summaryrefslogtreecommitdiffstats
path: root/cring.scm
blob: 3f594bc691a44f1b402169b56e99f0aa33f9f047 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
;;;"cring.scm" Extend Scheme numerics to any commutative ring.
;Copyright (C) 1997 Aubrey Jaffer
;
;Permission to copy this software, to redistribute it, and to use it
;for any purpose is granted, subject to the following restrictions and
;understandings.
;
;1.  Any copy made of this software must include this copyright notice
;in full.
;
;2.  I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3.  In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.

(require 'common-list-functions)
(require 'relational-database)
(require 'database-utilities)
(require 'sort)

(define (symbol-alpha? sym)
  (char-alphabetic? (string-ref (symbol->string sym) 0)))
(define (expression-< x y)
  (cond ((and (number? x) (number? y)) (> x y))	;want negatives last
	((number? x) #t)
	((number? y) #f)
	((and (symbol? x) (symbol? y))
	 (cond ((eqv? (symbol-alpha? x) (symbol-alpha? y))
		(string<? (symbol->string x) (symbol->string y)))
	       (else (symbol-alpha? x))))
	((symbol? x) #t)
	((symbol? y) #f)
	((null? x) #t)
	((null? y) #f)
	((expression-< (car x) (car y)) #t)
	((expression-< (car y) (car x)) #f)
	(else (expression-< (cdr x) (cdr y)))))
(define (expression-sort seq) (sort! seq expression-<))

(define cring:db (create-database #f 'alist-table))
(define-tables cring:db
  `(operation
    ((op symbol)
     (sub-op1 symbol)
     (sub-op2 symbol))
    ((reduction expression))
    (;; This is the distributive rule (* over +)
     (* + identity
	,(lambda (exp1 exp2)
	   ;;(print 'distributing '* '+ exp1 exp2 '==>)
	   (apply + (map (lambda (trm) (* trm exp2)) (cdr exp1)))))
     (* - identity
	,(lambda (exp1 exp2)
	   ;;(print 'distributing '* '- exp1 exp2 '==>)
	   (apply - (map (lambda (trm) (* trm exp2)) (cdr exp1)))))
     (/ + identity
	,(lambda (exp1 exp2)
	   ;;(print 'distributing '/ '+ exp1 exp2 '==>)
	   (apply + (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))
     (/ - identity
	,(lambda (exp1 exp2)
	   ;;(print 'distributing '/ '- exp1 exp2 '==>)
	   (apply - (map (lambda (trm) (/ trm exp2)) (cdr exp1))))))))

(define cring:op-tab ((cring:db 'open-table) 'operation #t))
(define cring:rule (cring:op-tab 'get 'reduction))
(define cring:defrule (cring:op-tab 'row:update))
(define (cring:define-rule . args) (cring:defrule args))

(define number* *)
(define number+ +)
(define number- -)
(define number/ /)
(define number^ integer-expt)
(define is-term-op? (lambda (term op) (and (pair? term) (eq? op (car term)))))
;;(define (sign x) (if (positive? x) 1 (if (negative? x) -1 0)))
(define number0? zero?)
(define (zero? x) (and (number? x) (number0? x)))

(define (make-rat n d)
  (let* ((g (if (negative? d) (number- (gcd n d)) (gcd n d)))
	 (n/g (quotient n g))
	 (d/g (quotient d g)))
    (case d/g
      ((1) n/g)
      (else
       (case n/g
	 ((0) 0)
	 ((1) (list '/ d/g))
	 (else (list '/ n/g d/g)))))))

(define (rat-number? r)
  (and (list? r)
       (<= 2 (length r) 3)
       (eq? '/ (car r))
       (every number? (cdr r))))

(define (rat-numerator r)
  (cond ((number? r) r)
	((rat-number? r)
	 (case (length r)
	   ((2) 1)
	   ((3) (cadr r))))
	(else (slib:error 'rat-numerator "of non-rat" r))))

(define (rat-denominator r)
  (cond ((number? r) 1)
	((rat-number? r)
	 (case (length r)
	   ((2) (cadr r))
	   ((3) (caddr r))))
	(else (slib:error 'rat-denominator "of non-rat" r))))

;; To convert to CR internal form, NUMBER-op all the `numbers' in the
;; argument list and remove them from the argument list.  Collect the
;; remaining arguments into equivalence classes, keeping track of the
;; number of arguments in each class.  The returned list is thus:
;; (<numeric> (<expression1> . <exp1>) ...)

