aboutsummaryrefslogtreecommitdiffstats
path: root/array.scm
blob: 08b8114bc6d0e5a93074a22646137b5fdb7394b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
;;;;"array.scm" Arrays for Scheme
; Copyright (C) 1993 Alan Bawden
;
; Permission to copy this software, to redistribute it, and to use it
; for any purpose is granted, subject to the following restrictions and
; understandings.
;
; 1.  Any copy made of this software must include this copyright notice
; in full.
;
; 2.  Users of this software agree to make their best efforts (a) to
; return to me any improvements or extensions that they make, so that
; these may be included in future releases; and (b) to inform me of
; noteworthy uses of this software.
;
; 3.  I have made no warrantee or representation that the operation of
; this software will be error-free, and I am under no obligation to
; provide any services, by way of maintenance, update, or otherwise.
;
; 4.  In conjunction with products arising from the use of this material,
; there shall be no use of my name in any advertising, promotional, or
; sales literature without prior written consent in each case.
;
; Alan Bawden
; MIT Room NE43-510
; 545 Tech. Sq.
; Cambridge, MA 02139
; Alan@LCS.MIT.EDU

(require 'record)

;(declare (usual-integrations))

(define array:rtd
  (make-record-type "Array"
    '(indexer		; Must be a -linear- function!
      shape		; Inclusive bounds: ((lower upper) ...)
      vector		; The actual contents
      )))

(define array:indexer (record-accessor array:rtd 'indexer))
(define array-shape (record-accessor array:rtd 'shape))
(define array:vector (record-accessor array:rtd 'vector))

(define array? (record-predicate array:rtd))

(define (array-rank obj)
  (if (array? obj) (length (array-shape obj)) 0))

(define (array-dimensions ra)
  (map (lambda (ind) (if (zero? (car ind)) (+ 1 (cadr ind)) ind))
       (array-shape ra)))

(define array:construct
  (record-constructor array:rtd '(shape vector indexer)))

(define (array:compute-shape specs)
  (map (lambda (spec)
	 (cond ((and (integer? spec)
		     (< 0 spec))
		(list 0 (- spec 1)))
	       ((and (pair? spec)
		     (pair? (cdr spec))
		     (null? (cddr spec))
		     (integer? (car spec))
		     (integer? (cadr spec))
		     (<= (car spec) (cadr spec)))
		spec)
	       (else (slib:error "array: Bad array dimension: " spec))))
       specs))

(define (make-array initial-value . specs)
  (let ((shape (array:compute-shape specs)))
    (let loop ((size 1)
	       (indexer (lambda () 0))
	       (l (reverse shape)))
      (if (null? l)
	  (array:construct shape
			   (make-vector size initial-value)
			   (array:optimize-linear-function indexer shape))
	  (loop (* size (+ 1 (- (cadar l) (caar l))))
		(lambda (first-index . rest-of-indices)
		  (+ (* size (- first-index (caar l)))
		     (apply indexer rest-of-indices)))
		(cdr l))))))

(define (make-shared-array array mapping . specs)
  (let ((new-shape (array:compute-shape specs))
	(old-indexer (array:indexer array)))
    (let check ((indices '())
		(bounds (reverse new-shape)))
      (cond ((null? bounds)
	     (array:check-bounds array (apply mapping indices)))
	    (else
	     (check (cons (caar bounds) indices) (cdr bounds))
	     (check (cons (cadar bounds) indices) (cdr bounds)))))
    (array:construct new-shape
		     (array:vector array)
		     (array:optimize-linear-function
		       (lambda indices
			 (apply old-indexer (apply mapping indices)))
		       new-shape))))

(define (array:in-bounds? array indices)
  (let loop ((indices indices)
	     (shape (array-shape array)))
    (if (null? indices)
	(null? shape)
	(let ((index (car indices)))
	  (and (not (null? shape))
	       (integer? index)
	       (<= (caar shape) index (cadar shape))
	       (loop (cdr indices) (cdr shape)))))))

(define (array:check-bounds array indices)
  (or (array:in-bounds? array indices)
      (slib:error "array: Bad indices for " array indices)))

(define (array-ref array . indices)
  (array:check-bounds array indices)
  (vector-ref (array:vector array)
	      (apply (array:indexer array) indices)))

(define (array-set! array new-value . indices)
  (array:check-bounds array indices)
  (vector-set! (array:vector array)
	       (apply (array:indexer array) indices)
	       new-value))

(define (array-in-bounds? array . indices)
  (array:in-bounds? array indices))

; Fast versions of ARRAY-REF and ARRAY-SET! that do no error checking,
; and don't cons intermediate lists of indices:

(define (array-1d-ref a i0)
  (vector-ref (array:vector a) ((array:indexer a) i0)))

(define (array-2d-ref a i0 i1)
  (vector-ref (array:vector a) ((array:indexer a) i0 i1)))

(define (array-3d-ref a i0 i1 i2)
  (vector-ref (array:vector a) ((array:indexer a) i0 i1 i2)))

(define (array-1d-set! a v i0)
  (vector-set! (array:vector a) ((array:indexer a) i0) v))

(define (array-2d-set! a v i0 i1)
  (vector-set! (array:vector a) ((array:indexer a) i0 i1) v))

(define (array-3d-set! a v i0 i1 i2)
  (vector-set! (array:vector a) ((array:indexer a) i0 i1 i2) v))

; STOP!  Do not read beyond this point on your first reading of
; this code -- you should simply assume that the rest of this file
; contains only the following single definition:
;
;   (define (array:optimize-linear-function f l) f)
;
; Of course everything would be pretty inefficient if this were really the
; case, but it isn't.  The following code takes advantage of the fact that
; you can learn everything there is to know from a linear function by
; simply probing around in its domain and observing its values -- then a
; more efficient equivalent can be constructed.

