;;;;"r4rstest.scm": Test R4RS correctness of scheme implementations.
;; Copyright (C) 1991, 1992, 1993, 1994, 1995, 2000, 2003, 2004, 2006, 2007 Free Software Foundation, Inc.
;;
;; This program is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as
;; published by the Free Software Foundation, either version 3 of the
;; License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public
;; License along with this program. If not, see
;; .
;;;;"r4rstest.scm": Test R4RS correctness of scheme implementations.
;;; Author: Aubrey Jaffer
;;; Home-page: http://swiss.csail.mit.edu/~jaffer/Scheme
;;; Current version: http://swiss.csail.mit.edu/ftpdir/scm/r4rstest.scm
;;; CVS Head:
;;; http://savannah.gnu.org/cgi-bin/viewcvs/scm/scm/r4rstest.scm?rev=HEAD&only_with_tag=HEAD&content-type=text/vnd.viewcvs-markup
;;; This includes examples from
;;; William Clinger and Jonathan Rees, editors.
;;; Revised^4 Report on the Algorithmic Language Scheme
;;; and the IEEE specification.
;;; The input tests read this file expecting it to be named "r4rstest.scm".
;;; Files `tmp1', `tmp2' and `tmp3' will be created in the course of running
;;; these tests. You may need to delete them in order to run
;;; "r4rstest.scm" more than once.
;;; There are three optional tests:
;;; (TEST-CONT) tests multiple returns from call-with-current-continuation
;;;
;;; (TEST-SC4) tests procedures required by R4RS but not by IEEE
;;;
;;; (TEST-DELAY) tests DELAY and FORCE, which are not required by
;;; either standard.
;;; If you are testing a R3RS version which does not have `list?' do:
;;; (define list? #f)
;;; send corrections or additions to agj @ alum.mit.edu
(define cur-section '())(define errs '())
(define SECTION (lambda args
(display "SECTION") (write args) (newline)
(set! cur-section args) #t))
(define record-error (lambda (e) (set! errs (cons (list cur-section e) errs))))
(define test
(lambda (expect fun . args)
(write (cons fun args))
(display " ==> ")
((lambda (res)
(write res)
(newline)
(cond ((not (equal? expect res))
(record-error (list res expect (cons fun args)))
(display " BUT EXPECTED ")
(write expect)
(newline)
#f)
(else #t)))
(if (procedure? fun) (apply fun args) (car args)))))
(define (report-errs)
(newline)
(if (null? errs) (display "Passed all tests")
(begin
(display "errors were:")
(newline)
(display "(SECTION (got expected (call)))")
(newline)
(for-each (lambda (l) (write l) (newline))
errs)))
(newline))
(SECTION 2 1);; test that all symbol characters are supported.
'(+ - ... !.. $.+ %.- &.! *.: /:. :+. <-. =. >. ?. ~. _. ^.)
(SECTION 3 4)
(define disjoint-type-functions
(list boolean? char? null? number? pair? procedure? string? symbol? vector?))
(define type-examples
(list
#t #f #\a '() 9739 '(test) record-error "test" "" 'test '#() '#(a b c) ))
(define i 1)
(for-each (lambda (x) (display (make-string i #\space))
(set! i (+ 3 i))
(write x)
(newline))
disjoint-type-functions)
(define type-matrix
(map (lambda (x)
(let ((t (map (lambda (f) (f x)) disjoint-type-functions)))
(write t)
(write x)
(newline)
t))
type-examples))
(set! i 0)
(define j 0)
(for-each (lambda (x y)
(set! j (+ 1 j))
(set! i 0)
(for-each (lambda (f)
(set! i (+ 1 i))
(cond ((and (= i j))
(cond ((not (f x)) (test #t f x))))
((f x) (test #f f x)))
(cond ((and (= i j))
(cond ((not (f y)) (test #t f y))))
((f y) (test #f f y))))
disjoint-type-functions))
(list #t #\a '() 9739 '(test) record-error "test" 'car '#(a b c))
(list #f #\newline '() -3252 '(t . t) car "" 'nil '#()))
(SECTION 4 1 2)
(test '(quote a) 'quote (quote 'a))
(test '(quote a) 'quote ''a)
(SECTION 4 1 3)
(test 12 (if #f + *) 3 4)
(SECTION 4 1 4)
(test 8 (lambda (x) (+ x x)) 4)
(define reverse-subtract
(lambda (x y) (- y x)))
(test 3 reverse-subtract 7 10)
(define add4
(let ((x 4))
(lambda (y) (+ x y))))
(test 10 add4 6)
(test '(3 4 5 6) (lambda x x) 3 4 5 6)
(test '(5 6) (lambda (x y . z) z) 3 4 5 6)
(SECTION 4 1 5)
(test 'yes 'if (if (> 3 2) 'yes 'no))
(test 'no 'if (if (> 2 3) 'yes 'no))
(test '1 'if (if (> 3 2) (- 3 2) (+ 3 2)))
(SECTION 4 1 6)
(define x 2)
(test 3 'define (+ x 1))
(set! x 4)
(test 5 'set! (+ x 1))
(SECTION 4 2 1)
(test 'greater 'cond (cond ((> 3 2) 'greater)
((< 3 2) 'less)))
(test 'equal 'cond (cond ((> 3 3) 'greater)
((< 3 3) 'less)
(else 'equal)))
(test 2 'cond (cond ((assv 'b '((a 1) (b 2))) => cadr)
(else #f)))
(test 'composite 'case (case (* 2 3)
((2 3 5 7) 'prime)
((1 4 6 8 9) 'composite)))
(test 'consonant 'case (case (car '(c d))
((a e i o u) 'vowel)
((w y) 'semivowel)
(else 'consonant)))
(test #t 'and (and (= 2 2) (> 2 1)))
(test #f 'and (and (= 2 2) (< 2 1)))
(test '(f g) 'and (and 1 2 'c '(f g)))
(test #t 'and (and))
(test #t 'or (or (= 2 2) (> 2 1)))
(test #t 'or (or (= 2 2) (< 2 1)))
(test #f 'or (or #f #f #f))
(test #f 'or (or))
(test '(b c) 'or (or (memq 'b '(a b c)) (+ 3 0)))
(SECTION 4 2 2)
(test 6 'let (let ((x 2) (y 3)) (* x y)))
(test 35 'let (let ((x 2) (y 3)) (let ((x 7) (z (+ x y))) (* z x))))
(test 70 'let* (let ((x 2) (y 3)) (let* ((x 7) (z (+ x y))) (* z x))))
(test #t 'letrec (letrec ((even?