;;; Converts * argument list to CR internal form
(define (cr*-args->fcts args)
  ;;(print (cons 'cr*-args->fcts args) '==>)
  (let loop ((args args) (pow 1) (nums 1) (denoms 1) (arg.exps '()))
    ;;(print (list 'loop args pow nums denoms arg.exps) '==>)
    (cond ((null? args) (cons (make-rat nums denoms) arg.exps))
	  ((number? (car args))
	   (let ((num^pow (number^ (car args) (abs pow))))
	     (if (negative? pow)
		 (loop (cdr args) pow nums (number* num^pow denoms) arg.exps)
		 (loop (cdr args) pow (number* num^pow nums) denoms arg.exps))))
	  ((rat-number? (car args))
	   (let ((num^pow (number^ (rat-numerator (car args)) (abs pow)))
		 (den^pow (number^ (rat-denominator (car args)) (abs pow))))
	     (if (negative? pow)
		 (loop (cdr args) pow
		       (number* den^pow nums)
		       (number* num^pow denoms) arg.exps)
		 (loop (cdr args) pow
		       (number* num^pow nums)
		       (number* den^pow denoms) arg.exps))))
	  ;; Associative Rule
	  ((is-term-op? (car args) '*) (loop (append (cdar args) (cdr args))
					     pow
					     nums denoms
					     arg.exps))
	  ;; Do singlet -
	  ((and (is-term-op? (car args) '-) (= 2 (length (car args))))
	   ;;(print 'got-here (car args))
	   (set! arg.exps (loop (cdar args) pow (number- nums) denoms arg.exps))
	   (loop (cdr args) pow
		 (rat-numerator (car arg.exps))
		 (rat-denominator (car arg.exps))
		 (cdr arg.exps)))
	  ((and (is-term-op? (car args) '/) (= 2 (length (car args))))
	   ;; Do singlet /
	   ;;(print 'got-here=cr+ (car args))
	   (set! arg.exps (loop (cdar args) (number- pow) nums denoms arg.exps))
	   (loop (cdr args) pow
		 (rat-numerator (car arg.exps))
		 (rat-denominator (car arg.exps))
		 (cdr arg.exps)))
	  ((is-term-op? (car args) '/)
	   ;; Do multi-arg /
	   ;;(print 'doing '/ (cddar args) (number- pow))
	   (set! arg.exps
		 (loop (cddar args) (number- pow) nums denoms arg.exps))
	   ;;(print 'finishing '/ (cons (cadar args) (cdr args)) pow)
	   (loop (cons (cadar args) (cdr args))
		 pow
		 (rat-numerator (car arg.exps))
		 (rat-denominator (car arg.exps))
		 (cdr arg.exps)))
	  ;; Pull out numeric exponents as powers
	  ((and (is-term-op? (car args) '^)
		(= 3 (length (car args)))
		(number? (caddar args)))
	   (set! arg.exps (loop (list (cadar args))
				(number* pow (caddar args))
				nums denoms
				arg.exps))
	   (loop (cdr args) pow
		 (rat-numerator (car arg.exps))
		 (rat-denominator (car arg.exps)) (cdr arg.exps)))
	  ;; combine with same terms
	  ((assoc (car args) arg.exps)
	   => (lambda (pair) (set-cdr! pair (number+ pow (cdr pair)))
		      (loop (cdr args) pow nums denoms arg.exps)))
	  ;; Add new term to arg.exps
	  (else (loop (cdr args) pow nums denoms
		      (cons (cons (car args) pow) arg.exps))))))