(define (array:optimize-linear-function f l)
  (let ((d (length l)))
    (cond
     ((= d 0)
      (array:0d-c (f)))
     ((= d 1)
      (let ((c (f 0)))
	(array:1d-c0 c (- (f 1) c))))
     ((= d 2)
      (let ((c (f 0 0)))
	(array:2d-c01 c (- (f 1 0) c) (- (f 0 1) c))))
     ((= d 3)
      (let ((c (f 0 0 0)))
	(array:3d-c012 c (- (f 1 0 0) c) (- (f 0 1 0) c) (- (f 0 0 1) c))))
     (else
      (let* ((v (map (lambda (x) 0) l))
	     (c (apply f v)))
	(let loop ((p v)
		   (old-val c)
		   (coefs '()))
	  (cond ((null? p)
		 (array:Nd-c* c (reverse coefs)))
		(else
		 (set-car! p 1)
		 (let ((new-val (apply f v)))
		   (loop (cdr p)
			 new-val
			 (cons (- new-val old-val) coefs)))))))))))

; 0D cases:

(define (array:0d-c c)
  (lambda () c))

; 1D cases:

(define (array:1d-c c)
  (lambda (i0) (+ c i0)))

(define (array:1d-0 n0)
  (cond ((= 1 n0) +)
	(else (lambda (i0) (* n0 i0)))))

(define (array:1d-c0 c n0)
  (cond ((= 0 c) (array:1d-0 n0))
	((= 1 n0) (array:1d-c c))
	(else (lambda (i0) (+ c (* n0 i0))))))

; 2D cases:

(define (array:2d-0 n0)
  (lambda (i0 i1) (+ (* n0 i0) i1)))

(define (array:2d-1 n1)
  (lambda (i0 i1) (+ i0 (* n1 i1))))

(define (array:2d-c0 c n0)
  (lambda (i0 i1) (+ c (* n0 i0) i1)))

(define (array:2d-c1 c n1)
  (lambda (i0 i1) (+ c i0 (* n1 i1))))

(define (array:2d-01 n0 n1)
  (cond ((= 1 n0) (array:2d-1 n1))
	((= 1 n1) (array:2d-0 n0))
	(else (lambda (i0 i1) (+ (* n0 i0) (* n1 i1))))))

(define (array:2d-c01 c n0 n1)
  (cond ((= 0 c) (array:2d-01 n0 n1))
	((= 1 n0) (array:2d-c1 c n1))
	((= 1 n1) (array:2d-c0 c n0))
	(else (lambda (i0 i1) (+ c (* n0 i0) (* n1 i1))))))

; 3D cases:

(define (array:3d-01 n0 n1)
  (lambda (i0 i1 i2) (+ (* n0 i0) (* n1 i1) i2)))

(define (array:3d-02 n0 n2)
  (lambda (i0 i1 i2) (+ (* n0 i0) i1 (* n2 i2))))

(define (array:3d-12 n1 n2)
  (lambda (i0 i1 i2) (+ i0 (* n1 i1) (* n2 i2))))

(define (array:3d-c12 c n1 n2)
  (lambda (i0 i1 i2) (+ c i0 (* n1 i1) (* n2 i2))))

(define (array:3d-c02 c n0 n2)
  (lambda (i0 i1 i2) (+ c (* n0 i0) i1 (* n2 i2))))

(define (array:3d-c01 c n0 n1)
  (lambda (i0 i1 i2) (+ c (* n0 i0) (* n1 i1) i2)))

(define (array:3d-012 n0 n1 n2)
  (cond ((= 1 n0) (array:3d-12 n1 n2))
	((= 1 n1) (array:3d-02 n0 n2))
	((= 1 n2) (array:3d-01 n0 n1))
	(else (lambda (i0 i1 i2) (+ (* n0 i0) (* n1 i1) (* n2 i2))))))

(define (array:3d-c012 c n0 n1 n2)
  (cond ((= 0 c) (array:3d-012 n0 n1 n2))
	((= 1 n0) (array:3d-c12 c n1 n2))
	((= 1 n1) (array:3d-c02 c n0 n2))
	((= 1 n2) (array:3d-c01 c n0 n1))
	(else (lambda (i0 i1 i2) (+ c (* n0 i0) (* n1 i1) (* n2 i2))))))

; ND cases:

(define (array:Nd-* coefs)
  (lambda indices (apply + (map * coefs indices))))

(define (array:Nd-c* c coefs)
  (cond ((= 0 c) (array:Nd-* coefs))
	(else (lambda indices (apply + c (map * coefs indices))))))