(lambda (n) (if (zero? n) #t (odd? (- n 1)))))
(odd?
(lambda (n) (if (zero? n) #f (even? (- n 1))))))
(even? 88)))
(define x 34)
(test 5 'let (let ((x 3)) (define x 5) x))
(test 34 'let x)
(test 6 'let (let () (define x 6) x))
(test 34 'let x)
(test 34 'let (let ((x x)) x))
(test 7 'let* (let* ((x 3)) (define x 7) x))
(test 34 'let* x)
(test 8 'let* (let* () (define x 8) x))
(test 34 'let* x)
(test 9 'letrec (letrec () (define x 9) x))
(test 34 'letrec x)
(test 10 'letrec (letrec ((x 3)) (define x 10) x))
(test 34 'letrec x)
(define (s x) (if x (let () (set! s x) (set! x s))))
(SECTION 4 2 3)
(define x 0)
(test 6 'begin (begin (set! x (begin (begin 5)))
(begin ((begin +) (begin x) (begin (begin 1))))))
(SECTION 4 2 4)
(test '#(0 1 2 3 4) 'do (do ((vec (make-vector 5))
(i 0 (+ i 1)))
((= i 5) vec)
(vector-set! vec i i)))
(test 25 'do (let ((x '(1 3 5 7 9)))
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))))
(test 1 'let (let foo () 1))
(test '((6 1 3) (-5 -2)) 'let
(let loop ((numbers '(3 -2 1 6 -5))
(nonneg '())
(neg '()))
(cond ((null? numbers) (list nonneg neg))
((negative? (car numbers))
(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))
(else
(loop (cdr numbers)
(cons (car numbers) nonneg)
neg)))))
;;From: Allegro Petrofsky
(test -1 'let (let ((f -)) (let f ((n (f 1))) n)))
(SECTION 4 2 6)
(test '(list 3 4) 'quasiquote `(list ,(+ 1 2) 4))
(test '(list a (quote a)) 'quasiquote (let ((name 'a)) `(list ,name ',name)))
(test '(a 3 4 5 6 b) 'quasiquote `(a ,(+ 1 2) ,@(map abs '(4 -5 6)) b))
(test '((foo 7) . cons)
'quasiquote
`((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons))))
;;; sqt is defined here because not all implementations are required to
;;; support it.
(define (sqt x)
(do ((i 0 (+ i 1)))
((> (* i i) x) (- i 1))))
(test '#(10 5 2 4 3 8) 'quasiquote `#(10 5 ,(sqt 4) ,@(map sqt '(16 9)) 8))
(test 5 'quasiquote `,(+ 2 3))
(test '(a `(b ,(+ 1 2) ,(foo 4 d) e) f)
'quasiquote `(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f))
(test '(a `(b ,x ,'y d) e) 'quasiquote
(let ((name1 'x) (name2 'y)) `(a `(b ,,name1 ,',name2 d) e)))
(test '(list 3 4) 'quasiquote (quasiquote (list (unquote (+ 1 2)) 4)))
(test '`(list ,(+ 1 2) 4) 'quasiquote '(quasiquote (list (unquote (+ 1 2)) 4)))
(SECTION 5 2 1)
(define (tprint x) #t)
(test #t 'tprint (tprint 56))
(define add3 (lambda (x) (+ x 3)))
(test 6 'define (add3 3))
(define first car)
(test 1 'define (first '(1 2)))
(define foo (lambda () 9))
(test 9 'define (foo))
(define foo foo)
(test 9 'define (foo))
(define foo (let ((foo foo)) (lambda () (+ 1 (foo)))))
(test 10 'define (foo))
(define old-+ +)
(begin (begin (begin)
(begin (begin (begin) (define + (lambda (x y) (list y x)))
(begin)))
(begin))
(begin)
(begin (begin (begin) (test '(3 6) add3 6)
(begin))))
(set! + old-+)
(test 9 add3 6)
(begin)
(begin (begin))
(begin (begin (begin (begin))))
(SECTION 5 2 2)
(test 45 'define
(let ((x 5))
(begin (begin (begin)
(begin (begin (begin) (define foo (lambda (y) (bar x y)))
(begin)))
(begin))
(begin)
(begin)
(begin (define bar (lambda (a b) (+ (* a b) a))))
(begin))
(begin)
(begin (foo (+ x 3)))))
(define x 34)
(define (foo) (define x 5) x)
(test 5 foo)
(test 34 'define x)
(define foo (lambda () (define x 5) x))
(test 5 foo)
(test 34 'define x)
(define (foo x) ((lambda () (define x 5) x)) x)
(test 88 foo 88)
(test 4 foo 4)
(test 34 'define x)
(test 99 'internal-define (letrec ((foo (lambda (arg)
(or arg (and (procedure? foo)
(foo 99))))))
(define bar (foo #f))
(foo #f)))
(test 77 'internal-define (letrec ((foo 77)
(bar #f)
(retfoo (lambda () foo)))
(define baz (retfoo))
(retfoo)))
(SECTION 6 1)
(test #f not #t)
(test #f not 3)
(test #f not (list 3))
(test #t not #f)
(test #f not '())
(test #f not (list))
(test #f not 'nil)
