex.
@item pred
is one of @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
@code{char=?}, @code{char-ci=?}, @code{string=?}, or @code{string-ci=?}.
@end table
Sort the directed acyclic graph @var{dag} so that for every edge from
vertex @var{u} to @var{v}, @var{u} will come before @var{v} in the
resulting list of vertices.
Time complexity: O (|V| + |E|)
Example (from Cormen):
@quotation
Prof. Bumstead topologically sorts his clothing when getting
dressed. The first argument to `tsort' describes which
garments he needs to put on before others. (For example,
Prof Bumstead needs to put on his shirt before he puts on his
tie or his belt.) `tsort' gives the correct order of dressing:
@end quotation
@example
(require 'tsort)
(tsort '((shirt tie belt)
(tie jacket)
(belt jacket)
(watch)
(pants shoes belt)
(undershorts pants shoes)
(socks shoes))
eq?)
@result{}
(socks undershorts pants shoes watch shirt belt tie jacket)
@end example
@end defun
@node Standard Formatted I/O, String-Case, Topological Sort, Procedures
@section Standard Formatted I/O
@menu
* Standard Formatted Output::
* Standard Formatted Input::
@end menu
@subsection stdio
@code{(require 'stdio)}
@code{require}s @code{printf} and @code{scanf} and additionally defines
the symbols:
@defvar stdin
Defined to be @code{(current-input-port)}.
@end defvar
@defvar stdout
Defined to be @code{(current-output-port)}.
@end defvar
@defvar stderr
Defined to be @code{(current-error-port)}.
@end defvar
@node Standard Formatted Output, Standard Formatted Input, Standard Formatted I/O, Standard Formatted I/O
@subsection Standard Formatted Output
@code{(require 'printf)}
@deffn Procedure printf format arg1 @dots{}
@deffnx Procedure fprintf port format arg1 @dots{}
@deffnx Procedure sprintf str format arg1 @dots{}
Each function converts, formats, and outputs its @var{arg1} @dots{}
arguments according to the control string @var{format} argument and
returns the number of characters output.
@code{printf} sends its output to the port @code{(current-output-port)}.
@code{fprintf} sends its output to the port @var{port}. @code{sprintf}
@code{string-set!}s locations of the non-constant string argument
@var{str} to the output characters.
@quotation
@emph{Note:} sprintf should be changed to a macro so a @code{substring}
expression could be used for the @var{str} argument.
@end quotation
The string @var{format} contains plain characters which are copied to
the output stream, and conversion specifications, each of which results
in fetching zero or more of the arguments @var{arg1} @dots{}. The
results are undefined if there are an insufficient number of arguments
for the format. If @var{format} is exhausted while some of the
@var{arg1} @dots{} arguments remain unused, the excess @var{arg1}
@dots{} arguments are ignored.
The conversion specifications in a format string have the form:
@example
% @r{[} @var{flags} @r{]} @r{[} @var{width} @r{]} @r{[} . @var{precision} @r{]} @r{[} @var{type} @r{]} @var{conversion}
@end example
An output conversion specifications consist of an initial @samp{%}
character followed in sequence by:
@itemize @bullet
@item
Zero or more @dfn{flag characters} that modify the normal behavior of
the conversion specification.
@table @asis
@item @samp{-}
Left-justify the result in the field. Normally the result is
right-justified.
@item @samp{+}
For the signed @samp{%d} and @samp{%i} conversions and all inexact
conversions, prefix a plus sign if the value is positive.
@item @samp{ }
For the signed @samp{%d} and @samp{%i} conversions, if the result
doesn't start with a plus or minus sign, prefix it with a space
character instead. Since the @samp{+} flag ensures that the result
includes a sign, this flag is ignored if both are specified.
@item @samp{#}
For inexact conversions, @samp{#} specifies that the result should
always include a decimal point, even if no digits follow it. For the
@samp{%g} and @samp{%G} conversions, this also forces trailing zeros
after the decimal point to be printed where they would otherwise be
elided.
For the @samp{%o} conversion, force the leading digit to be @samp{0}, as
if by increasing the precision. For @samp{%x} or @samp{%X}, prefix a
leading @samp{0x} or @samp{0X} (respectively) to the result. This
doesn't do anything useful for the @samp{%d}, @samp{%i}, or @samp{%u}
conversions. Using this flag produces output which can be parsed by the
@code{scanf} functions with the @samp{%i} conversion (@pxref{Standard
Formatted Input}).
@item @samp{0}
Pad the field with zeros instead of spaces. The zeros are placed after
any indication of sign or base. This flag is ignored if the @samp{-}
flag is also specified, or if a precision is specified for an exact
converson.
@end table
@item
An optional decimal integer specifying the @dfn{minimum field width}.
If the normal conversion produces fewer characters than this, the field
is padded (with spaces or zeros per the @samp{0} flag) to the specified
width. This is a @emph{minimum} width; if the normal conversion
produces more characters than this, the field is @emph{not} truncated.
@cindex minimum field width (@code{printf})
Alternatively, if the field width is @samp{*}, the next argument in the
argument list (before the actual value to be printed) is used as the
field width. The width value must be an integer. If the value is
negative it is as though the @samp{-} flag is set (see above) and the
absolute value is used as the field width.
@item
An optional @dfn{precision} to specify the number of digits to be
written for numeric conversions and the maximum field width for string
conversions. The precision is specified by a period (@samp{.}) followed
optionally by a decimal integer (which defaults to zero if omitted).
@cindex precision (@code{printf})
Alternatively, if the precision is @samp{.*}, the next argument in the
argument list (before the actual value to be printed) is used as the
precision. The value must be an integer, and is ignored if negative.
If you specify @samp{*} for both the field width and precision, the
field width argument precedes the precision argument. The @samp{.*}
precision is an enhancement. C library versions may not accept this
syntax.
For the @samp{%f}, @samp{%e}, and @samp{%E} conversions, the precision
specifies how many digits follow the decimal-point character. The
default precision is @code{6}. If the precision is explicitly @code{0},
the decimal point character is suppressed.
For the @samp{%g} and @samp{%G} conversions, the precision specifies how
many significant digits to print. Significant digits are the first
digit before the decimal point, and all the digits after it. If the
precision is @code{0} or not specified for @samp{%g} or @samp{%G}, it is
treated like a value of @code{1}. If the value being printed cannot be
expressed accurately in the specified number of digits, the value is
rounded to the nearest number that fits.
For exact conversions, if a precision is supplied it specifies the
minimum number of digits to appear; leading zeros are produced if
necessary. If a precision is not supplied, the number is printed with
as many digits as necessary. Converting an exact @samp{0} with an
explicit precision of zero produces no characters.
@item
An optional one of @samp{l}, @samp{h} or @samp{L}, which is ignored for
numeric conversions. It is an error to specify these modifiers for
non-numeric conversions.
@item
A character that specifies the conversion to be applied.
@end itemize
@subsubsection Exact Conversions
@table @asis
@item @samp{d}, @samp{i}
Print an integer as a signed decimal number. @samp{%d} and @samp{%i}
are synonymous for output, but are different when used with @code{scanf}
for input (@pxref{Standard Formatted Input}).
@item @samp{o}
Print an integer as an unsigned octal number.
@item @samp{u}
Print an integer as an unsigned decimal number.
@item @samp{x}, @samp{X}
Print an integer as an unsigned hexadecimal number. @samp{%x} prints
using the digits @samp{0123456789abcdef}. @samp{%X} prints using the
digits @samp{0123456789ABCDEF}.
@end table
@subsubsection Inexact Conversions
@emph{Note:} Inexact conversions are not supported yet.
@table @asis
@item @samp{f}
Print a floating-point number in fixed-point notation.
