summaryrefslogtreecommitdiffstats
path: root/factor.scm
diff options
context:
space:
mode:
Diffstat (limited to 'factor.scm')
-rw-r--r--factor.scm39
1 files changed, 18 insertions, 21 deletions
diff --git a/factor.scm b/factor.scm
index 3b9fb5e..c445004 100644
--- a/factor.scm
+++ b/factor.scm
@@ -8,7 +8,7 @@
;1. Any copy made of this software must include this copyright notice
;in full.
;
-;2. I have made no warrantee or representation that the operation of
+;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
@@ -17,7 +17,6 @@
;promotional, or sales literature without prior written consent in
;each case.
-(require 'common-list-functions)
(require 'modular)
(require 'random)
(require 'byte)
@@ -82,8 +81,10 @@
(if (positive? i) #f #t))))
;;; prime:products are products of small primes.
+;;; was (comlist:notevery (lambda (prd) (= 1 (gcd n prd))) comps))
(define (primes-gcd? n comps)
- (comlist:notevery (lambda (prd) (= 1 (gcd n prd))) comps))
+ (not (let mapf ((lst comps))
+ (or (null? lst) (and (= 1 (gcd n (car lst))) (mapf (cdr lst)))))))
(define prime:prime-sqr 121)
(define prime:products '(105))
(define prime:sieve (bytes 0 0 1 1 0 1 0 1 0 0 0))
@@ -122,40 +123,37 @@
;;There is a slight chance @code{(expt 2 (- prime:trials))} that a
;;composite will return @code{#t}.
(define prime? prime:prime?)
-(define probably-prime? prime:prime?) ;legacy
(define (prime:prime< start)
(do ((nbr (+ -1 start) (+ -1 nbr)))
((or (negative? nbr) (prime:prime? nbr))
(if (negative? nbr) #f nbr))))
-(define (prime:primes< start count)
+;;@body
+;;Returns a list of the first @2 prime numbers less than
+;;@1. If there are fewer than @var{count} prime numbers
+;;less than @var{start}, then the returned list will have fewer than
+;;@var{start} elements.
+(define (primes< start count)
(do ((cnt (+ -2 count) (+ -1 cnt))
(lst '() (cons prime lst))
(prime (prime:prime< start) (prime:prime< prime)))
((or (not prime) (negative? cnt))
(if prime (cons prime lst) lst))))
-;;@args start count
-;;Returns a list of the first @2 prime numbers less than
-;;@1. If there are fewer than @var{count} prime numbers
-;;less than @var{start}, then the returned list will have fewer than
-;;@var{start} elements.
-(define primes< prime:primes<)
(define (prime:prime> start)
(do ((nbr (+ 1 start) (+ 1 nbr)))
((prime:prime? nbr) nbr)))
-(define (prime:primes> start count)
+;;@body
+;;Returns a list of the first @2 prime numbers greater than @1.
+(define (primes> start count)
(set! start (max 0 start))
(do ((cnt (+ -2 count) (+ -1 cnt))
(lst '() (cons prime lst))
(prime (prime:prime> start) (prime:prime> prime)))
((negative? cnt)
(reverse (cons prime lst)))))
-;;@args start count
-;;Returns a list of the first @2 prime numbers greater than @1.
-(define primes> prime:primes>)
;;;;Lankinen's recursive factoring algorithm:
;From: ld231782@longs.LANCE.ColoState.EDU (L. Detweiler)
@@ -232,14 +230,13 @@
'()
(prime:fo m))))
-(define (prime:factor k)
+;;@body
+;;Returns a list of the prime factors of @1. The order of the
+;;factors is unspecified. In order to obtain a sorted list do
+;;@code{(sort! (factor @var{k}) <)}.
+(define (factor k)
(case k
((-1 0 1) (list k))
(else (if (negative? k)
(cons -1 (prime:fe (- k)))
(prime:fe k)))))
-;;@args k
-;;Returns a list of the prime factors of @1. The order of the
-;;factors is unspecified. In order to obtain a sorted list do
-;;@code{(sort! (factor @var{k}) <)}.
-(define factor prime:factor)