;(test #t boolean? #f)
;(test #f boolean? 0)
;(test #f boolean? '())
(SECTION 6 2)
(test #t eqv? 'a 'a)
(test #f eqv? 'a 'b)
(test #t eqv? 2 2)
(test #t eqv? '() '())
(test #t eqv? '10000 '10000)
(test #f eqv? (cons 1 2)(cons 1 2))
(test #f eqv? (lambda () 1) (lambda () 2))
(test #f eqv? #f 'nil)
(let ((p (lambda (x) x)))
(test #t eqv? p p))
(define gen-counter
(lambda ()
(let ((n 0))
(lambda () (set! n (+ n 1)) n))))
(let ((g (gen-counter))) (test #t eqv? g g))
(test #f eqv? (gen-counter) (gen-counter))
(letrec ((f (lambda () (if (eqv? f g) 'f 'both)))
(g (lambda () (if (eqv? f g) 'g 'both))))
(test #f eqv? f g))
(test #t eq? 'a 'a)
(test #f eq? (list 'a) (list 'a))
(test #t eq? '() '())
(test #t eq? car car)
(let ((x '(a))) (test #t eq? x x))
(let ((x '#())) (test #t eq? x x))
(let ((x (lambda (x) x))) (test #t eq? x x))
(define test-eq?-eqv?-agreement
(lambda (obj1 obj2)
(cond ((eq? (eq? obj1 obj2) (eqv? obj1 obj2)))
(else
(record-error (list #f #t (list 'test-eq?-eqv?-agreement obj1 obj2)))
(display "eqv? and eq? disagree about ")
(write obj1)
(display #\space)
(write obj2)
(newline)))))
(test-eq?-eqv?-agreement '#f '#f)
(test-eq?-eqv?-agreement '#t '#t)
(test-eq?-eqv?-agreement '#t '#f)
(test-eq?-eqv?-agreement '(a) '(a))
(test-eq?-eqv?-agreement '(a) '(b))
(test-eq?-eqv?-agreement car car)
(test-eq?-eqv?-agreement car cdr)
(test-eq?-eqv?-agreement (list 'a) (list 'a))
(test-eq?-eqv?-agreement (list 'a) (list 'b))
(test-eq?-eqv?-agreement '#(a) '#(a))
(test-eq?-eqv?-agreement '#(a) '#(b))
(test-eq?-eqv?-agreement "abc" "abc")
(test-eq?-eqv?-agreement "abc" "abz")
(test #t equal? 'a 'a)
(test #t equal? '(a) '(a))
(test #t equal? '(a (b) c) '(a (b) c))
(test #t equal? "abc" "abc")
(test #t equal? 2 2)
(test #t equal? (make-vector 5 'a) (make-vector 5 'a))
(SECTION 6 3)
(test '(a b c d e) 'dot '(a . (b . (c . (d . (e . ()))))))
(define x (list 'a 'b 'c))
(define y x)
(and list? (test #t list? y))
(set-cdr! x 4)
(test '(a . 4) 'set-cdr! x)
(test #t eqv? x y)
(test '(a b c . d) 'dot '(a . (b . (c . d))))
(and list? (test #f list? y))
(and list? (let ((x (list 'a))) (set-cdr! x x) (test #f 'list? (list? x))))
;(test #t pair? '(a . b))
;(test #t pair? '(a . 1))
;(test #t pair? '(a b c))
;(test #f pair? '())
;(test #f pair? '#(a b))
(test '(a) cons 'a '())
(test '((a) b c d) cons '(a) '(b c d))
(test '("a" b c) cons "a" '(b c))
(test '(a . 3) cons 'a 3)
(test '((a b) . c) cons '(a b) 'c)
(test 'a car '(a b c))
(test '(a) car '((a) b c d))
(test 1 car '(1 . 2))
(test '(b c d) cdr '((a) b c d))
(test 2 cdr '(1 . 2))
(test '(a 7 c) list 'a (+ 3 4) 'c)
(test '() list)
(test 3 length '(a b c))
(test 3 length '(a (b) (c d e)))
(test 0 length '())
(test '(x y) append '(x) '(y))
(test '(a b c d) append '(a) '(b c d))
(test '(a (b) (c)) append '(a (b)) '((c)))
(test '() append)
(test '(a b c . d) append '(a b) '(c . d))
(test 'a append '() 'a)
(test '(c b a) reverse '(a b c))
(test '((e (f)) d (b c) a) reverse '(a (b c) d (e (f))))
(test 'c list-ref '(a b c d) 2)
(test '(a b c) memq 'a '(a b c))
(test '(b c) memq 'b '(a b c))
(test '#f memq 'a '(b c d))
(test '#f memq (list 'a) '(b (a) c))
(test '((a) c) member (list 'a) '(b (a) c))
(test '(101 102) memv 101 '(100 101 102))
(define e '((a 1) (b 2) (c 3)))
(test '(a 1) assq 'a e)
(test '(b 2) assq 'b e)
(test #f assq 'd e)
(test #f assq (list 'a) '(((a)) ((b)) ((c))))
(test '((a)) assoc (list 'a) '(((a)) ((b)) ((c))))
(test '(5 7) assv 5 '((2 3) (5 7) (11 13)))
(SECTION 6 4)
;(test #t symbol? 'foo)
(test #t symbol? (car '(a b)))
;(test #f symbol? "bar")
;(test #t symbol? 'nil)
;(test #f symbol? '())
;(test #f symbol? #f)
;;; But first, what case are symbols in? Determine the standard case:
(define char-standard-case char-upcase)
(if (string=? (symbol->string 'A) "a")