;;; Converts + argument list to CR internal form
(define (cr+-args->trms args)
  (let loop ((args args) (cof 1) (numbers 0) (arg.exps '()))
    (cond ((null? args) (cons numbers arg.exps))
	  ((number? (car args))
	   (loop (cdr args)
		 cof
		 (number+ (number* (car args) cof) numbers)
		 arg.exps))
	  ;; Associative Rule
	  ((is-term-op? (car args) '+) (loop (append (cdar args) (cdr args))
					     cof
					     numbers
					     arg.exps))
	  ;; Idempotent singlet *
	  ((and (is-term-op? (car args) '*) (= 2 (length (car args))))
	   (loop (cons (cadar args) (cdr args))
		 cof
		 numbers
		 arg.exps))
	  ((and (is-term-op? (car args) '-) (= 2 (length (car args))))
	   ;; Do singlet -
	   (set! arg.exps (loop (cdar args) (number- cof) numbers arg.exps))
	   (loop (cdr args) cof (car arg.exps) (cdr arg.exps)))
	  ;; Pull out numeric factors as coefficients
	  ((and (is-term-op? (car args) '*) (some number? (cdar args)))
	   ;;(print 'got-here (car args) '=> (cons '* (remove-if number? (cdar args))))
	   (set! arg.exps
		 (loop (list (cons '* (remove-if number? (cdar args))))
		       (apply number* cof (remove-if-not number? (cdar args)))
		       numbers
		       arg.exps))
	   (loop (cdr args) cof (car arg.exps) (cdr arg.exps)))
	  ((is-term-op? (car args) '-)
	   ;; Do multi-arg -
	   (set! arg.exps (loop (cddar args) (number- cof) numbers arg.exps))
	   (loop (cons (cadar args) (cdr args))
		 cof
		 (car arg.exps)
		 (cdr arg.exps)))
	  ;; combine with same terms
	  ((assoc (car args) arg.exps)
	   => (lambda (pair) (set-cdr! pair (number+ cof (cdr pair)))
		      (loop (cdr args) cof numbers arg.exps)))
	  ;; Add new term to arg.exps
	  (else (loop (cdr args) cof numbers
		      (cons (cons (car args) cof) arg.exps))))))

;;; Converts + or * internal form to Scheme expression
(define (cr-terms->form op ident inv-op higher-op res.cofs)
  (define (negative-cof? fct.cof)
    (negative? (cdr fct.cof)))
  (define (finish exprs)
    (if (null? exprs) ident
	(if (null? (cdr exprs))
	    (car exprs)
	    (cons op exprs))))
  (define (do-terms sign fct.cofs)
    (expression-sort
     (map (lambda (fct.cof)
	    (define cof (number* sign (cdr fct.cof)))
	    (cond ((eqv? 1 cof) (car fct.cof))
		  ((number? (car fct.cof)) (number* cof (car fct.cof)))
		  ((is-term-op? (car fct.cof) higher-op)
		   (if (eq? higher-op '^)
		       (list '^ (cadar fct.cof) (* cof (caddar fct.cof)))
		       (cons higher-op (cons cof (cdar fct.cof)))))
		  ((eqv? -1 cof) (list inv-op (car fct.cof)))
		  (else (list higher-op (car fct.cof) cof))))
	  fct.cofs)))
  (let* ((all.cofs (remove-if (lambda (fct.cof)
				(or (zero? (cdr fct.cof))
				    (eqv? ident (car fct.cof))))
			      res.cofs))
	 (cofs (map cdr all.cofs))
	 (some-positive? (some positive? cofs)))
    ;;(print op 'positive? some-positive? 'negative? (some negative? cofs) all.cofs)
    (cond ((and some-positive? (some negative? cofs))
	   (append (list inv-op
			 (finish (do-terms
				  1 (remove-if negative-cof? all.cofs))))
		   (do-terms -1 (remove-if-not negative-cof? all.cofs))))
	  (some-positive? (finish (do-terms 1 all.cofs)))
	  ((not (some negative? cofs)) ident)
	  (else (list inv-op (finish (do-terms -1 all.cofs)))))))

(define (* . args)
  (cond
   ((null? args) 1)
   ;;((null? (cdr args)) (car args))
   (else
    (let ((in (cr*-args->fcts args)))
      (cond
       ((zero? (car in)) 0)
       (else
	(if (null? (cdr in))
	    (set-cdr! in (list (cons 1 1))))
	(let* ((num #f)
	       (ans (cr-terms->form
		     '* 1 '/ '^
		     (apply
		      (lambda (numeric red.cofs res.cofs)
			(append
			 (cond ((number? numeric)
				(set! num numeric)
				(list (cons (abs numeric) 1)))
			       (else
				(set! num (rat-numerator numeric))
				(list (cons (abs num) 1)
				      (cons (rat-denominator numeric) -1))))
			 red.cofs
			 res.cofs))
		      (cr1 '* number* '^ '/ (car in) (cdr in))))))
	  (if (negative? num) (list '- ans) ans))))))))

