summaryrefslogtreecommitdiffstats
path: root/example.scm
blob: 4a7b4a0069453f71cb25ebd53f398d528b7f106e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
;From Revised^4 Report on the Algorithmic Language Scheme
;William Clinger and Jonathon Rees (Editors)

;			       EXAMPLE

;INTEGRATE-SYSTEM integrates the system 
;	y_k' = f_k(y_1, y_2, ..., y_n), k = 1, ..., n
;of differential equations with the method of Runge-Kutta.

;The parameter SYSTEM-DERIVATIVE is a function that takes a system
;state (a vector of values for the state variables y_1, ..., y_n) and
;produces a system derivative (the values y_1', ..., y_n').  The
;parameter INITIAL-STATE provides an initial system state, and H is an
;initial guess for the length of the integration step.

;The value returned by INTEGRATE-SYSTEM is an infinite stream of
;system states.

(define integrate-system
  (lambda (system-derivative initial-state h)
    (let ((next (runge-kutta-4 system-derivative h)))
      (letrec ((states
		(cons initial-state
		      (delay (map-streams next states)))))
	states))))

;RUNGE-KUTTA-4 takes a function, F, that produces a
;system derivative from a system state.  RUNGE-KUTTA-4
;produces a function that takes a system state and
;produces a new system state.

(define runge-kutta-4
  (lambda (f h)
    (let ((*h (scale-vector h))
	  (*2 (scale-vector 2))
	  (*1/2 (scale-vector (/ 1 2)))
	  (*1/6 (scale-vector (/ 1 6))))
      (lambda (y)
	;; Y is a system state
	(let* ((k0 (*h (f y)))
	       (k1 (*h (f (add-vectors y (*1/2 k0)))))
	       (k2 (*h (f (add-vectors y (*1/2 k1)))))
	       (k3 (*h (f (add-vectors y k2)))))
	  (add-vectors y
		       (*1/6 (add-vectors k0
					  (*2 k1)
					  (*2 k2)
					  k3))))))))

(define elementwise
  (lambda (f)
    (lambda vectors
      (generate-vector
       (vector-length (car vectors))
       (lambda (i)
	 (apply f
		(map (lambda (v) (vector-ref  v i))
		     vectors)))))))

(define generate-vector
  (lambda (size proc)
    (let ((ans (make-vector size)))
      (letrec ((loop
		(lambda (i)
		  (cond ((= i size) ans)
			(else
			 (vector-set! ans i (proc i))
			 (loop (+ i 1)))))))
	(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector
  (lambda (s)
    (elementwise (lambda (x) (* x s)))))

;MAP-STREAMS is analogous to MAP: it applies its first
;argument (a procedure) to all the elements of its second argument (a
;stream).

(define map-streams
  (lambda (f s)
    (cons (f (head s))
	  (delay (map-streams f (tail s))))))

;Infinite streams are implemented as pairs whose car holds the first
;element of the stream and whose cdr holds a promise to deliver the rest
;of the stream.

(define head car)
(define tail
  (lambda (stream) (force (cdr stream))))


;The following illustrates the use of INTEGRATE-SYSTEM in
;integrating the system
;
;			     dvC	vC
;			   C --- = -i - --
;			     dt	     L	 R
;
;				diL
;			      L --- = v
;				dt     C
;
;which models a damped oscillator.

(define damped-oscillator
  (lambda (R L C)
    (lambda (state)
      (let ((Vc (vector-ref state 0))
	    (Il (vector-ref state 1)))
	(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))
		(/ Vc L))))))

(define the-states
  (integrate-system
   (damped-oscillator 10000 1000 .001)
   '#(1 0)
   .01))

(do ((i 10 (- i 1))
     (s the-states (tail s)))
    ((zero? i) (newline))
  (newline)
  (write (head s)))

; #(1 0)
; #(0.99895054 9.994835e-6)
; #(0.99780226 1.9978681e-5)
; #(0.9965554 2.9950552e-5)
; #(0.9952102 3.990946e-5)
; #(0.99376684 4.985443e-5)
; #(0.99222565 5.9784474e-5)
; #(0.9905868 6.969862e-5)
; #(0.9888506 7.9595884e-5)
; #(0.9870173 8.94753e-5)