(set! char-standard-case char-downcase))
(test #t 'standard-case
(string=? (symbol->string 'a) (symbol->string 'A)))
(test #t 'standard-case
(or (string=? (symbol->string 'a) "A")
(string=? (symbol->string 'A) "a")))
(define (str-copy s)
(let ((v (make-string (string-length s))))
(do ((i (- (string-length v) 1) (- i 1)))
((< i 0) v)
(string-set! v i (string-ref s i)))))
(define (string-standard-case s)
(set! s (str-copy s))
(do ((i 0 (+ 1 i))
(sl (string-length s)))
((>= i sl) s)
(string-set! s i (char-standard-case (string-ref s i)))))
(test (string-standard-case "flying-fish") symbol->string 'flying-fish)
(test (string-standard-case "martin") symbol->string 'Martin)
(test "Malvina" symbol->string (string->symbol "Malvina"))
(test #t 'standard-case (eq? 'a 'A))
(define x (string #\a #\b))
(define y (string->symbol x))
(string-set! x 0 #\c)
(test "cb" 'string-set! x)
(test "ab" symbol->string y)
(test y string->symbol "ab")
(test #t eq? 'mISSISSIppi 'mississippi)
(test #f 'string->symbol (eq? 'bitBlt (string->symbol "bitBlt")))
(test 'JollyWog string->symbol (symbol->string 'JollyWog))
(SECTION 6 5 5)
(test #t number? 3)
(test #t complex? 3)
(test #t real? 3)
(test #t rational? 3)
(test #t integer? 3)
(test #t exact? 3)
(test #f inexact? 3)
(test 1 expt 0 0)
(test 0 expt 0 1)
(test 0 expt 0 256)
;;(test 0 expt 0 -255)
(test 1 expt -1 256)
(test -1 expt -1 255)
(test 1 expt -1 -256)
(test -1 expt -1 -255)
(test 1 expt 256 0)
(test 1 expt -256 0)
(test 256 expt 256 1)
(test -256 expt -256 1)
(test 8 expt 2 3)
(test -8 expt -2 3)
(test 9 expt 3 2)
(test 9 expt -3 2)
(test #t = 22 22 22)
(test #t = 22 22)
(test #f = 34 34 35)
(test #f = 34 35)
(test #t > 3 -6246)
(test #f > 9 9 -2424)
(test #t >= 3 -4 -6246)
(test #t >= 9 9)
(test #f >= 8 9)
(test #t < -1 2 3 4 5 6 7 8)
(test #f < -1 2 3 4 4 5 6 7)
(test #t <= -1 2 3 4 5 6 7 8)
(test #t <= -1 2 3 4 4 5 6 7)
(test #f < 1 3 2)
(test #f >= 1 3 2)
(test #t zero? 0)
(test #f zero? 1)
(test #f zero? -1)
(test #f zero? -100)
(test #t positive? 4)
(test #f positive? -4)
(test #f positive? 0)
(test #f negative? 4)
(test #t negative? -4)
(test #f negative? 0)
(test #t odd? 3)
(test #f odd? 2)
(test #f odd? -4)
(test #t odd? -1)
(test #f even? 3)
(test #t even? 2)
(test #t even? -4)
(test #f even? -1)
(test 38 max 34 5 7 38 6)
(test -24 min 3 5 5 330 4 -24)
(test 7 + 3 4)
(test '3 + 3)
(test 0 +)
(test 4 * 4)
(test 1 *)
(test -1 - 3 4)
(test -3 - 3)
(test 7 abs -7)
(test 7 abs 7)
(test 0 abs 0)
(test 5 quotient 35 7)
(test -5 quotient -35 7)
(test -5 quotient 35 -7)
(test 5 quotient -35 -7)
(test 1 modulo 13 4)
(test 1 remainder 13 4)
(test 3 modulo -13 4)
(test -1 remainder -13 4)
(test -3 modulo 13 -4)
(test 1 remainder 13 -4)
(test -1 modulo -13 -4)
(test -1 remainder -13 -4)
(test 0 modulo 0 86400)
(test 0 modulo 0 -86400)
(define (divtest n1 n2)
(= n1 (+ (* n2 (quotient n1 n2))
(remainder n1 n2))))
(test #t divtest 238 9)
(test #t divtest -238 9)
(test #t divtest 238 -9)
(test #t divtest -238 -9)
(test 4 gcd 0 4)
(test 4 gcd -4 0)
(test 4 gcd 32 -36)
(test 0 gcd)
(test 288 lcm 32 -36)
(test 1 lcm)
(SECTION 6 5 5)
;;; Implementations which don't allow division by 0 can have fragile
;;; string->number.
(define (test-string->number str)
(define ans (string->number str))
(cond ((not ans) #t) ((number? ans) #t) (else ans)))
(for-each (lambda (str) (test #t test-string->number str))
'("+#.#" "-#.#" "#.#" "1/0" "-1/0" "0/0"
"+1/0i" "-1/0i" "0/0i" "0/0-0/0i" "1/0-1/0i" "-1/0+1/0i"
"#i" "#e" "#" "#i0/0"))
(cond ((number? (string->number "1+1i")) ;More kawa bait
(test #t number? (string->number "#i-i"))
(test #t number? (string->number "#i+i"))
(test #t number? (string->number "#i2+i"))))
;;;;From: fred@sce.carleton.ca (Fred J Kaudel)
;;; Modified by jaffer.