(define (+ . args)
  (cond ((null? args) 0)
	;;((null? (cdr args)) (car args))
	(else
	 (let ((in (cr+-args->trms args)))
	   (if (null? (cdr in))
	       (car in)
	       (cr-terms->form
		'+ 0 '- '*
		(apply (lambda (numeric red.cofs res.cofs)
			 (append
			  (list (if (and (number? numeric)
					 (negative? numeric))
				    (cons (abs numeric) -1)
				    (cons numeric 1)))
			  red.cofs
			  res.cofs))
		       (cr1 '+ number+ '* '- (car in) (cdr in)))))))))

(define (- arg1 . args)
  (if (null? args)
      (if (number? arg1) (number- arg1)
	  (* -1 arg1)			;(list '- arg1)
	  )
      (+ arg1 (* -1 (apply + args)))))

;;(print `(/ ,arg1 ,@args) '=> )
(define (/ arg1 . args)
  (if (null? args)
      (^ arg1 -1)
      (* arg1 (^ (apply * args) -1))))

(define (^ arg1 arg2)
  (cond ((and (number? arg2) (integer? arg2))
	 (* (list '^ arg1 arg2)))
	(else (list '^ arg1 arg2))))

;; TRY-EACH-PAIR-ONCE algorithm.  I think this does the minimum
;; number of rule lookups given no information about how to sort
;; terms.

;; Pick equivalence classes one at a time and move them into the
;; result set of equivalence classes by searching for rules to
;; multiply an element of the chosen class by itself (if multiple) and
;; the element of each class already in the result group.  Each
;; (multiplicative) term resulting from rule application would be put
;; in the result class, if that class exists; or put in an argument
;; class if not.

