1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
; "phil-spc.scm": Hilbert space filling mapping
; Copyright (C) 2003, 2005 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'logical)
;;@code{(require 'hilbert-fill)}
;;@ftindex hilbert-fill
;;
;;@noindent
;;@cindex Hilbert
;;@cindex Space-Filling
;;The @dfn{Hilbert Space-Filling Curve} is a one-to-one mapping
;;between a unit line segment and an @var{n}-dimensional unit cube.
;;This implementation treats the nonnegative integers either as
;;fractional bits of a given width or as nonnegative integers.
;;
;;@noindent
;;The integer procedures map the non-negative integers to an
;;arbitrarily large @var{n}-dimensional cube with its corner at the
;;origin and all coordinates are non-negative.
;;
;;@noindent
;;For any exact nonnegative integer @var{scalar} and exact integer
;;@var{rank} > 2,
;;
;;@example
;;(= @var{scalar} (hilbert-coordinates->integer
;; (integer->hilbert-coordinates @var{scalar} @var{rank})))
;; @result{} #t
;;@end example
;;
;;When treating integers as @var{k} fractional bits,
;;
;;@example
;;(= @var{scalar} (hilbert-coordinates->integer
;; (integer->hilbert-coordinates @var{scalar} @var{rank} @var{k})) @var{k})
;; @result{} #t
;;@end example
;;@args scalar rank
;;Returns a list of @2 integer coordinates corresponding to exact
;;non-negative integer @1. The lists returned by @0 for @1 arguments
;;0 and 1 will differ in the first element.
;;
;;@args scalar rank k
;;
;;@1 must be a nonnegative integer of no more than
;;@code{@2*@var{k}} bits.
;;
;;@0 Returns a list of @2 @var{k}-bit nonnegative integer
;;coordinates corresponding to exact non-negative integer @1. The
;;curves generated by @0 have the same alignment independent of
;;@var{k}.
(define (integer->hilbert-coordinates scalar rank . nbits)
(define igry (integer->gray-code scalar))
(define rnkmsk (lognot (ash -1 rank)))
(define rnkhib (ash 1 (+ -1 rank)))
(define rank*nbits
(if (null? nbits)
(let ((rank^2 (* rank rank)))
(* (quotient (+ -1 rank^2 (integer-length scalar)) rank^2)
rank^2))
(* rank (car nbits))))
(do ((bdxn (- rank rank*nbits) (+ rank bdxn))
(chnk (ash igry (- rank rank*nbits))
(logxor rnkhib (logand (ash igry (+ rank bdxn)) rnkmsk)))
(rotation 0 (modulo (+ (log2-binary-factors chnk) 2 rotation) rank))
(flipbit 0 (ash 1 rotation))
(lst '() (cons (logxor flipbit (rotate-bit-field chnk rotation 0 rank))
lst)))
((positive? bdxn)
(map gray-code->integer (delaminate-list rank (reverse lst))))))
;;@args coords
;;@args coords k
;;Returns an exact non-negative integer corresponding to @1, a list
;;of non-negative integer coordinates.
(define (hilbert-coordinates->integer coords . nbits)
(define rank (length coords))
(set! nbits (if (null? nbits)
(* (quotient (+ -1 rank (integer-length (apply max coords)))
rank)
rank)
(car nbits)))
(if (zero? nbits)
0
(let ((lst (delaminate-list nbits (map integer->gray-code coords)))
(rnkhib (ash 1 (+ -1 rank))))
(define (loop lst rotation flipbit scalar)
(if (null? lst)
(gray-code->integer scalar)
(let ((chnk (rotate-bit-field (logxor flipbit (car lst))
(- rotation) 0 rank)))
(loop (cdr lst)
(modulo (+ (log2-binary-factors chnk) 2 rotation) rank)
(ash 1 rotation)
(logior (logxor rnkhib chnk) (ash scalar rank))))))
(loop (cdr lst)
(modulo (+ (log2-binary-factors (car lst)) 2) rank)
1
(car lst)))))
;;@subsubsection Gray code
;;
;;@cindex Gray code
;;@noindent
;;A @dfn{Gray code} is an ordering of non-negative integers in which
;;exactly one bit differs between each pair of successive elements. There
;;are multiple Gray codings. An n-bit Gray code corresponds to a
;;Hamiltonian cycle on an n-dimensional hypercube.