@item @samp{e}, @samp{E}
Print a floating-point number in exponential notation. @samp{%e} prints
@samp{e} between mantissa and exponont. @samp{%E} prints @samp{E}
between mantissa and exponont.
@item @samp{g}, @samp{G}
Print a floating-point number in either normal or exponential notation,
whichever is more appropriate for its magnitude. @samp{%g} prints
@samp{e} between mantissa and exponont. @samp{%G} prints @samp{E}
between mantissa and exponont.
@end table
@subsubsection Other Conversions
@table @asis
@item @samp{c}
Print a single character. The @samp{-} flag is the only one which can
be specified. It is an error to specify a precision.
@item @samp{s}
Print a string. The @samp{-} flag is the only one which can be
specified. A precision specifies the maximum number of characters to
output; otherwise all characters in the string are output.
@item @samp{a}, @samp{A}
Print a scheme expression. The @samp{-} flag left-justifies the output.
The @samp{#} flag specifies that strings and characters should be quoted
as by @code{write} (which can be read using @code{read}); otherwise,
output is as @code{display} prints. A precision specifies the maximum
number of characters to output; otherwise as many characters as needed
are output.
@emph{Note:} @samp{%a} and @samp{%A} are SLIB extensions.
@c @item @samp{p}
@c Print the value of a pointer.
@c @item @samp{n}
@c Get the number of characters printed so far. @xref{Other Output Conversions}.
@c Note that this conversion specification never produces any output.
@c @item @samp{m}
@c Print the string corresponding to the value of @code{errno}.
@c (This is a GNU extension.)
@c @xref{Other Output Conversions}.
@item @samp{%}
Print a literal @samp{%} character. No argument is consumed. It is an
error to specifiy flags, field width, precision, or type modifiers with
@samp{%%}.
@end table
@end deffn
@node Standard Formatted Input, , Standard Formatted Output, Standard Formatted I/O
@subsection Standard Formatted Input
@code{(require 'scanf)}
@deffn Function scanf-read-list format
@deffnx Function scanf-read-list format port
@deffnx Function scanf-read-list format string
@end deffn
@defmac scanf format arg1 @dots{}
@defmacx fscanf port format arg1 @dots{}
@defmacx sscanf str format arg1 @dots{}
Each function reads characters, interpreting them according to the
control string @var{format} argument.
@code{scanf-read-list} returns a list of the items specified as far as
the input matches @var{format}. @code{scanf}, @code{fscanf}, and
@code{sscanf} return the number of items successfully matched and
stored. @code{scanf}, @code{fscanf}, and @code{sscanf} also set the
location corresponding to @var{arg1} @dots{} using the methods:
@table @asis
@item symbol
@code{set!}
@item car expression
@code{set-car!}
@item cdr expression
@code{set-cdr!}
@item vector-ref expression
@code{vector-set!}
@item substring expression
@code{substring-move-left!}
@end table
The argument to a @code{substring} expression in @var{arg1} @dots{} must
be a non-constant string. Characters will be stored starting at the
position specified by the second argument to @code{substring}. The
number of characters stored will be limited by either the position
specified by the third argument to @code{substring} or the length of the
matched string, whichever is less.
The control string, @var{format}, contains conversion specifications and
other characters used to direct interpretation of input sequences. The
control string contains:
@itemize @bullet
@item White-space characters (blanks, tabs, newlines, or formfeeds)
that cause input to be read (and discarded) up to the next
non-white-space character.
@item An ordinary character (not @samp{%}) that must match the next
character of the input stream.
@item Conversion specifications, consisting of the character @samp{%}, an
optional assignment suppressing character @samp{*}, an optional
numerical maximum-field width, an optional @samp{l}, @samp{h} or
@samp{L} which is ignored, and a conversion code.
@c @item The conversion specification can alternatively be prefixed by
@c the character sequence @samp{%n$} instead of the character @samp{%},
@c where @var{n} is a decimal integer in the range. The @samp{%n$}
@c construction indicates that the value of the next input field should be
@c placed in the @var{n}th place in the return list, rather than to the next
@c unused one. The two forms of introducing a conversion specification,
@c @samp{%} and @samp{%n$}, must not be mixed within a single format string
@c with the following exception: Skip fields (see below) can be designated
@c as @samp{%*} or @samp{%n$*}. In the latter case, @var{n} is ignored.
@end itemize
Unless the specification contains the @samp{n} conversion character
(described below), a conversion specification directs the conversion of
the next input field. The result of a conversion specification is
returned in the position of the corresponding argument points, unless
@samp{*} indicates assignment suppression. Assignment suppression
provides a way to describe an input field to be skipped. An input field
is defined as a string of characters; it extends to the next
inappropriate character or until the field width, if specified, is
exhausted.
@quotation
@emph{Note:} This specification of format strings differs from the
@cite{ANSI C} and @cite{POSIX} specifications. In SLIB, white space
before an input field is not skipped unless white space appears before
the conversion specification in the format string. In order to write
format strings which work identically with @cite{ANSI C} and SLIB,
prepend whitespace to all conversion specifications except @samp{[} and
@samp{c}.
@end quotation
The conversion code indicates the interpretation of the input field; For
a suppressed field, no value is returned. The following conversion
codes are legal:
@table @asis
@item @samp{%}
A single % is expected in the input at this point; no value is returned.
@item @samp{d}, @samp{D}
A decimal integer is expected.
@item @samp{u}, @samp{U}
An unsigned decimal integer is expected.
@item @samp{o}, @samp{O}
An octal integer is expected.
@item @samp{x}, @samp{X}
A hexadecimal integer is expected.
@item @samp{i}
An integer is expected. Returns the value of the next input item,
interpreted according to C conventions; a leading @samp{0} implies
octal, a leading @samp{0x} implies hexadecimal; otherwise, decimal is
assumed.
@item @samp{n}
Returns the total number of bytes (including white space) read by
@code{scanf}. No input is consumed by @code{%n}.
@item @samp{f}, @samp{F}, @samp{e}, @samp{E}, @samp{g}, @samp{G}
A floating-point number is expected. The input format for
floating-point numbers is an optionally signed string of digits,
possibly containing a radix character @samp{.}, followed by an optional
exponent field consisting of an @samp{E} or an @samp{e}, followed by an
optional @samp{+}, @samp{-}, or space, followed by an integer.
@item @samp{c}, @samp{C}
@var{Width} characters are expected. The normal skip-over-white-space
is suppressed in this case; to read the next non-space character, use
@samp{%1s}. If a field width is given, a string is returned; up to the
indicated number of characters is read.
@item @samp{s}, @samp{S}
A character string is expected The input field is terminated by a
white-space character. @code{scanf} cannot read a null string.
@item @samp{[}
Indicates string data and the normal skip-over-leading-white-space is
suppressed. The left bracket is followed by a set of characters, called
the scanset, and a right bracket; the input field is the maximal
sequence of input characters consisting entirely of characters in the
scanset. @samp{^}, when it appears as the first character in the
scanset, serves as a complement operator and redefines the scanset as
the set of all characters not contained in the remainder of the scanset
string. Construction of the scanset follows certain conventions. A
range of characters may be represented by the construct first-last,
enabling @samp{[0123456789]} to be expressed @samp{[0-9]}. Using this
convention, first must be lexically less than or equal to last;
otherwise, the dash stands for itself. The dash also stands for itself
when it is the first or the last character in the scanset. To include
the right square bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a @samp{^}) of the scanset, in
which case it will not be interpreted syntactically as the closing
bracket. At least one character must match for this conversion to
succeed.
@end table
The @code{scanf} functions terminate their conversions at end-of-file,
at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is
left unread in the input stream.
@end defmac
@node String-Case, String Ports, Standard Formatted I/O, Procedures
@section String-Case
@code{(require 'string-case)}
@deffn Procedure string-upcase str
@deffnx Procedure string-downcase str
@deffnx Procedure string-capitalize str
The obvious string conversion routines. These are non-destructive.
