
SLEEP - Syncable Ledger of Exact Events Protocol
Mathias Buus Madsen, Maxwell Ogden, Code for Science

August 2017

SLEEP

This document is a technical description of the SLEEP
format intended for implementers. SLEEP is the the
on-disk format that Dat produces and uses. It is a
set of 9 files that hold all of the metadata needed to
list the contents of a Dat repository and verify the
integrity of the data you receive. SLEEP is designed to
work with REST, allowing servers to be plain HTTP
file servers serving the static SLEEP files, meaning
you can implement a Dat protocol client using HTTP
with a static HTTP file server as the backend.

SLEEP files contain metadata about the data inside a
Dat repository, including cryptographic hashes, cryp-
tographic signatures, filenames and file permissions.
The SLEEP format is specifically designed to allow
efficient access to subsets of the metadata and/or
data in the repository, even on very large repositories,
which enables Dat’s peer to peer networking to be
fast.

The acronym SLEEP is a slumber related pun on
REST and stands for Syncable Ledger of Exact Events
Protocol. The Syncable part refers to how SLEEP
files are append-only in nature, meaning they grow
over time and new updates can be subscribed to as a
realtime feed of events through the Dat protocol.

The SLEEP version described here, used in Dat as
of 2017 is SLEEP V2. SLEEP V1 is documented at
http://specs.okfnlabs.org/sleep.

SLEEP Files

SLEEP is a set of 9 files that should be stored with
the following names. In Dat, the files are stored in a

folder called .dat in the top level of the repository.

metadata.key
metadata.signatures
metadata.bitfield
metadata.tree
metadata.data
content.key
content.signatures
content.bitfield
content.tree

The files prefixed with content store metadata about
the primary data in a Dat repository, for example the
raw binary contents of the files. The files prefixed
with metadata store metadata about the files in the
repository, for example the filenames, file sizes, and
file permissions. The content and metadata files are
both Hypercore registers, making SLEEP a set of two
Hypercore registers.

SLEEP File Headers

The following structured binary format is used for
signatures, bitfield, and tree files. The header
contains metadata as well as information needed to
decode the rest of the files after the header. SLEEP
files are designed to be easy to append new data, easy
to read arbitrary byte offsets in the middle, and are
relatively flat, simple files that rely on the filesystem
for the heavy lifting.

SLEEP files are laid out like this:

<32 byte header>
<fixed-size entry 1>
<fixed-size entry 2>
<fixed-size entry ...>

1



<fixed-size entry n>

• 32 byte header
• 4 bytes - magic byte (value varies depending on

which file, used to quickly identify which file type
it is)

• 1 byte - version number of the file header protocol,
current version is 0

• 2 byte Uint16BE - entry size, describes how long
each entry in the file is

• 1 byte - length prefix for body
• rest of 32 byte header - string describing key

algorithm (in dat ‘ed25519’). length of this string
matches the length in the previous length prefix
field. This string must fit within the 32 byte
header limitation (24 bytes reserved for string).
Unused bytes should be filled with zeroes.

Possible values in the Dat implementation for the
body field are:

Ed25519
BLAKE2b

To calculate the offset of some entry position, first
read the header and get the entry size, then do
32 + entrySize * entryIndex. To calculate how
many entries are in a file, you can use the entry size
and the filesize on disk and do (fileSize - 32) /
entrySize.

As mentioned above, signatures, bitfield and
tree are the three SLEEP files. There are two ad-
ditional files, key, and data, which do not contain
SLEEP file headers and store plain serialized data
for easy access. key stores the public key that is de-
scribed by the signatures file, and data stores the
raw chunk data that the tree file contains the hashes
and metadata for.

File Descriptions

key

The public key used to verify the signatures in the
signatures file, stored in binary as a single buffer
written to disk. To find out what format of key is
stored in this file, read the header of signatures.

In Dat, it’s always a ed25519 public key, but other
implementations can specify other key types using a
string value in that header.

tree

A SLEEP formatted 32 byte header with data entries
representing a serialized Merkle tree based on the
data in the data storage layer. All the fixed size
nodes written in in-order tree notation. The header
algorithm string for tree files is BLAKE2b. The entry
size is 40 bytes. Entries are formatted like this:

<32 byte header>
<4 byte magic string: 0x05025702>
<1 byte version number: 0>
<2 byte entry size: 40>
<1 byte algorithm name length prefix: 7>
<7 byte algorithm name: BLAKE2b>
<17 zeroes>

<40 byte entries>
<32 byte BLAKE2b hash>
<8 byte Uint64BE children leaf byte length>

The children leaf byte length is the byte size containing
the sum byte length of all leaf nodes in the tree below
this node.

This file uses the in-order notation, meaning even
entries are leaf nodes and odd entries are parent nodes
(non-leaf).

To prevent pre-image attacks, all hashes start with a
one byte type descriptor:

0 - LEAF
1 - PARENT
2 - ROOT

To calculate leaf node entries (the hashes of the data
entries) we hash this data:

BLAKE2b(
<1 byte type>

0
<8 bytes Uint64BE>

length of entry data
<entry data>

)

2



Then we take this 32 byte hash and write it to the
tree as 40 bytes like this:

<32 bytes>
BLAKE2b hash

<8 bytes Uint64BE>
length of data

Note that the Uint64 of length of data is included
both in the hashed data and written at the end of the
entry. This is to expose more metadata to Dat for
advanced use cases such as verifying data length in
sparse replication scenarios.

