diff options
author | Bryan Newbold <bnewbold@robocracy.org> | 2017-02-20 00:05:23 -0800 |
---|---|---|
committer | Bryan Newbold <bnewbold@robocracy.org> | 2017-02-20 00:05:23 -0800 |
commit | 5ca6e8e6a4e5c022a6fb5d28f30219c22c99eda8 (patch) | |
tree | 9b744b9dbf39e716e56daa620e2f3041968caf19 /example.scm | |
download | scm-5ca6e8e6a4e5c022a6fb5d28f30219c22c99eda8.tar.gz scm-5ca6e8e6a4e5c022a6fb5d28f30219c22c99eda8.zip |
Import Upstream version 4e6upstream/4e6
Diffstat (limited to 'example.scm')
-rw-r--r-- | example.scm | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/example.scm b/example.scm new file mode 100644 index 0000000..4a7b4a0 --- /dev/null +++ b/example.scm @@ -0,0 +1,137 @@ +;From Revised^4 Report on the Algorithmic Language Scheme +;William Clinger and Jonathon Rees (Editors) + +; EXAMPLE + +;INTEGRATE-SYSTEM integrates the system +; y_k' = f_k(y_1, y_2, ..., y_n), k = 1, ..., n +;of differential equations with the method of Runge-Kutta. + +;The parameter SYSTEM-DERIVATIVE is a function that takes a system +;state (a vector of values for the state variables y_1, ..., y_n) and +;produces a system derivative (the values y_1', ..., y_n'). The +;parameter INITIAL-STATE provides an initial system state, and H is an +;initial guess for the length of the integration step. + +;The value returned by INTEGRATE-SYSTEM is an infinite stream of +;system states. + +(define integrate-system + (lambda (system-derivative initial-state h) + (let ((next (runge-kutta-4 system-derivative h))) + (letrec ((states + (cons initial-state + (delay (map-streams next states))))) + states)))) + +;RUNGE-KUTTA-4 takes a function, F, that produces a +;system derivative from a system state. RUNGE-KUTTA-4 +;produces a function that takes a system state and +;produces a new system state. + +(define runge-kutta-4 + (lambda (f h) + (let ((*h (scale-vector h)) + (*2 (scale-vector 2)) + (*1/2 (scale-vector (/ 1 2))) + (*1/6 (scale-vector (/ 1 6)))) + (lambda (y) + ;; Y is a system state + (let* ((k0 (*h (f y))) + (k1 (*h (f (add-vectors y (*1/2 k0))))) + (k2 (*h (f (add-vectors y (*1/2 k1))))) + (k3 (*h (f (add-vectors y k2))))) + (add-vectors y + (*1/6 (add-vectors k0 + (*2 k1) + (*2 k2) + k3)))))))) + +(define elementwise + (lambda (f) + (lambda vectors + (generate-vector + (vector-length (car vectors)) + (lambda (i) + (apply f + (map (lambda (v) (vector-ref v i)) + vectors))))))) + +(define generate-vector + (lambda (size proc) + (let ((ans (make-vector size))) + (letrec ((loop + (lambda (i) + (cond ((= i size) ans) + (else + (vector-set! ans i (proc i)) + (loop (+ i 1))))))) + (loop 0))))) + +(define add-vectors (elementwise +)) + +(define scale-vector + (lambda (s) + (elementwise (lambda (x) (* x s))))) + +;MAP-STREAMS is analogous to MAP: it applies its first +;argument (a procedure) to all the elements of its second argument (a +;stream). + +(define map-streams + (lambda (f s) + (cons (f (head s)) + (delay (map-streams f (tail s)))))) + +;Infinite streams are implemented as pairs whose car holds the first +;element of the stream and whose cdr holds a promise to deliver the rest +;of the stream. + +(define head car) +(define tail + (lambda (stream) (force (cdr stream)))) + + +;The following illustrates the use of INTEGRATE-SYSTEM in +;integrating the system +; +; dvC vC +; C --- = -i - -- +; dt L R +; +; diL +; L --- = v +; dt C +; +;which models a damped oscillator. + +(define damped-oscillator + (lambda (R L C) + (lambda (state) + (let ((Vc (vector-ref state 0)) + (Il (vector-ref state 1))) + (vector (- 0 (+ (/ Vc (* R C)) (/ Il C))) + (/ Vc L)))))) + +(define the-states + (integrate-system + (damped-oscillator 10000 1000 .001) + '#(1 0) + .01)) + +(do ((i 10 (- i 1)) + (s the-states (tail s))) + ((zero? i) (newline)) + (newline) + (write (head s))) + +; #(1 0) +; #(0.99895054 9.994835e-6) +; #(0.99780226 1.9978681e-5) +; #(0.9965554 2.9950552e-5) +; #(0.9952102 3.990946e-5) +; #(0.99376684 4.985443e-5) +; #(0.99222565 5.9784474e-5) +; #(0.9905868 6.969862e-5) +; #(0.9888506 7.9595884e-5) +; #(0.9870173 8.94753e-5) |