@end deffn
@defun string-upcase! str
@defunx string-downcase! str
@defunx string-captialize! str
The destructive versions of the functions above.
@end defun
@node String Ports, String Search, String-Case, Procedures
@section String Ports
@code{(require 'string-port)}
@deffn Procedure call-with-output-string proc
@var{proc} must be a procedure of one argument. This procedure calls
@var{proc} with one argument: a (newly created) output port. When the
function returns, the string composed of the characters written into the
port is returned.@refill
@end deffn
@deffn Procedure call-with-input-string string proc
@var{proc} must be a procedure of one argument. This procedure calls
@var{proc} with one argument: an (newly created) input port from which
@var{string}'s contents may be read. When @var{proc} returns, the port
is closed and the value yielded by the procedure @var{proc} is
returned.@refill
@end deffn
@node String Search, Tektronix Graphics Support, String Ports, Procedures
@section String Search
@code{(require 'string-search)}
@deffn Procedure string-index string char
Returns the index of the first occurence of @var{char} within
@var{string}, or @code{#f} if the @var{string} does not contain a
character @var{char}.
@end deffn
@deffn procedure substring? pattern string
Searches @var{string} to see if some substring of @var{string} is equal
to @var{pattern}. @code{substring?} returns the index of the first
character of the first substring of @var{string} that is equal to
@var{pattern}; or @code{#f} if @var{string} does not contain
@var{pattern}.
@example
(substring? "rat" "pirate") @result{} 2
(substring? "rat" "outrage") @result{} #f
(substring? "" any-string) @result{} 0
@end example
@end deffn
@deffn Procedure find-string-from-port? str in-port max-no-chars
@deffnx Procedure find-string-from-port? str in-port
Looks for a string @var{str} within the first @var{max-no-chars} chars
of the input port @var{in-port}. @var{max-no-chars} may be omitted: in
that case, the search span is limited by the end of the input stream.
When the @var{str} is found, the function returns the number of
characters it has read from the port, and the port is set to read the
first char after that (that is, after the @var{str}) The function
returns @code{#f} when the @var{str} isn't found.
@code{find-string-from-port?} reads the port @emph{strictly}
sequentially, and does not perform any buffering. So
@code{find-string-from-port?} can be used even if the @var{in-port} is
open to a pipe or other communication channel.
@end deffn
@node Tektronix Graphics Support, Tree Operations, String Search, Procedures
@section Tektronix Graphics Support
@emph{Note:} The Tektronix graphics support files need more work, and
are not complete.
@subsection Tektronix 4000 Series Graphics
The Tektronix 4000 series graphics protocol gives the user a 1024 by
1024 square drawing area. The origin is in the lower left corner of the
screen. Increasing y is up and increasing x is to the right.
The graphics control codes are sent over the current-output-port and can
be mixed with regular text and ANSI or other terminal control sequences.
@deffn Procedure tek40:init
@end deffn
@deffn Procedure tek40:graphics
@end deffn
@deffn Procedure tek40:text
@end deffn
@deffn Procedure tek40:linetype linetype
@end deffn
@deffn Procedure tek40:move x y
@end deffn
@deffn Procedure tek40:draw x y
@end deffn
@deffn Procedure tek40:put-text x y str
@end deffn
@deffn Procedure tek40:reset
@end deffn
@subsection Tektronix 4100 Series Graphics
The graphics control codes are sent over the current-output-port and can
be mixed with regular text and ANSI or other terminal control sequences.
@deffn Procedure tek41:init
@end deffn
@deffn Procedure tek41:reset
@end deffn
@deffn Procedure tek41:graphics
@end deffn
@deffn Procedure tek41:move x y
@end deffn
@deffn Procedure tek41:draw x y
@end deffn
@deffn Procedure tek41:point x y number
@end deffn
@deffn Procedure tek41:encode-x-y x y
@end deffn
@deffn Procedure tek41:encode-int number
@end deffn
@node Tree Operations, , Tektronix Graphics Support, Procedures
@section Tree operations
@code{(require 'tree)}
These are operations that treat lists a representations of trees.
@defun subst new old tree
@defunx substq new old tree
@defunx substv new old tree
@code{subst} makes a copy of @var{tree}, substituting @var{new} for
every subtree or leaf of @var{tree} which is @code{equal?} to @var{old}
and returns a modified tree. The original @var{tree} is unchanged, but
may share parts with the result.@refill
@code{substq} and @code{substv} are similar, but test against @var{old}
using @code{eq?} and @code{eqv?} respectively.@refill
Examples:
@lisp
(substq 'tempest 'hurricane '(shakespeare wrote (the hurricane)))
@result{} (shakespeare wrote (the tempest))
(substq 'foo '() '(shakespeare wrote (twelfth night)))
@result{} (shakespeare wrote (twelfth night . foo) . foo)
(subst '(a . cons) '(old . pair)
'((old . spice) ((old . shoes) old . pair) (old . pair)))
@result{} ((old . spice) ((old . shoes) a . cons) (a . cons))
@end lisp
@end defun
@defun copy-tree tree
Makes a copy of the nested list structure @var{tree} using new pairs and
returns it. All levels are copied, so that none of the pairs in the
tree are @code{eq?} to the original ones -- only the leaves are.@refill
Example:
@lisp
(define bar '(bar))
(copy-tree (list bar 'foo))
@result{} ((bar) foo)
(eq? bar (car (copy-tree (list bar 'foo))))
@result{} #f
@end lisp
@end defun
@node Standards Support, Session Support, Procedures, Top
@chapter Standards Support
@menu
* With-File:: 'with-file
* Transcripts:: 'transcript
* Rev2 Procedures:: 'rev2-procedures
* Rev4 Optional Procedures:: 'rev4-optional-procedures
* Multi-argument / and -:: 'multiarg/and-
* Multi-argument Apply:: 'multiarg-apply
* Rationalize:: 'rationalize
* Promises:: 'promise
* Dynamic-Wind:: 'dynamic-wind
* Values:: 'values
* Time:: 'time
* CLTime:: 'common-lisp-time
@end menu
@node With-File, Transcripts, Standards Support, Standards Support
@section With-File
@code{(require 'with-file)}
@defun with-input-from-file file thunk
@defunx with-output-to-file file thunk
Description found in R4RS.
@end defun
@node Transcripts, Rev2 Procedures, With-File, Standards Support
@section Transcripts
@code{(require 'transcript)}
@defun transcript-on filename
@defunx transcript-off filename
Redefines @code{read-char}, @code{read}, @code{write-char},
@code{write}, @code{display}, and @code{newline}.@refill
@end defun
@node Rev2 Procedures, Rev4 Optional Procedures, Transcripts, Standards Support
@section Rev2 Procedures
@code{(require 'rev2-procedures)}
The procedures below were specified in the @cite{Revised^2 Report on
Scheme}. @strong{N.B.}: The symbols @code{1+} and @code{-1+} are not
@cite{R4RS} syntax. Scheme->C, for instance, barfs on this
module.@refill
@deffn Procedure substring-move-left! string1 start1 end1 string2 start2
@deffnx Procedure substring-move-right! string1 start1 end1 string2 start2
@var{string1} and @var{string2} must be a strings, and @var{start1},
@var{start2} and @var{end1} must be exact integers satisfying@refill
@display
0 <= @var{start1} <= @var{end1} <= (string-length @var{string1})
0 <= @var{start2} <= @var{end1} - @var{start1} + @var{start2} <= (string-length @var{string2})
@end display
@code{substring-move-left!} and @code{substring-move-right!} store
characters of @var{string1} beginning with index @var{start1}
(inclusive) and ending with index @var{end1} (exclusive) into
@var{string2} beginning with index @var{start2} (inclusive).@refill
@code{substring-move-left!} stores characters in time order of
increasing indices. @code{substring-move-right!} stores characters in
time order of increasing indeces.@refill
@end deffn
@deffn Procedure substring-fill! string start end char
Fills the elements @var{start}--@var{end} of @var{string} with the
character @var{char}.@refill
@end deffn
@defun string-null? str
@equiv{} @code{(= 0 (string-length @var{str}))}
@end defun
@deffn Procedure append! . pairs
Destructively appends its arguments. Equivalent to @code{nconc}.