(define (test-inexact)
(define f3.9 (string->number "3.9"))
(define f4.0 (string->number "4.0"))
(define f-3.25 (string->number "-3.25"))
(define f.25 (string->number ".25"))
(define f4.5 (string->number "4.5"))
(define f3.5 (string->number "3.5"))
(define f0.0 (string->number "0.0"))
(define f0.8 (string->number "0.8"))
(define f1.0 (string->number "1.0"))
(define f1e300 (and (string->number "1+3i") (string->number "1e300")))
(define f1e-300 (and (string->number "1+3i") (string->number "1e-300")))
(define wto write-test-obj)
(define lto load-test-obj)
(newline)
(display ";testing inexact numbers; ")
(newline)
(SECTION 6 2)
(test #f eqv? 1 f1.0)
(test #f eqv? 0 f0.0)
(test #t eqv? f0.0 f0.0)
(cond ((= f0.0 (- f0.0))
(test #t eqv? f0.0 (- f0.0))
(test #t equal? f0.0 (- f0.0))))
(cond ((= f0.0 (* -5 f0.0))
(test #t eqv? f0.0 (* -5 f0.0))
(test #t equal? f0.0 (* -5 f0.0))))
(SECTION 6 5 5)
(and f1e300
(let ((f1e300+1e300i (make-rectangular f1e300 f1e300)))
(test f1.0 'magnitude (/ (magnitude f1e300+1e300i)
(* f1e300 (sqrt 2))))
(test f.25 / f1e300+1e300i (* 4 f1e300+1e300i))))
(and f1e-300
(let ((f1e-300+1e-300i (make-rectangular f1e-300 f1e-300)))
(test f1.0 'magnitude (round (/ (magnitude f1e-300+1e-300i)
(* f1e-300 (sqrt 2)))))
(test f.25 / f1e-300+1e-300i (* 4 f1e-300+1e-300i))))
(test #t = f0.0 f0.0)
(test #t = f0.0 (- f0.0))
(test #t = f0.0 (* -5 f0.0))
(test #t inexact? f3.9)
(test #t 'max (inexact? (max f3.9 4)))
(test f4.0 max f3.9 4)
(test f4.0 exact->inexact 4)
(test f4.0 exact->inexact 4.0)
(test 4 inexact->exact 4)
(test 4 inexact->exact 4.0)
(test (- f4.0) round (- f4.5))
(test (- f4.0) round (- f3.5))
(test (- f4.0) round (- f3.9))
(test f0.0 round f0.0)
(test f0.0 round f.25)
(test f1.0 round f0.8)
(test f4.0 round f3.5)
(test f4.0 round f4.5)
;;(test f1.0 expt f0.0 f0.0)
;;(test f1.0 expt f0.0 0)
;;(test f1.0 expt 0 f0.0)
(test f0.0 expt f0.0 f1.0)
(test f0.0 expt f0.0 1)
(test f0.0 expt 0 f1.0)
(test f1.0 expt -25 f0.0)
(test f1.0 expt f-3.25 f0.0)
(test f1.0 expt f-3.25 0)
;;(test f0.0 expt f0.0 f-3.25)
(test (atan 1) atan 1 1)
(set! write-test-obj (list f.25 f-3.25)) ;.25 inexact errors less likely.
(set! load-test-obj (list 'define 'foo (list 'quote write-test-obj)))
(test #t call-with-output-file
"tmp3"
(lambda (test-file)
(write-char #\; test-file)
(display #\; test-file)
(display ";" test-file)
(write write-test-obj test-file)
(newline test-file)
(write load-test-obj test-file)
(output-port? test-file)))
(check-test-file "tmp3")
(set! write-test-obj wto)
(set! load-test-obj lto)
(let ((x (string->number "4195835.0"))
(y (string->number "3145727.0")))
(test #t 'pentium-fdiv-bug (> f1.0 (- x (* (/ x y) y)))))
(report-errs))
(define (test-inexact-printing)
(let ((f0.0 (string->number "0.0"))
(f0.5 (string->number "0.5"))
(f1.0 (string->number "1.0"))
(f2.0 (string->number "2.0")))
(define log2
(let ((l2 (log 2)))
(lambda (x) (/ (log x) l2))))
(define (slow-frexp x)
(if (zero? x)
(list f0.0 0)
(let* ((l2 (log2 x))
(e (floor (log2 x)))
(e (if (= l2 e)
(inexact->exact e)
(+ (inexact->exact e) 1)))
(f (/ x (expt 2 e))))
(list f e))))
(define float-precision
(let ((mantissa-bits
(do ((i 0 (+ i 1))
(eps f1.0 (* f0.5 eps)))
((= f1.0 (+ f1.0 eps))
i)))
(minval
(do ((x f1.0 (* f0.5 x)))
((zero? (* f0.5 x)) x))))
(lambda (x)
(apply (lambda (f e)
(let ((eps
(cond ((= f1.0 f) (expt f2.0 (+ 1 (- e mantissa-bits))))
((zero? f) minval)
(else (expt f2.0 (- e mantissa-bits))))))
(if (zero? eps) ;Happens if gradual underflow.
minval
eps)))
(slow-frexp x)))))
(define (float-print-test x)
(define (testit number)
(eqv? number (string->number (number->string number))))
(let ((eps (float-precision x))
(all-ok? #t))
(do ((j -100 (+ j 1)))
((or (not all-ok?) (> j 100)) all-ok?)
(let* ((xx (+ x (* j eps)))
(ok? (testit xx)))
(cond ((not ok?)
(display "Number readback failure for ")
(display `(+ ,x (* ,j ,eps)))
(newline)
(display xx)
(newline)
(set! all-ok? #f))
;; (else (display xx) (newline))
)))))
(define (mult-float-print-test x)
(let ((res #t))
(for-each
(lambda (mult)
(or (float-print-test (* mult x)) (set! res #f)))
(map string->number
'("1.0" "10.0" "100.0" "1.0e20" "1.0e50" "1.0e100"
"0.1" "0.01" "0.001" "1.0e-20" "1.0e-50" "1.0e-100")))
res))
(SECTION 6 5 6)
(test #t 'float-print-test (float-print-test f0.0))
(test #t 'mult-float-print-test (mult-float-print-test f1.0))
(test #t 'mult-float-print-test (mult-float-print-test
(string->number "3.0")))
(test #t 'mult-float-print-test (mult-float-print-test
(string->number "7.0")))
(test #t 'mult-float-print-test (mult-float-print-test
(string->number "3.1415926535897931")))
(test #t 'mult-float-print-test (mult-float-print-test
(string->number "2.7182818284590451")))))
(define (test-bignum)
(define tb
(lambda (n1 n2)
(= n1 (+ (* n2 (quotient n1 n2))
(remainder n1 n2)))))
(define b3-3 (string->number "33333333333333333333"))
(define b3-2 (string->number "33333333333333333332"))
(define b3-0 (string->number "33333333333333333330"))
(define b2-0 (string->number "2177452800"))
(newline)
(display ";testing bignums; ")