;;
;;@noindent
;;Gray codes find use communicating incrementally changing values between
;;asynchronous agents. De-laminated Gray codes comprise the coordinates
;;of Hilbert space-filling curves.
;;
;;
;;@defun integer->gray-code k
;;Converts @var{k} to a Gray code of the same @code{integer-length} as
;;@var{k}.
;;
;;@defunx gray-code->integer k
;;Converts the Gray code @var{k} to an integer of the same
;;@code{integer-length} as @var{k}.
;;
;;For any non-negative integer @var{k},
;;@example
;;(eqv? k (gray-code->integer (integer->gray-code k)))
;;@end example
;;@end defun
(define (integer->gray-code k)
(logxor k (arithmetic-shift k -1)))
(define (gray-code->integer k)
(if (negative? k)
(slib:error 'gray-code->integer 'negative? k)
(let ((kln (integer-length k)))
(do ((d 1 (* d 2))
(ans (logxor k (arithmetic-shift k -1)) ; == (integer->gray-code k)
(logxor ans (arithmetic-shift ans (* d -2)))))
((>= (* 2 d) kln) ans)))))
(define (grayter k1 k2)
(define kl1 (integer-length k1))
(define kl2 (integer-length k2))
(if (eqv? kl1 kl2)
(> (gray-code->integer k1) (gray-code->integer k2))
(> kl1 kl2)))
;;@defun = k1 k2
;;@defunx gray-code<? k1 k2
;;@defunx gray-code>? k1 k2
;;@defunx gray-code<=? k1 k2
;;@defunx gray-code>=? k1 k2
;;These procedures return #t if their Gray code arguments are
;;(respectively): equal, monotonically increasing, monotonically
;;decreasing, monotonically nondecreasing, or monotonically nonincreasing.
;;
;;For any non-negative integers @var{k1} and @var{k2}, the Gray code
;;predicate of @code{(integer->gray-code k1)} and
;;@code{(integer->gray-code k2)} will return the same value as the
;;corresponding predicate of @var{k1} and @var{k2}.
;;@end defun
(define (gray-code<? k1 k2)
(not (or (eqv? k1 k2) (grayter k1 k2))))
(define (gray-code<=? k1 k2)
(or (eqv? k1 k2) (not (grayter k1 k2))))
(define (gray-code>? k1 k2)
(and (not (eqv? k1 k2)) (grayter k1 k2)))
(define (gray-code>=? k1 k2)
(or (eqv? k1 k2) (grayter k1 k2)))
;;@subsubsection Bitwise Lamination
;;@cindex lamination
;;@body
;;
;;Returns a list of @var{count} integers comprised of the @var{j}th
;;bit of the integers @var{ks} where @var{j} ranges from @var{count}-1
;;to 0.
;;
;;@example
;;(map (lambda (k) (number->string k 2))
;; (delaminate-list 4 '(7 6 5 4 0 0 0 0)))
;; @result{} ("0" "11110000" "11000000" "10100000")
;;@end example
;;
;;@0 is its own inverse:
;;@example
;;(delaminate-list 8 (delaminate-list 4 '(7 6 5 4 0 0 0 0)))
;; @result{} (7 6 5 4 0 0 0 0)
;;@end example
(define (delaminate-list count ks)
(define nks (length ks))
(do ((kdx 0 (+ 1 kdx))
(lst '() (cons (list->integer (map (lambda (k) (logbit? kdx k)) ks))
lst)))
((>= kdx count) lst)))
|