@end deffn
@defun 1+ n
Adds 1 to @var{n}.
@end defun
@defun -1+ n
Subtracts 1 from @var{n}.
@end defun
@defun <?
@defunx <=?
@defunx =?
@defunx >?
@defunx >=?
These are equivalent to the procedures of the same name but without the
trailing @samp{?}.
@end defun
@node Rev4 Optional Procedures, Multi-argument / and -, Rev2 Procedures, Standards Support
@section Rev4 Optional Procedures
@code{(require 'rev4-optional-procedures)}
For the specification of these optional procedures,
@xref{Standard procedures, , ,r4rs, Revised(4) Scheme}.
@defun list-tail l p
@end defun
@defun string->list s
@end defun
@defun list->string l
@end defun
@defun string-copy
@end defun
@deffn Procedure string-fill! s obj
@end deffn
@defun list->vector l
@end defun
@defun vector->list s
@end defun
@deffn Procedure vector-fill! s obj
@end deffn
@node Multi-argument / and -, Multi-argument Apply, Rev4 Optional Procedures, Standards Support
@section Multi-argument / and -
@code{(require 'mutliarg/and-)}
For the specification of these optional forms, @xref{Numerical
operations, , ,r4rs, Revised(4) Scheme}. The @code{two-arg:}* forms are
only defined if the implementation does not support the many-argument
forms.@refill
@defun two-arg:/ n1 n2
The original two-argument version of @code{/}.
@end defun
@defun / divident . divisors
@end defun
@defun two-arg:- n1 n2
The original two-argument version of @code{-}.
@end defun
@defun - minuend . subtrahends
@end defun
@node Multi-argument Apply, Rationalize, Multi-argument / and -, Standards Support
@section Multi-argument Apply
@code{(require 'multiarg-apply)}
@noindent
For the specification of this optional form,
@xref{Control features, , ,r4rs, Revised(4) Scheme}.
@defun two-arg:apply proc l
The implementation's native @code{apply}. Only defined for
implementations which don't support the many-argument version.
@end defun
@defun apply proc . args
@end defun
@node Rationalize, Promises, Multi-argument Apply, Standards Support
@section Rationalize
@code{(require 'rationalize)}
The procedure rationalize is interesting because most programming
languages do not provide anything analogous to it. For simplicity, we
present an algorithm which computes the correct result for exact
arguments (provided the implementation supports exact rational numbers
of unlimited precision), and produces a reasonable answer for inexact
arguments when inexact arithmetic is implemented using floating-point.
We thank Alan Bawden for contributing this algorithm.
@defun rationalize x e
@end defun
@node Promises, Dynamic-Wind, Rationalize, Standards Support
@section Promises
@code{(require 'promise)}
@defun make-promise proc
@end defun
Change occurrences of @code{(delay @var{expression})} to
@code{(make-promise (lambda () @var{expression}))} and @code{(define
force promise:force)} to implement promises if your implementation
doesn't support them
(@pxref{Control features, , ,r4rs, Revised(4) Scheme}).
@node Dynamic-Wind, Values, Promises, Standards Support
@section Dynamic-Wind
@code{(require 'dynamic-wind)}
This facility is a generalization of Common LISP @code{unwind-protect},
designed to take into account the fact that continuations produced by
@code{call-with-current-continuation} may be reentered.@refill
@deffn Procedure dynamic-wind thunk1 thunk2 thunk3
The arguments @var{thunk1}, @var{thunk2}, and @var{thunk3} must all be
procedures of no arguments (thunks).@refill
@code{dynamic-wind} calls @var{thunk1}, @var{thunk2}, and then
@var{thunk3}. The value returned by @var{thunk2} is returned as the
result of @code{dynamic-wind}. @var{thunk3} is also called just before
control leaves the dynamic context of @var{thunk2} by calling a
continuation created outside that context. Furthermore, @var{thunk1} is
called before reentering the dynamic context of @var{thunk2} by calling
a continuation created inside that context. (Control is inside the
context of @var{thunk2} if @var{thunk2} is on the current return stack).
@strong{Warning:} There is no provision for dealing with errors or
interrupts. If an error or interrupt occurs while using
@code{dynamic-wind}, the dynamic environment will be that in effect at
the time of the error or interrupt.@refill
@end deffn
@node Values, Time, Dynamic-Wind, Standards Support
@section Values
@code{(require 'values)}
@defun values obj @dots{}
@code{values} takes any number of arguments, and passes (returns) them
to its continuation.@refill
@end defun
@defun call-with-values thunk proc
@var{thunk} must be a procedure of no arguments, and @var{proc} must be
a procedure. @code{call-with-values} calls @var{thunk} with a
continuation that, when passed some values, calls @var{proc} with those
values as arguments.@refill
Except for continuations created by the @code{call-with-values}
procedure, all continuations take exactly one value, as now; the effect
of passing no value or more than one value to continuations that were
not created by the @code{call-with-values} procedure is
unspecified.@refill
@end defun
@node Time, CLTime, Values, Standards Support
@section Time
The procedures @code{current-time}, @code{difftime}, and
@code{offset-time} are supported by all implementations (SLIB provides
them if feature @code{('current-time)} is missing. @code{current-time}
returns a @dfn{calendar time} (caltime) which can be a number or other
type.
@defun current-time
Returns the time since 00:00:00 GMT, January 1, 1970, measured in
seconds. Note that the reference time is different from the reference
time for @code{get-universal-time} in @ref{CLTime}. On implementations
which cannot support actual times, @code{current-time} will increment a
counter and return its value when called.
@end defun
@defun difftime caltime1 caltime0
Returns the difference (number of seconds) between twe calendar times:
@var{caltime1} - @var{caltime0}. @var{caltime0} can also be a number.
@end defun
@defun offset-time caltime offset
Returns the calendar time of @var{caltime} offset by @var{offset} number
of seconds @code{(+ caltime offset)}.
@end defun
@example
(require 'posix-time)
@end example
These procedures are intended to be compatible with Posix time
conversion functions.
@defvar *timezone*
contains the difference, in seconds, between UTC and local standard time
(for example, in the U.S. Eastern time zone (EST), timezone is
5*60*60). @code{*timezone*} is initialized by @code{tzset}.
@end defvar
@defun tzset
initializes the @var{*timezone*} variable from the TZ environment
variable. This function is automatically called by the other time
conversion functions that depend on the time zone.
@end defun
@defun gmtime caltime
converts the calendar time @var{caltime} to a vector of integers
representing the time expressed as Coordinated Universal Time (UTC).
@defunx localtime caltime
converts the calendar time @var{caltime} to a vector of integers expressed
relative to the user's time zone. @code{localtime} sets the variable
@var{*timezone*} with the difference between Coordinated Universal Time
(UTC) and local standard time in seconds by calling @code{tzset}.
The elements of the returned vector are as follows:
@enumerate 0
@item
seconds (0 - 61)
@item
minutes (0 - 59)
@item
hours since midnight
@item
day of month
@item
month (0 - 11). Note difference from @code{decode-universal-time}.
@item
year (A.D.)