(newline)
(SECTION 6 5 7)
(test 0 modulo b3-3 3)
(test 0 modulo b3-3 -3)
(test 0 remainder b3-3 3)
(test 0 remainder b3-3 -3)
(test 2 modulo b3-2 3)
(test -1 modulo b3-2 -3)
(test 2 remainder b3-2 3)
(test 2 remainder b3-2 -3)
(test 1 modulo (- b3-2) 3)
(test -2 modulo (- b3-2) -3)
(test -2 remainder (- b3-2) 3)
(test -2 remainder (- b3-2) -3)
(test 3 modulo 3 b3-3)
(test b3-0 modulo -3 b3-3)
(test 3 remainder 3 b3-3)
(test -3 remainder -3 b3-3)
(test (- b3-0) modulo 3 (- b3-3))
(test -3 modulo -3 (- b3-3))
(test 3 remainder 3 (- b3-3))
(test -3 remainder -3 (- b3-3))
(test 0 modulo (- b2-0) 86400)
(test 0 modulo b2-0 -86400)
(test 0 modulo b2-0 86400)
(test 0 modulo (- b2-0) -86400)
(test 0 modulo 0 (- b2-0))
(test #t 'remainder (tb (string->number "281474976710655325431") 65535))
(test #t 'remainder (tb (string->number "281474976710655325430") 65535))
(let ((n (string->number
"30414093201713378043612608166064768844377641568960512")))
(and n (exact? n)
(do ((pow3 1 (* 3 pow3))
(cnt 21 (+ -1 cnt)))
((negative? cnt)
(zero? (modulo n pow3))))))
(SECTION 6 5 8)
(test "281474976710655325431" number->string
(string->number "281474976710655325431"))
(report-errs))
(define (test-numeric-predicates)
(let* ((big-ex (expt 2 150))
(big-inex (exact->inexact big-ex)))
(newline)
(display ";testing bignum-inexact comparisons;")
(newline)
(SECTION 6 5 5)
(test #f = (+ big-ex 1) big-inex (- big-ex 1))
(test #f = big-inex (+ big-ex 1) (- big-ex 1))
(test #t < (- (inexact->exact big-inex) 1)
big-inex
(+ (inexact->exact big-inex) 1))))
(SECTION 6 5 9)
(test "0" number->string 0)
(test "100" number->string 100)
(test "100" number->string 256 16)
(test 100 string->number "100")
(test 256 string->number "100" 16)
(test #f string->number "")
(test #f string->number ".")
(test #f string->number "d")
(test #f string->number "D")
(test #f string->number "i")
(test #f string->number "I")
(test #f string->number "3i")
(test #f string->number "3I")
(test #f string->number "33i")
(test #f string->number "33I")
(test #f string->number "3.3i")
(test #f string->number "3.3I")
(test #f string->number "-")
(test #f string->number "+")
(test #t 'string->number (or (not (string->number "80000000" 16))
(positive? (string->number "80000000" 16))))
(test #t 'string->number (or (not (string->number "-80000000" 16))
(negative? (string->number "-80000000" 16))))
(SECTION 6 6)
(test #t eqv? '#\ #\Space)
(test #t eqv? #\space '#\Space)
(test #t char? #\a)
(test #t char? #\()
(test #t char? #\space)
(test #t char? '#\newline)
(test #f char=? #\A #\B)
(test #f char=? #\a #\b)
(test #f char=? #\9 #\0)
(test #t char=? #\A #\A)
(test #t char #\A #\B)
(test #t char #\a #\b)
(test #f char #\9 #\0)
(test #f char #\A #\A)
(test #f char>? #\A #\B)
(test #f char>? #\a #\b)
(test #t char>? #\9 #\0)
(test #f char>? #\A #\A)
(test #t char<=? #\A #\B)
(test #t char<=? #\a #\b)
(test #f char<=? #\9 #\0)
(test #t char<=? #\A #\A)
(test #f char>=? #\A #\B)
(test #f char>=? #\a #\b)
(test #t char>=? #\9 #\0)
(test #t char>=? #\A #\A)
(test #f char-ci=? #\A #\B)
(test #f char-ci=? #\a #\B)
(test #f char-ci=? #\A #\b)
(test #f char-ci=? #\a #\b)
(test #f char-ci=? #\9 #\0)
(test #t char-ci=? #\A #\A)
(test #t char-ci=? #\A #\a)
(test #t char-ci #\A #\B)
(test #t char-ci #\a #\B)
(test #t char-ci #\A #\b)
(test #t char-ci #\a #\b)
(test #f char-ci #\9 #\0)
(test #f char-ci #\A #\A)
(test #f char-ci #\A #\a)
(test #f char-ci>? #\A #\B)
(test #f char-ci>? #\a #\B)
(test #f char-ci>? #\A #\b)
(test #f char-ci>? #\a #\b)
(test #t char-ci>? #\9 #\0)
(test #f char-ci>? #\A #\A)
(test #f char-ci>? #\A #\a)
(test #t char-ci<=? #\A #\B)
(test #t char-ci<=? #\a #\B)
(test #t char-ci<=? #\A #\b)
(test #t char-ci<=? #\a #\b)
(test #f char-ci<=? #\9 #\0)
(test #t char-ci<=? #\A #\A)
(test #t char-ci<=? #\A #\a)
(test #f char-ci>=? #\A #\B)
(test #f char-ci>=? #\a #\B)
(test #f char-ci>=? #\A #\b)
(test #f char-ci>=? #\a #\b)
(test #t char-ci>=? #\9 #\0)
(test #t char-ci>=? #\A #\A)
(test #t char-ci>=? #\A #\a)
(test #t char-alphabetic? #\a)
(test #t char-alphabetic? #\A)
(test #t char-alphabetic? #\z)
(test #t char-alphabetic? #\Z)
(test #f char-alphabetic? #\0)
(test #f char-alphabetic? #\9)
(test #f char-alphabetic? #\space)
(test #f char-alphabetic? #\;)
(test #f char-numeric? #\a)
(test #f char-numeric? #\A)
(test #f char-numeric? #\z)
(test #f char-numeric? #\Z)
(test #t char-numeric? #\0)
(test #t char-numeric? #\9)
(test #f char-numeric? #\space)
(test #f char-numeric? #\;)
(test #f char-whitespace? #\a)
(test #f char-whitespace? #\A)
(test #f char-whitespace? #\z)
(test #f char-whitespace? #\Z)
(test #f char-whitespace? #\0)
(test #f char-whitespace? #\9)
(test #t char-whitespace? #\space)
(test #f char-whitespace? #\;)
(test #f char-upper-case? #\0)
(test #f char-upper-case? #\9)
(test #f char-upper-case? #\space)
(test #f char-upper-case? #\;)
(test #f char-lower-case? #\0)
(test #f char-lower-case? #\9)
(test #f char-lower-case? #\space)
(test #f char-lower-case? #\;)
(test #\. integer->char (char->integer #\.))
