aboutsummaryrefslogtreecommitdiffstats
path: root/limit.scm
blob: 2b29ddfac6dce1fcc5ed5f02a0ec9a428ac407e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
;;; "limit.scm" Scheme Implementation of one-side limit algorithm.
;Copyright 2005 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1.  Any copy made of this software must include this copyright notice
;in full.
;
;2.  I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3.  In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.

;;@code{(require 'limit)}

(require-if 'compiling 'root)

(define (finite? val)
  (and (not (= val (+ 1 val val)))
       (= val val)))

(define (inv-root f1 f2 f3 prec)
  (define f1^2 (* f1 f1))
  (define f2^2 (* f2 f2))
  (define f3^2 (expt f3 2))
  (require 'root)			; SLIB
  (newton:find-root (lambda (f0)
		      (+ (- (* (expt f0 2) f1))
			 (* f0 f1^2)
			 (* (- (* 2 (expt f0 2)) (* 3 f1^2)) f2)
			 (* (+ (- (* 2 f0)) (* 3 f1)) f2^2)
			 (* (- (+ (- (expt f0 2)) (* 2 f1^2)) f2^2)
			    f3)
			 (* (+ (- f0 (* 2 f1)) f2) f3^2)))
		    (lambda (f0)
		      (+ (- (+ (* -2 f0 f1) f1^2 (* 4 f0 f2))
			    (* 2 f2^2)
			    (* 2 f0 f3))
			 f3^2))
		    f1
		    prec))

(define (invintp f1 f2 f3)
  (define f1^2 (* f1 f1))
  (define f2^2 (* f2 f2))
  (define f3^2 (expt f3 2))
  (let ((c (+ (* -3 f1^2 f2)
	      (* 3 f1 f2^2)
	      (* (- (* 2 f1^2) f2^2) f3)
	      (* (- f2 (* 2 f1)) f3^2)))
	(b (+ (- f1^2 (* 2 f2^2)) f3^2))
	(a (- (* 2 f2) f1 f3)))
    (define disc (- (* b b) (* 4 a c)))
    ;;(printf "discriminant: %g\n" disc)
        (if (negative? (real-part disc))
	(/ b -2 a)
	(let ((sqrt-disc (sqrt disc)))
	  (define root+ (/ (- sqrt-disc b) 2 a))
	  (define root- (/ (+ sqrt-disc b) -2 a))
	  (if (< (magnitude (- root+ f1)) (magnitude (- root- f1)))
	      root+
	      root-)))))

(define (extrapolate-0 fs)
  (define n (length fs))
  (define (choose n k)
    (do ((kdx 1 (+ 1 kdx))
	 (prd 1 (/ (* (- n kdx -1) prd) kdx)))
	((> kdx k) prd)))
  (do ((k 1 (+ 1 k))
       (lst fs (cdr lst))
       (L 0 (+ (* -1 (expt -1 k) (choose n k) (car lst)) L)))
      ((null? lst) L)))

(define (sequence->limit proc sequence)
  (define lval (proc (car sequence)))
  (if (finite? lval)
      (let ((val (proc (cadr sequence))))
	(define h_n*nsamps (* (length sequence) (magnitude (- val lval))))
	(if (finite? val)
	    (let loop ((sequence (cddr sequence))
		       (fxs (list val lval))
		       (trend #f)
		       (ldelta (- val lval))
		       (jdx (+ -1 (length sequence))))
	      (cond ((null? sequence)
		     (case trend
		       ((diverging) (and (real? val) (/ ldelta 0.0)))
		       ((bounded) (invintp val lval (caddr fxs)))
		       (else (cond ((zero? ldelta) val)
				   ((not (real? val)) #f)
				   (else (extrapolate-0 fxs))))))
		    (else
		     (set! lval val)
		     (set! val (proc (car sequence)))
		     ;;(printf "f(%12g)=%12g; delta=%12g hyp=%12g j=%3d %s\n" (car sequence) val (- val lval) (/ h_n*nsamps jdx) jdx (or trend ""))
		     (if (finite? val)
			 (let ((delta (- val lval)))
			   (define h_j (/ h_n*nsamps jdx))
			   (cond ((case trend
				    ((converging) (<= (magnitude delta) h_j))
				    ((bounded)    (<= (magnitude ldelta) (magnitude delta)))
				    ((diverging)  (>= (magnitude delta) h_j))
				    (else #f))
				  (loop (cdr sequence) (cons val fxs) trend delta (+ -1 jdx)))
				 (trend #f)
				 (else
				  (loop (cdr sequence) (cons val fxs)
					(cond ((> (magnitude delta) h_j) 'diverging)
					      ((< (magnitude ldelta) (magnitude delta)) 'bounded)
					      (else 'converging))
					delta (+ -1 jdx)))))
			 (and (eq? trend 'diverging) val)))))
	    (and (real? val) val)))
      (and (real? lval) lval)))

(define (limit proc x1 x2 . k)
  (set! k (if (null? k) 8 (car k)))
  (cond ((not (finite? x2)) (slib:error 'limit 'infinite 'x2 x2))
	((not (finite? x1))
	 (or (positive? (* x1 x2)) (slib:error 'limit 'start 'mismatch x1 x2))
	 (limit (lambda (x) (proc (/ x))) 0.0 (/ x2) k))
	((= x1 (+ x1 x2)) (slib:error 'limit 'null 'range x1 (+ x1 x2)))
	(else (let ((dec (/ x2 k)))
		(do ((x (+ x1 x2 0.0) (- x dec))
		     (cnt (+ -1 k) (+ -1 cnt))
		     (lst '() (cons x lst)))
		    ((negative? cnt)
		     (sequence->limit proc (reverse lst))))))))