@item
day of week (0 - 6)
@item
day of year (0 - 365)
@item
1 for daylight savings, 0 for regular time
@end enumerate
@end defun
@defun mktime univtime
Converts a vector of integers in Coordinated Universal Time (UTC) format
to calendar time (caltime) format.
@end defun
@defun asctime univtime
Converts the vector of integers @var{caltime} in Coordinated
Universal Time (UTC) format into a string of the form
@code{"Wed Jun 30 21:49:08 1993"}.
@end defun
@defun ctime caltime
Equivalent to @code{(time:asctime (time:localtime @var{caltime}))}.
@end defun
@node CLTime, , Time, Standards Support
@section CLTime
@defun get-decoded-time
Equivalent to @code{(decode-universal-time (get-universal-time))}.
@end defun
@defun get-universal-time
Returns the current time as @dfn{Universal Time}, number of seconds
since 00:00:00 Jan 1, 1900 GMT. Note that the reference time is
different from @code{current-time}.
@end defun
@defun decode-universal-time univtime
Converts @var{univtime} to @dfn{Decoded Time} format.
Nine values are returned:
@enumerate 0
@item
seconds (0 - 61)
@item
minutes (0 - 59)
@item
hours since midnight
@item
day of month
@item
month (1 - 12). Note difference from @code{gmtime} and @code{localtime}.
@item
year (A.D.)
@item
day of week (0 - 6)
@item
#t for daylight savings, #f otherwise
@item
hours west of GMT (-24 - +24)
@end enumerate
Notice that the values returned by @code{decode-universal-time} do not
match the arguments to @code{encode-universal-time}.
@end defun
@defun encode-universal-time second minute hour date month year
@defunx encode-universal-time second minute hour date month year time-zone
Converts the arguments in Decoded Time format to Universal Time format.
If @var{time-zone} is not specified, the returned time is adjusted for
daylight saving time. Otherwise, no adjustment is performed.
Notice that the values returned by @code{decode-universal-time} do not
match the arguments to @code{encode-universal-time}.
@end defun
@node Session Support, Optional SLIB Packages, Standards Support, Top
@chapter Session Support
@menu
* Repl:: Macros at top-level
* Quick Print:: Loop-safe Output
* Debug:: To err is human ...
* Breakpoints:: Pause execution
* Trace:: 'trace
* Getopt:: Command Line option parsing
* Command Line:: A command line reader for Scheme shells
* System Interface:: 'system and 'getenv
Certain features are so simple, system-dependent, or widely subcribed
that they are supported by all implementations as part of the
@samp{*.init} files.
The features described in the following sections are provided by all
implementations.
* Require:: Module Management
* Vicinity:: Pathname Management
* Configuration:: Characteristics of Scheme Implementation
* Input/Output:: Things not provided by the Scheme specs.
* Legacy::
* System:: LOADing, EVALing, ERRORing, and EXITing
@end menu
@node Repl, Quick Print, Session Support, Session Support
@section Repl
@code{(require 'repl)}
Here is a read-eval-print-loop which, given an eval, evaluates forms.
@deffn Procedure repl:top-level repl:eval
@code{read}s, @code{repl:eval}s and @code{write}s expressions from
@code{(current-input-port)} to @code{(current-output-port)} until an
end-of-file is encountered. @code{load}, @code{slib:eval},
@code{slib:error}, and @code{repl:quit} dynamically bound during
@code{repl:top-level}.@refill
@end deffn
@deffn Procedure repl:quit
Exits from the invocation of @code{repl:top-level}.
@end deffn
The @code{repl:} procedures establish, as much as is possible to do
portably, a top level environment supporting macros.
@code{repl:top-level} uses @code{dynamic-wind} to catch error conditions
and interrupts. If your implementation supports this you are all set.
Otherwise, if there is some way your implementation can catch error
conditions and interrupts, then have them call @code{slib:error}. It
will display its arguments and reenter @code{repl:top-level}.
@code{slib:error} dynamically bound by @code{repl:top-level}.@refill
To have your top level loop always use macros, add any interrupt
catching lines and the following lines to your Scheme init file:
@lisp
(require 'macro)
(require 'repl)
(repl:top-level macro:eval)
@end lisp
@node Quick Print, Debug, Repl, Session Support
@section Quick Print
@code{(require 'qp)}
@noindent
When displaying error messages and warnings, it is paramount that the
output generated for circular lists and large data structures be
limited. This section supplies a procedure to do this. It could be
much improved.
@quotation
Notice that the neccessity for truncating output eliminates
Common-Lisp's @xref{Format} from consideration; even when variables
@code{*print-level*} and @code{*print-level*} are set, huge strings and
bit-vectors are @emph{not} limited.
@end quotation
@deffn Procedure qp arg1 @dots{}
@deffnx Procedure qpn arg1 @dots{}
@deffnx Procedure qpr arg1 @dots{}
@code{qp} writes its arguments, separated by spaces, to
@code{(current-output-port)}. @code{qp} compresses printing by
substituting @samp{...} for substructure it does not have sufficient
room to print. @code{qpn} is like @code{qp} but outputs a newline
before returning. @code{qpr} is like @code{qpn} except that it returns
its last argument.@refill
@end deffn
@defvar *qp-width*
@code{*qp-width*} is the largest number of characters that @code{qp}
should use.@refill
@end defvar
@node Debug, Breakpoints, Quick Print, Session Support
@section Debug
@code{(require 'debug)}
@noindent
Requiring @code{debug} automatically requires @code{trace} and
@code{break}.
@noindent
An application with its own datatypes may want to substitute its own
printer for @code{qp}. This example shows how to do this:
@example
(define qpn (lambda args) @dots{})
(provide 'qp)
(require 'debug)
@end example
@deffn Procedure trace-all file
Traces (@pxref{Trace}) all procedures @code{define}d at top-level in
file @file{file}.
@end deffn
@deffn Procedure break-all file
Breakpoints (@pxref{Breakpoints}) all procedures @code{define}d at
top-level in file @file{file}.
@end deffn
@node Breakpoints, Trace, Debug, Session Support
@section Breakpoints
@code{(require 'break)}
@defun init-debug
If your Scheme implementation does not support @code{break} or
@code{abort}, a message will appear when you @code{(require 'break)} or
@code{(require 'debug)} telling you to type @code{(init-debug)}. This
is in order to establish a top-level continuation. Typing
@code{(init-debug)} at top level sets up a continuation for
@code{break}.
@end defun
@defun breakpoint arg1 @dots{}
Returns from the top level continuation and pushes the continuation from
which it was called on a continuation stack.
@end defun
@defun continue
Pops the topmost continuation off of the continuation stack and returns
an unspecified value to it.
@defunx continue arg1 @dots{}
Pops the topmost continuation off of the continuation stack and returns
@var{arg1} @dots{} to it.
@end defun
@defmac break proc1 @dots{}
Redefines the top-level named procedures given as arguments so that
@code{breakpoint} is called before calling @var{proc1} @dots{}.
@defmacx break
With no arguments, makes sure that all the currently broken identifiers
are broken (even if those identifiers have been redefined) and returns a
list of the broken identifiers.
@end defmac
@defmac unbreak proc1 @dots{}
Turns breakpoints off for its arguments.
@defmacx unbreak
With no arguments, unbreaks all currently broken identifiers and returns
a list of these formerly broken identifiers.
@end defmac
The following routines are the procedures which actually do the tracing
when this module is supplied by SLIB, rather than natively. If
defmacros are not natively supported by your implementation, these might
be more convenient to use.