(define (cr1 op number-op hop inv-op numeric in)
  (define red.pows '())
  (define res.pows '())
  (let loop.arg.pow.s ((arg (caar in)) (pow (cdar in)) (arg.pows (cdr in)))
    (define (arg-loop arg.pows)
      (if (null? arg.pows)
	  (list numeric red.pows res.pows)
	  (loop.arg.pow.s (caar arg.pows) (cdar arg.pows) (cdr arg.pows))))
    (define (cring:apply-rule->terms exp1 exp2)
      ;;(display op)
      (let ((ans (cring:apply-rule op exp1 exp2)))
	(cond ((not ans) #f)
	      ((number? ans) (list ans))
	      (else (list (cons ans 1))))))
    (define (cring:apply-inv-rule->terms exp1 exp2)
      ;;(display inv-op)
      (let ((ans (cring:apply-rule inv-op exp1 exp2)))
	(cond ((not ans) #f)
	      ((number? ans) (list ans))
	      (else (list (cons ans 1))))))
    (define (merge-res tmp.pows multiplicity)
      (cond ((null? tmp.pows))
	    ((number? (car tmp.pows))
	     (do ((m (number+ -1 (abs multiplicity)) (number+ -1 m))
		  (n numeric (number-op n (abs (car tmp.pows)))))
		 ((negative? m) (set! numeric n)))
	     (merge-res (cdr tmp.pows) multiplicity))
	    ((or (assoc (car tmp.pows) res.pows)
		 (assoc (car tmp.pows) arg.pows))
	     => (lambda (pair)
		  (set-cdr! pair (number+
				  pow (number-op multiplicity (cdar tmp.pows))))
		  (merge-res (cdr tmp.pows) multiplicity)))
	    ((assoc (car tmp.pows) red.pows)
	     => (lambda (pair)
		  (set! arg.pows
			(cons (cons (caar tmp.pows)
				    (number+
				     (cdr pair)
				     (number* multiplicity (cdar tmp.pows))))
			      arg.pows))
		  (set-cdr! pair 0)
		  (merge-res (cdr tmp.pows) multiplicity)))
	    (else (set! arg.pows
			(cons (cons (caar tmp.pows)
				    (number* multiplicity (cdar tmp.pows)))
			      arg.pows))
		  (merge-res (cdr tmp.pows) multiplicity))))
    (define (try-fct.pow fct.pow)
      ;;(print 'try-fct.pow fct.pow op 'arg arg 'pow pow)
      (cond ((or (zero? (cdr fct.pow)) (number? (car fct.pow))) #f)
	    ((not (and (number? pow) (number? (cdr fct.pow))
		       (integer? pow)	;(integer? (cdr fct.pow))
		       ))
	     #f)
	    ;;((zero? pow) (slib:error "Don't try exp-0 terms") #f)
	    ;;((or (number? arg) (number? (car fct.pow)))
	    ;; (slib:error 'found-number arg fct.pow) #f)
	    ((and (positive? pow) (positive? (cdr fct.pow))
		  (or (cring:apply-rule->terms arg (car fct.pow))
		      (cring:apply-rule->terms (car fct.pow) arg)))
	     => (lambda (terms)
		  ;;(print op op terms)
		  (let ((multiplicity (min pow (cdr fct.pow))))
		    (set-cdr! fct.pow (number- (cdr fct.pow) multiplicity))
		    (set! pow (number- pow multiplicity))
		    (merge-res terms multiplicity))))
	    ((and (negative? pow) (negative? (cdr fct.pow))
		  (or (cring:apply-rule->terms arg (car fct.pow))
		      (cring:apply-rule->terms (car fct.pow) arg)))
	     => (lambda (terms)
		  ;;(print inv-op inv-op terms)
		  (let ((multiplicity (max pow (cdr fct.pow))))
		    (set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity))
		    (set! pow (number+ pow multiplicity))
		    (merge-res terms multiplicity))))
	    ((and (positive? pow) (negative? (cdr fct.pow))
		  (cring:apply-inv-rule->terms arg (car fct.pow)))
	     => (lambda (terms)
		  ;;(print op inv-op terms)
		  (let ((multiplicity (min pow (number- (cdr fct.pow)))))
		    (set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity))
		    (set! pow (number- pow multiplicity))
		    (merge-res terms multiplicity))))
	    ((and (negative? pow) (positive? (cdr fct.pow))
		  (cring:apply-inv-rule->terms (car fct.pow) arg))
	     => (lambda (terms)
		  ;;(print inv-op op terms)
		  (let ((multiplicity (max (number- pow) (cdr fct.pow))))
		    (set-cdr! fct.pow (number- (cdr fct.pow) multiplicity))
		    (set! pow (number+ pow multiplicity))
		    (merge-res terms multiplicity))))
	    (else #f)))
    ;;(print op numeric 'arg arg 'pow pow 'arg.pows arg.pows 'red.pows red.pows 'res.pows res.pows)
    ;;(trace arg-loop cring:apply-rule->terms merge-res try-fct.pow) (set! *qp-width* 333)
    (cond ((or (zero? pow) (number? arg)) (arg-loop arg.pows))
	  ((assoc arg res.pows) => (lambda (pair)
				     (set-cdr! pair (number+ pow (cdr pair)))
				     (arg-loop arg.pows)))
	  ((and (> (abs pow) 1) (cring:apply-rule->terms arg arg))
	   => (lambda (terms)
		(merge-res terms (quotient pow 2))
		(if (odd? pow)
		    (loop.arg.pow.s arg 1 arg.pows)
		    (arg-loop arg.pows))))
	  ((or (some try-fct.pow res.pows) (some try-fct.pow arg.pows))
	   (loop.arg.pow.s arg pow arg.pows))
	  (else (set! res.pows (cons (cons arg pow) res.pows))
		(arg-loop arg.pows)))))

(define (cring:try-rule op sop1 sop2 exp1 exp2)
  (let ((rule (cring:rule op sop1 sop2)))
    (and rule (rule exp1 exp2))))

(define (cring:apply-rule op exp1 exp2)
  (and (pair? exp1)
       (or (and (pair? exp2)
		(cring:try-rule op (car exp1) (car exp2) exp1 exp2))
	   (cring:try-rule op (car exp1) 'identity exp1 exp2))))

;;(begin (trace cr-terms->form) (set! *qp-width* 333))