(test #\A integer->char (char->integer #\A))
(test #\a integer->char (char->integer #\a))
(test #\A char-upcase #\A)
(test #\A char-upcase #\a)
(test #\a char-downcase #\A)
(test #\a char-downcase #\a)
(SECTION 6 7)
(test #t string? "The word \"recursion\\\" has many meanings.")
;(test #t string? "")
(define f (make-string 3 #\*))
(test "?**" 'string-set! (begin (string-set! f 0 #\?) f))
(test "abc" string #\a #\b #\c)
(test "" string)
(test 3 string-length "abc")
(test #\a string-ref "abc" 0)
(test #\c string-ref "abc" 2)
(test 0 string-length "")
(test "" substring "ab" 0 0)
(test "" substring "ab" 1 1)
(test "" substring "ab" 2 2)
(test "a" substring "ab" 0 1)
(test "b" substring "ab" 1 2)
(test "ab" substring "ab" 0 2)
(test "foobar" string-append "foo" "bar")
(test "foo" string-append "foo")
(test "foo" string-append "foo" "")
(test "foo" string-append "" "foo")
(test "" string-append)
(test "" make-string 0)
(test #t string=? "" "")
(test #f string "" "")
(test #f string>? "" "")
(test #t string<=? "" "")
(test #t string>=? "" "")
(test #t string-ci=? "" "")
(test #f string-ci "" "")
(test #f string-ci>? "" "")
(test #t string-ci<=? "" "")
(test #t string-ci>=? "" "")
(test #f string=? "A" "B")
(test #f string=? "a" "b")
(test #f string=? "9" "0")
(test #t string=? "A" "A")
(test #t string "A" "B")
(test #t string "a" "b")
(test #f string "9" "0")
(test #f string "A" "A")
(test #f string>? "A" "B")
(test #f string>? "a" "b")
(test #t string>? "9" "0")
(test #f string>? "A" "A")
(test #t string<=? "A" "B")
(test #t string<=? "a" "b")
(test #f string<=? "9" "0")
(test #t string<=? "A" "A")
(test #f string>=? "A" "B")
(test #f string>=? "a" "b")
(test #t string>=? "9" "0")
(test #t string>=? "A" "A")
(test #f string-ci=? "A" "B")
(test #f string-ci=? "a" "B")
(test #f string-ci=? "A" "b")
(test #f string-ci=? "a" "b")
(test #f string-ci=? "9" "0")
(test #t string-ci=? "A" "A")
(test #t string-ci=? "A" "a")
(test #t string-ci "A" "B")
(test #t string-ci "a" "B")
(test #t string-ci "A" "b")
(test #t string-ci "a" "b")
(test #f string-ci "9" "0")
(test #f string-ci "A" "A")
(test #f string-ci "A" "a")
(test #f string-ci>? "A" "B")
(test #f string-ci>? "a" "B")
(test #f string-ci>? "A" "b")
(test #f string-ci>? "a" "b")
(test #t string-ci>? "9" "0")
(test #f string-ci>? "A" "A")
(test #f string-ci>? "A" "a")
(test #t string-ci<=? "A" "B")
(test #t string-ci<=? "a" "B")
(test #t string-ci<=? "A" "b")
(test #t string-ci<=? "a" "b")
(test #f string-ci<=? "9" "0")
(test #t string-ci<=? "A" "A")
(test #t string-ci<=? "A" "a")
(test #f string-ci>=? "A" "B")
(test #f string-ci>=? "a" "B")
(test #f string-ci>=? "A" "b")
(test #f string-ci>=? "a" "b")
(test #t string-ci>=? "9" "0")
(test #t string-ci>=? "A" "A")
(test #t string-ci>=? "A" "a")
(SECTION 6 8)
(test #t vector? '#(0 (2 2 2 2) "Anna"))
;(test #t vector? '#())
(test '#(a b c) vector 'a 'b 'c)
(test '#() vector)
(test 3 vector-length '#(0 (2 2 2 2) "Anna"))
(test 0 vector-length '#())
(test 8 vector-ref '#(1 1 2 3 5 8 13 21) 5)
(test '#(0 ("Sue" "Sue") "Anna") 'vector-set
(let ((vec (vector 0 '(2 2 2 2) "Anna")))
(vector-set! vec 1 '("Sue" "Sue"))
vec))
(test '#(hi hi) make-vector 2 'hi)
(test '#() make-vector 0)
(test '#() make-vector 0 'a)
(SECTION 6 9)
(test #t procedure? car)
;(test #f procedure? 'car)
(test #t procedure? (lambda (x) (* x x)))
(test #f procedure? '(lambda (x) (* x x)))
(test #t call-with-current-continuation procedure?)
(test 7 apply + (list 3 4))
(test 7 apply (lambda (a b) (+ a b)) (list 3 4))
(test 17 apply + 10 (list 3 4))
(test '() apply list '())
(define compose (lambda (f g) (lambda args (f (apply g args)))))
(test 30 (compose sqt *) 12 75)
(test '(b e h) map cadr '((a b) (d e) (g h)))
(test '(5 7 9) map + '(1 2 3) '(4 5 6))
(test '(1 2 3) map + '(1 2 3))
(test '(1 2 3) map * '(1 2 3))
(test '(-1 -2 -3) map - '(1 2 3))
(test '#(0 1 4 9 16) 'for-each
(let ((v (make-vector 5)))
(for-each (lambda (i) (vector-set! v i (* i i)))
'(0 1 2 3 4))
v))
(test -3 call-with-current-continuation
(lambda (exit)
(for-each (lambda (x) (if (negative? x) (exit x)))
'(54 0 37 -3 245 19))
#t))
(define list-length
(lambda (obj)
(call-with-current-continuation
(lambda (return)
(letrec ((r (lambda (obj) (cond ((null? obj) 0)
((pair? obj) (+ (r (cdr obj)) 1))
(else (return #f))))))
(r obj))))))
(test 4 list-length '(1 2 3 4))
(test #f list-length '(a b . c))
(test '() map cadr '())
;;; This tests full conformance of call-with-current-continuation. It
;;; is a separate test because some schemes do not support call/cc
;;; other than escape procedures. I am indebted to
;;; raja@copper.ucs.indiana.edu (Raja Sooriamurthi) for fixing this
;;; code. The function leaf-eq? compares the leaves of 2 arbitrary
;;; trees constructed of conses.