@defun breakf proc
@defunx breakf proc name
@defunx debug:breakf proc
@defunx debug:breakf proc name
To break, type
@lisp
(set! @var{symbol} (breakf @var{symbol}))
@end lisp
@noindent
or
@lisp
(set! @var{symbol} (breakf @var{symbol} '@var{symbol}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (breakf @var{function}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (breakf @var{function} '@var{symbol}))
@end lisp
@end defun
@defun unbreakf proc
@defunx debug:unbreakf proc
To unbreak, type
@lisp
(set! @var{symbol} (unbreakf @var{symbol}))
@end lisp
@end defun
@node Trace, Getopt, Breakpoints, Session Support
@section Tracing
@code{(require 'trace)}
@defmac trace proc1 @dots{}
Traces the top-level named procedures given as arguments.
@defmacx trace
With no arguments, makes sure that all the currently traced identifiers
are traced (even if those identifiers have been redefined) and returns a
list of the traced identifiers.
@end defmac
@defmac untrace proc1 @dots{}
Turns tracing off for its arguments.
@defmacx untrace
With no arguments, untraces all currently traced identifiers and returns
a list of these formerly traced identifiers.
@end defmac
The following routines are the procedures which actually do the tracing
when this module is supplied by SLIB, rather than natively. If
defmacros are not natively supported by your implementation, these might
be more convenient to use.
@defun tracef proc
@defunx tracef proc name
@defunx debug:tracef proc
@defunx debug:tracef proc name
To trace, type
@lisp
(set! @var{symbol} (tracef @var{symbol}))
@end lisp
@noindent
or
@lisp
(set! @var{symbol} (tracef @var{symbol} '@var{symbol}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (tracef @var{function}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (tracef @var{function} '@var{symbol}))
@end lisp
@end defun
@defun untracef proc
@defunx debug:untracef proc
To untrace, type
@lisp
(set! @var{symbol} (untracef @var{symbol}))
@end lisp
@end defun
@node Getopt, Command Line, Trace, Session Support
@section Getopt
@code{(require 'getopt)}
This routine implements Posix command line argument parsing. Notice
that returning values through global variables means that @code{getopt}
is @emph{not} reentrant.
@defvar *optind*
Is the index of the current element of the command line. It is
initially one. In order to parse a new command line or reparse an old
one, @var{*opting*} must be reset.
@end defvar
@defvar *optarg*
Is set by getopt to the (string) option-argument of the current option.
@end defvar
@deffn Procedure getopt argc argv optstring
Returns the next option letter in @var{argv} (starting from
@code{(vector-ref argv *optind*)}) that matches a letter in
@var{optstring}. @var{argv} is a vector or list of strings, the 0th of
which getopt usually ignores. @var{argc} is the argument count, usually
the length of @var{argv}. @var{optstring} is a string of recognized
option characters; if a character is followed by a colon, the option
takes an argument which may be immediately following it in the string or
in the next element of @var{argv}.
@var{*optind*} is the index of the next element of the @var{argv} vector
to be processed. It is initialized to 1 by @file{getopt.scm}, and
@code{getopt} updates it when it finishes with each element of
@var{argv}.
@code{getopt} returns the next option character from @var{argv} that
matches a character in @var{optstring}, if there is one that matches.
If the option takes an argument, @code{getopt} sets the variable
@var{*optarg*} to the option-argument as follows:
@itemize @bullet
@item
If the option was the last character in the string pointed to by an
element of @var{argv}, then @var{*optarg*} contains the next element of
@var{argv}, and @var{*optind*} is incremented by 2. If the resulting
value of @var{*optind*} is greater than or equal to @var{argc}, this
indicates a missing option argument, and @code{getopt} returns an error
indication.
@item
Otherwise, @var{*optarg*} is set to the string following the option
character in that element of @var{argv}, and @var{*optind*} is
incremented by 1.
@end itemize
If, when @code{getopt} is called, the string @code{(vector-ref argv
*optind*)} either does not begin with the character @code{#\-} or is
just @code{"-"}, @code{getopt} returns @code{#f} without changing
@var{*optind*}. If @code{(vector-ref argv *optind*)} is the string
@code{"--"}, @code{getopt} returns @code{#f} after incrementing
@var{*optind*}.
If @code{getopt} encounters an option character that is not contained in
@var{optstring}, it returns the question-mark @code{#\?} character. If
it detects a missing option argument, it returns the colon character
@code{#\:} if the first character of @var{optstring} was a colon, or a
question-mark character otherwise. In either case, @code{getopt} sets
the variable @var{getopt:opt} to the option character that caused the
error.
The special option @code{"--"} can be used to delimit the end of the
options; @code{#f} is returned, and @code{"--"} is skipped.
RETURN VALUE
@code{getopt} returns the next option character specified on the command
line. A colon @code{#\:} is returned if @code{getopt} detects a missing argument
and the first character of @var{optstring} was a colon @code{#\:}.
A question-mark @code{#\?} is returned if @code{getopt} encounters an option
character not in @var{optstring} or detects a missing argument and the first
character of @var{optstring} was not a colon @code{#\:}.
Otherwise, @code{getopt} returns @code{#f} when all command line options have been
parsed.
Example:
@lisp
#! /usr/local/bin/scm
;;;This code is SCM specific.
(define argv (program-arguments))
(require 'getopt)
(define opts ":a:b:cd")
(let loop ((opt (getopt (length argv) argv opts)))
(case opt
((#\a) (print "option a: " *optarg*))
((#\b) (print "option b: " *optarg*))
((#\c) (print "option c"))
((#\d) (print "option d"))
((#\?) (print "error" getopt:opt))
((#\:) (print "missing arg" getopt:opt))
((#f) (if (< *optind* (length argv))
(print "argv[" *optind* "]="
(list-ref argv *optind*)))
(set! *optind* (+ *optind* 1))))
(if (< *optind* (length argv))
(loop (getopt (length argv) argv opts))))
(slib:exit)
@end lisp
@end deffn
@section Getopt--
@defun getopt-- argc argv optstring
The procedure @code{getopt--} is an extended version of @code{getopt}
which parses @dfn{long option names} of the form
@samp{--hold-the-onions} and @samp{--verbosity-level=extreme}.
@w{@code{Getopt--}} behaves as @code{getopt} except for non-empty
options beginning with @samp{--}.
Options beginning with @samp{--} are returned as strings rather than
characters. If a value is assigned (using @samp{=}) to a long option,
@code{*optarg*} is set to the value. The @samp{=} and value are
not returned as part of the option string.
No information is passed to @code{getopt--} concerning which long
options should be accepted or whether such options can take arguments.
If a long option did not have an argument, @code{*optarg} will be set to
@code{#f}. The caller is responsible for detecting and reporting
errors.
@example
(define opts ":-:b:")
(define argc 5)
(define argv '("foo" "-b9" "--f1" "--2=" "--g3=35234.342" "--"))
(define *optind* 1)
(define *optarg* #f)
(require 'qp)
(do ((i 5 (+ -1 i)))
((zero? i))
(define opt (getopt-- argc argv opts))
(print *optind* opt *optarg*)))
@print{}
2 #\b "9"
3 "f1" #f
4 "2" ""
5 "g3" "35234.342"
5 #f "35234.342"
@end example
@end defun
@node Command Line, System Interface, Getopt, Session Support
@section Command Line
@code{(require 'read-command)}
@defun read-command port
@defunx read-command
@code{read-command} converts a @dfn{command line} into a list of strings
suitable for parsing by @code{getopt}. The syntax of command lines
supported resembles that of popular @dfn{shell}s. @code{read-command}
updates @var{port} to point to the first character past the command
delimiter.
If an end of file is encountered in the input before any characters are
found that can begin an object or comment, then an end of file object is
returned.
The @var{port} argument may be omitted, in which case it defaults to the
value returned by @code{current-input-port}.
The fields into which the command line is split are delimited by
whitespace as defined by @code{char-whitespace?}. The end of a command
is delimited by end-of-file or unescaped semicolon (@key{;}) or
@key{newline}. Any character can be literally included in a field by
escaping it with a backslach (@key{\}).
The initial character and types of fields recognized are:
@table @asis
@item @samp{\}
The next character has is taken literally and not interpreted as a field
delimiter. If @key{\} is the last character before a @key{newline},
that @key{newline} is just ignored. Processing continues from the
characters after the @key{newline} as though the backslash and
@key{newline} were not there.
@item @samp{"}
The characters up to the next unescaped @key{"} are taken literally,
according to [R4RS] rules for literal strings (@pxref{Strings, , ,r4rs,
Revised(4) Scheme}).
@item @samp{(}, @samp{%'}
One scheme expression is @code{read} starting with this character. The
@code{read} expression is evaluated, converted to a string
(using @code{display}), and replaces the expression in the returned
field.
@item @samp{;}
Semicolon delimits a command. Using semicolons more than one command
can appear on a line. Escaped semicolons and semicolons inside strings
do not delimit commands.
@end table
@noindent
The comment field differs from the previous fields in that it must be
the first character of a command or appear after whitespace in order to
be recognized. @key{#} can be part of fields if these conditions are
not met. For instance, @code{ab#c} is just the field ab#c.
@table @samp
@item #
Introduces a comment. The comment continues to the end of the line on
which the semicolon appears. Comments are treated as whitespace by
@code{read-dommand-line} and backslashes before @key{newline}s in
comments are also ignored.
@end table
@end defun
@node System Interface, Require, Command Line, Session Support
@section System Interface
If @code{(provided? 'getenv)}:
@defun getenv name
Looks up @var{name}, a string, in the program environment. If @var{name} is
found a string of its value is returned. Otherwise, @code{#f} is returned.
@end defun
If @code{(provided? 'system)}:
@defun system command-string
Executes the @var{command-string} on the computer and returns the
integer status code.
@end defun
@node Require, Vicinity, System Interface, Session Support
@section Require
These variables and procedures are provided by all implementations.
@defvar *features*
Is a list of symbols denoting features supported in this implementation.
@end defvar
@defvar *modules*
Is a list of pathnames denoting files which have been loaded.
@end defvar
@defvar *catalog*
Is an association list of features (symbols) and pathnames which will
supply those features. The pathname can be either a string or a pair.
If pathname is a pair then the first element should be a macro feature
symbol, @code{source}, or @code{compiled}. The cdr of the pathname
should be either a string or a list.
@end defvar
In the following three functions if @var{feature} is not a symbol it is
assumed to be a pathname.@refill
@defun provided? feature
Returns @code{#t} if @var{feature} is a member of @code{*features*} or
@code{*modules*} or if @var{feature} is supported by a file already
loaded and @code{#f} otherwise.@refill
@end defun
@deffn Procedure require feature
If @code{(not (provided? @var{feature}))} it is loaded if @var{feature}
is a pathname or if @code{(assq @var{feature} *catalog*)}. Otherwise an
error is signaled.@refill
@end deffn
@deffn Procedure provide feature
Assures that @var{feature} is contained in @code{*features*} if
@var{feature} is a symbol and @code{*modules*} otherwise.@refill
@end deffn
@defun require:feature->path feature
Returns @code{#t} if @var{feature} is a member of @code{*features*} or
@code{*modules*} or if @var{feature} is supported by a file already
loaded. Returns a path if one was found in @code{*catalog*} under the
feature name, and @code{#f} otherwise. The path can either be a string
suitable as an argument to load or a pair as described above for
*catalog*.
@end defun
Below is a list of features that are automatically determined by
@code{require}. For each item, @code{(provided? '@var{feature})} will
return @code{#t} if that feature is available, and @code{#f} if
not.@refill
@itemize @bullet
@item
'inexact
@item
'rational
@item
'real
@item
'complex
@item
'bignum
@end itemize
@node Vicinity, Configuration, Require, Session Support
@section Vicinity
A vicinity is a descriptor for a place in the file system. Vicinities
hide from the programmer the concepts of host, volume, directory, and
version. Vicinities express only the concept of a file environment
where a file name can be resolved to a file in a system independent
manner. Vicinities can even be used on @dfn{flat} file systems (which
have no directory structure) by having the vicinity express constraints
on the file name. On most systems a vicinity would be a string. All of
these procedures are file system dependent.
These procedures are provided by all implementations.
@defun make-vicinity filename
Returns the vicinity of @var{filename} for use by @code{in-vicinity}.
@end defun
@defun program-vicinity
Returns the vicinity of the currently loading Scheme code. For an
interpreter this would be the directory containing source code. For a
compiled system (with multiple files) this would be the directory where
the object or executable files are. If no file is currently loading it
the result is undefined. @strong{Warning:} @code{program-vicinity} can
return incorrectl values if your program escapes back into a
@code{load}.@refill
@end defun
@defun library-vicinity
Returns the vicinity of the shared Scheme library.
@end defun
@defun implementation-vicinity
Returns the vicinity of the underlying Scheme implementation. This
vicinity will likely contain startup code and messages and a compiler.
@end defun
@defun user-vicinity
Returns the vicinity of the current directory of the user. On most
systems this is @file{""} (the empty string).
@end defun
@c @defun scheme-file-suffix
@c Returns the default filename suffix for scheme source files. On most
@c systems this is @samp{.scm}.@refill
@c @end defun
@defun in-vicinity vicinity filename
Returns a filename suitable for use by @code{slib:load},
@code{slib:load-source}, @code{slib:load-compiled},
@code{open-input-file}, @code{open-output-file}, etc. The returned
filename is @var{filename} in @var{vicinity}. @code{in-vicinity} should
allow @var{filename} to override @var{vicinity} when @var{filename} is
an absolute pathname and @var{vicinity} is equal to the value of
@code{(user-vicinity)}. The behavior of @code{in-vicinity} when
@var{filename} is absolute and @var{vicinity} is not equal to the value
of @code{(user-vicinity)} is unspecified. For most systems
@code{in-vicinity} can be @code{string-append}.@refill
@end defun
@defun sub-vicinity vicinity name
Returns the vicinity of @var{vicinity} restricted to @var{name}. This
is used for large systems where names of files in subsystems could
conflict. On systems with directory structure @code{sub-vicinity} will
return a pathname of the subdirectory @var{name} of
@var{vicinity}.@refill
@end defun
@node Configuration, Input/Output, Vicinity, Session Support
@section Configuration
These constants and procedures describe characteristics of the Scheme
and underlying operating system. They are provided by all
implementations.
@defvr Constant char-code-limit
An integer 1 larger that the largest value which can be returned by
@code{char->integer}.@refill
@end defvr
@defvr Constant most-positive-fixnum
The immediate integer closest to positive infinity.
@end defvr
@defvr Constant slib:tab
The tab character.
@end defvr
@defvr Constant slib:form-feed
The form-feed character.
@end defvr
@defun software-type
Returns a symbol denoting the generic operating system type. For
instance, @code{unix}, @code{vms}, @code{macos}, @code{amiga}, or
@code{ms-dos}.
@end defun
@defun slib:report-version
Displays the versions of SLIB and the underlying Scheme implementation
and the name of the operating system. An unspecified value is returned.
@example
(slib:report-version) @result{} slib "2a3" on scm "4e1" on unix
@end example
@end defun
@defun slib:report
Displays the information of @code{(slib:report-version)} followed by
almost all the information neccessary for submitting a problem report.
An unspecified value is returned.
@defunx slib:report #t
provides a more verbose listing.
@defunx slib:report filename
Writes the report to file @file{filename}.