(define (next-leaf-generator obj eot)
(letrec ((return #f)
(cont (lambda (x)
(recur obj)
(set! cont (lambda (x) (return eot)))
(cont #f)))
(recur (lambda (obj)
(if (pair? obj)
(for-each recur obj)
(call-with-current-continuation
(lambda (c)
(set! cont c)
(return obj)))))))
(lambda () (call-with-current-continuation
(lambda (ret) (set! return ret) (cont #f))))))
(define (leaf-eq? x y)
(let* ((eot (list 'eot))
(xf (next-leaf-generator x eot))
(yf (next-leaf-generator y eot)))
(letrec ((loop (lambda (x y)
(cond ((not (eq? x y)) #f)
((eq? eot x) #t)
(else (loop (xf) (yf)))))))
(loop (xf) (yf)))))
(define (test-cont)
(newline)
(display ";testing continuations; ")
(newline)
(SECTION 6 9)
(test #t leaf-eq? '(a (b (c))) '((a) b c))
(test #f leaf-eq? '(a (b (c))) '((a) b c d))
(report-errs))
;;; Test Optional R4RS DELAY syntax and FORCE procedure
(define (test-delay)
(newline)
(display ";testing DELAY and FORCE; ")
(newline)
(SECTION 6 9)
(test 3 'delay (force (delay (+ 1 2))))
(test '(3 3) 'delay (let ((p (delay (+ 1 2))))
(list (force p) (force p))))
(test 2 'delay (letrec ((a-stream
(letrec ((next (lambda (n)
(cons n (delay (next (+ n 1)))))))
(next 0)))
(head car)
(tail (lambda (stream) (force (cdr stream)))))
(head (tail (tail a-stream)))))
(letrec ((count 0)
(p (delay (begin (set! count (+ count 1))
(if (> count x)
count
(force p)))))
(x 5))
(test 6 force p)
(set! x 10)
(test 6 force p))
(test 3 'force
(letrec ((p (delay (if c 3 (begin (set! c #t) (+ (force p) 1)))))
(c #f))
(force p)))
(report-errs))
(SECTION 6 10 1)
(test #t input-port? (current-input-port))
(test #t output-port? (current-output-port))
(test #t call-with-input-file "r4rstest.scm" input-port?)
(define this-file (open-input-file "r4rstest.scm"))
(test #t input-port? this-file)
(SECTION 6 10 2)
(test #\; peek-char this-file)
(test #\; read-char this-file)
(test '(define cur-section '()) read this-file)
(test #\( peek-char this-file)
(test '(define errs '()) read this-file)
(close-input-port this-file)
(close-input-port this-file)
(define (check-test-file name)
(define test-file (open-input-file name))
(test #t 'input-port?
(call-with-input-file
name
(lambda (test-file)
(test load-test-obj read test-file)
(test #t eof-object? (peek-char test-file))
(test #t eof-object? (read-char test-file))
(input-port? test-file))))
(test #\; read-char test-file)
(test #\; read-char test-file)
(test #\; read-char test-file)
(test write-test-obj read test-file)
(test load-test-obj read test-file)
(close-input-port test-file))
(SECTION 6 10 3)
(define write-test-obj
'(#t #f a () 9739 -3 . #((test) "te \" \" st" "" test #() b c)))
(define load-test-obj
(list 'define 'foo (list 'quote write-test-obj)))
(test #t call-with-output-file
"tmp1"
(lambda (test-file)
(write-char #\; test-file)
(display #\; test-file)
(display ";" test-file)
(write write-test-obj test-file)
(newline test-file)
(write load-test-obj test-file)
(output-port? test-file)))
(check-test-file "tmp1")
(define test-file (open-output-file "tmp2"))
(write-char #\; test-file)
(display #\; test-file)
(display ";" test-file)
(write write-test-obj test-file)
(newline test-file)
(write load-test-obj test-file)
(test #t output-port? test-file)
(close-output-port test-file)
(check-test-file "tmp2")
(define (test-sc4)
(newline)
(display ";testing scheme 4 functions; ")
(newline)
(SECTION 6 7)
(test '(#\P #\space #\l) string->list "P l")
(test '() string->list "")
(test "1\\\"" list->string '(#\1 #\\ #\"))
(test "" list->string '())
(SECTION 6 8)
(test '(dah dah didah) vector->list '#(dah dah didah))
(test '() vector->list '#())
(test '#(dididit dah) list->vector '(dididit dah))
(test '#() list->vector '())
(SECTION 6 10 4)
(load "tmp1")
(test write-test-obj 'load foo)
(report-errs))
(report-errs)
(let ((have-inexacts?
(and (string->number "0.0") (inexact? (string->number "0.0"))))
(have-bignums?
(let ((n (string->number
"1427247692705959881058285969449495136382746625")))
(and n (exact? n)))))
(cond (have-inexacts?
(test-inexact)
(test-inexact-printing)))
(if have-bignums? (test-bignum))
(if (and have-inexacts? have-bignums?)
(test-numeric-predicates)))
(newline)
(display "To fully test continuations, Scheme 4, and DELAY/FORCE do:")
(newline)
(display "(test-cont) (test-sc4) (test-delay)")
(newline)
"last item in file"