@example
(slib:report)
@result{}
slib "2a3" on scm "4e1" on unix
(implementation-vicinity) is "/usr/local/src/scm/"
(library-vicinity) is "/usr/local/lib/slib/"
(scheme-file-suffix) is ".scm"
implementation *features* :
bignum complex real rational
inexact vicinity ed getenv
tmpnam system abort transcript
with-file ieee-p1178 rev4-report rev4-optional-procedures
hash object-hash delay eval
dynamic-wind multiarg-apply multiarg/and- logical
defmacro string-port source array-for-each
array full-continuation char-ready? line-i/o
i/o-extensions pipe
implementation *catalog* :
(rev4-optional-procedures . "/usr/local/lib/slib/sc4opt")
...
@end example
@end defun
@node Input/Output, Legacy, Configuration, Session Support
@section Input/Output
These procedures are provided by all implementations.
@deffn Procedure file-exists? filename
Returns @code{#t} if the specified file exists. Otherwise, returns
@code{#f}. If the underlying implementation does not support this
feature then @code{#f} is always returned.
@end deffn
@deffn Procedure delete-file filename
Deletes the file specified by @var{filename}. If @var{filename} can not
be deleted, @code{#f} is returned. Otherwise, @code{#t} is
returned.@refill
@end deffn
@deffn Procedure tmpnam
Returns a pathname for a file which will likely not be used by any other
process. Successive calls to @code{(tmpnam)} will return different
pathnames.@refill
@end deffn
@deffn Procedure current-error-port
Returns the current port to which diagnostic and error output is
directed.
@end deffn
@deffn Procedure force-output
@deffnx Procedure force-output port
Forces any pending output on @var{port} to be delivered to the output
device and returns an unspecified value. The @var{port} argument may be
omitted, in which case it defaults to the value returned by
@code{(current-output-port)}.@refill
@end deffn
@deffn Procedure output-port-width
@deffnx Procedure output-port-width port
Returns the width of @var{port}, which defaults to
@code{(current-output-port)} if absent. If the width cannot be
determined 79 is returned.@refill
@end deffn
@deffn Procedure output-port-height
@deffnx Procedure output-port-height port
Returns the height of @var{port}, which defaults to
@code{(current-output-port)} if absent. If the height cannot be
determined 24 is returned.@refill
@end deffn
@node Legacy, System, Input/Output, Session Support
@section Legacy
@defun identity x
@var{identity} returns its argument.
Example:
@lisp
(identity 3)
@result{} 3
(identity '(foo bar))
@result{} (foo bar)
(map identity @var{lst})
@equiv{} (copy-list @var{lst})
@end lisp
@end defun
These were present in Scheme until R4RS (@pxref{Notes, , Language
changes ,r4rs, Revised(4) Scheme}).
@defvr Constant t
Derfined as @code{#t}.
@end defvr
@defvr Constant nil
Defined as @code{#f}.
@end defvr
@defun last-pair l
Returns the last pair in the list @var{l}. Example:
@lisp
(last-pair (cons 1 2))
@result{} (1 . 2)
(last-pair '(1 2))
@result{} (2)
@equiv{} (cons 2 '())
@end lisp
@end defun
@node System, , Legacy, Session Support
@section System
These procedures are provided by all implementations.
@deffn Procedure slib:load-source name
Loads a file of Scheme source code from @var{name} with the default
filename extension used in SLIB. For instance if the filename extension
used in SLIB is @file{.scm} then @code{(slib:load-source "foo")} will
load from file @file{foo.scm}.
@end deffn
@deffn Procedure slib:load-compiled name
On implementations which support separtely loadable compiled modules,
loads a file of compiled code from @var{name} with the implementation's
filename extension for compiled code appended.
@end deffn
@deffn Procedure slib:load name
Loads a file of Scheme source or compiled code from @var{name} with the
appropriate suffixes appended. If both source and compiled code are
present with the appropriate names then the implementation will load
just one. It is up to the implementation to choose which one will be
loaded.
If an implementation does not support compiled code then
@code{slib:load} will be identical to @code{slib:load-source}.
@end deffn
@deffn Procedure slib:eval obj
@code{eval} returns the value of @var{obj} evaluated in the current top
level environment.@refill
@end deffn
@deffn Procedure slib:eval-load filename eval
@var{filename} should be a string. If filename names an existing file,
the Scheme source code expressions and definitions are read from the
file and @var{eval} called with them sequentially. The
@code{slib:eval-load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
@deffn Procedure slib:error arg1 arg2 @dots{}
Outputs an error message containing the arguments, aborts evaluation of
the current form and responds in a system dependent way to the error.
Typical responses are to abort the program or to enter a read-eval-print
loop.@refill
@end deffn
@deffn Procedure slib:exit n
@deffnx Procedure slib:exit
Exits from the Scheme session returning status @var{n} to the system.
If @var{n} is omitted or @code{#t}, a success status is returned to the
system (if possible). If @var{n} is @code{#f} a failure is returned to
the system (if possible). If @var{n} is an integer, then @var{n} is
returned to the system (if possible). If the Scheme session cannot exit
an unspecified value is returned from @code{slib:exit}.
@end deffn
@node Optional SLIB Packages, Procedure and Macro Index, Session Support, Top
@chapter Optional SLIB Packages
Several Scheme packages have been written using SLIB. There are several
reasons why a package might not be included in the SLIB distribution:
@itemize @bullet
@item
Because it requires special hardware or software which is not universal.
@item
Because it is large and of limited interest to most Scheme users.
@item
Because it has copying terms different enough from the other SLIB
packages that its inclusion would cause confusion.
@item
Because it is an application program, rather than a library module.
@item
Because I have been too busy to integrate it.
@end itemize
Once an optional package is installed (and an entry added to
@code{*catalog*}, the @code{require} mechanism allows it to be called up
and used as easily as any other SLIB package. Some optional packages
(for which @code{*catalog*} already has entries) available from SLIB
sites are:
@table @asis
@item SLIB-PSD is a portable debugger for Scheme (requires emacs editor).
@lisp
ftp-swiss.ai.mit.edu:pub/scm/slib-psd1-3.tar.gz
prep.ai.mit.edu:pub/gnu/jacal/slib-psd1-3.tar.gz
ftp.maths.tcd.ie:pub/bosullvn/jacal/slib-psd1-3.tar.gz
ftp.cs.indiana.edu:/pub/scheme-repository/utl/slib-psd1-3.tar.gz
@end lisp
With PSD, you can run a Scheme program in an Emacs buffer, set
breakpoints, single step evaluation and access and modify the program's
variables. It works by instrumenting the original source code, so it
should run with any R4RS compliant Scheme. It has been tested with SCM,
Elk 1.5, and the sci interpreter in the Scheme->C system, but should
work with other Schemes with a minimal amount of porting, if at
all. Includes documentation and user's manual. Written by Pertti
Kellom\"aki, pk@@cs.tut.fi. The Lisp Pointers article describing PSD
(Lisp Pointers VI(1):15-23, January-March 1993) is available as
@lisp
http://www.cs.tut.fi/staff/pk/scheme/psd/article/article.html
@end lisp
@item SLIB-SCHELOG is an embedding of Prolog in Scheme.
@lisp
ftp-swiss.ai.mit.edu:pub/scm/slib-schelog.tar.gz
prep.ai.mit.edu:pub/gnu/jacal/slib-schelog.tar.gz
ftp.maths.tcd.ie:pub/bosullvn/jacal/slib-schelog.tar.gz
ftp.cs.indiana.edu:/pub/scheme-repository/utl/slib-schelog.tar.gz
@end lisp
@end table
@node Procedure and Macro Index, Variable Index, Optional SLIB Packages, Top
@unnumbered Procedure and Macro Index
This is an alphabetical list of all the procedures and macros in SLIB.
@printindex fn
@node Variable Index, , Procedure and Macro Index, Top
@unnumbered Variable Index
This is an alphabetical list of all the global variables in SLIB.
@printindex vr
@contents
@bye
|