To calculate parent node entries (the hashes of the
leaf nodes) we hash this data:

BLAKE2b(
<1 byte>

1
<8 bytes Uint64BE>

left child length + right child length
<32 bytes>

left child hash
<32 bytes>

right child hash
)

Then we take this 32 byte hash and write it to the
tree as 40 bytes like this:

<32 bytes>
BLAKE2b hash

<8 bytes Uint64BE>
left child length + right child length

The reason the tree entries contain data lengths is to
allow for sparse mode replication. Encoding lengths
(and including lengths in all hashes) means you can
verify the Merkle subtrees independent of the rest
of the tree, which happens during sparse replication
scenarios.

The tree file corresponds directly to the data file.

data

The data file is only included in the SLEEP for-
mat for the metadata.* prefixed files which contains

filesystem metadata and not actual file data. For the
content.* files, the data is stored externally (in Dat
it is stored as normal files on the filesystem and not in
a SLEEP file). However you can configure Dat to use
a content.data file if you want and it will still work.
If you want to store the full history of all versions of
all files, using the content.data file would provide
that guarantee, but would have the disadvantage of
storing files as chunks merged into one huge file (not
as user friendly).

The data file does not contain a SLEEP file header.
It just contains a bunch of concatenated data entries.
Entries are written in the same order as they appear
in the tree file. To read a data file, first decode the
tree file and for every leaf in the tree file you can
calculate a data offset for the data described by that
leaf node in the data file.

Index Lookup

For example, if we wanted to seek to a specific entry
offset (say entry 42):

• First, read the header of the tree file and get
the entry size, then do 32 + entrySize * 42 to
get the raw tree index: 32 + (40 * 42)

• Since we want the leaf entry (even node in the
in-order layout), we multiply the entry index by
2: 32 + (40 * (42 * 2))

• Read the 40 bytes at that offset in the tree file
to get the leaf node entry.

• Read the last 8 bytes of the entry to get the
length of the data entry

• To calculate the offset of where in the data file
your entry begins, you need to sum all the lengths
of all the earlier entries in the tree. The most
efficient way to do this is to sum all the previous
parent node (non-leaf) entry lengths. You can
also sum all leaf node lengths, but parent nodes
contain the sum of their children’s lengths so
it’s more efficient to use parents. During Dat
replication, these nodes are fetched as part of the
Merkle tree verification so you will already have
them locally. This is a log(N) operation where
N is the entry index. Entries are also small and

3



therefore easily cacheable.
• Once you get the offset, you use the length you

decoded above and read N bytes (where N is the
decoded length) at the offset in the data file. You
can verify the data integrity using the 32 byte
hash from the tree entry.

Byte Lookup

The above method illustrates how to resolve a chunk
position index to a byte offset. You can also do
the reverse operation, resolving a byte offset to a
chunk position index. This is used to stream arbitrary
random access regions of files in sparse replication
scenarios.

• First, you start by calculating the current Merkle
roots

• Each node in the tree (including these root nodes)
stores the aggregate file size of all byte sizes of
the nodes below it. So the roots cumulatively will
describe all possible byte ranges for this reposi-
tory.

• Find the root that contains the byte range of
the offset you are looking for and get the node
information for all of that nodes children using
the Index Lookup method, and recursively repeat
this step until you find the lowest down child node
that describes this byte range.

• The chunk described by this child node will con-
tain the byte range you are looking for. You can
use the byteOffset property in the Stat meta-
data object to seek into the right position in the
content for the start of this chunk.

Metadata Overhead

Using this scheme, if you write 4GB of data using
on average 64KB data chunks (note: chunks can be
variable length and do not need to be the same size),
your tree file will be around 5MB (0.0125% overhead).

signatures

A SLEEP formatted 32 byte header with data entries
being 64 byte signatures.

<32 byte header>
<4 byte magic string: 0x05025701>
<1 byte version number: 0>
<2 byte entry size: 64>
<1 byte algorithm name length prefix: 7>
<7 byte algorithm name: Ed25519>
<17 zeroes>

<64 byte entries>
<64 byte Ed25519 signature>

Every time the tree is updated we sign the current
roots of the Merkle tree, and append them to the
signatures file. The signatures file starts with no
entries. Each time a new leaf is appended to the tree
file (aka whenever data is added to a Dat), we take
all root hashes at the current state of the Merkle tree
and hash and sign them, then append them as a new
entry to the signatures file.

Ed25519 sign(
BLAKE2b(

<1 byte>
2 // root type

for (every root node left-to-right) {
<32 byte root hash>
<8 byte Uint64BE root tree index>
<8 byte Uint64BE child byte lengths>

}
)

)

The reason we hash all the root nodes is that the
BLAKE2b hash above is only calculable if you have
all of the pieces of data required to generate all the
intermediate hashes. This is the crux of Dat’s data
integrity guarantees.

bitfield

A SLEEP formatted 32 byte header followed by a
series of 3328 byte long entries.

<32 byte header>
<4 byte magic string: 0x05025700>
<1 byte version number: 0>
<2 byte entry size: 3328>
<1 byte algorithm name length: 0>

4



<1 byte algorithm name: 0>
<24 zeroes>

<3328 byte entries> // (2048 + 1024 + 256)

The bitfield describes which pieces of data you have,
and which nodes in the tree file have been written.
This file exists as an index of the tree and data to
quickly figure out which pieces of data you have or
are missing. This file can be regenerated if you delete
it, so it is considered a materialized index.

The bitfield file actually contains three bitfields of
different sizes. A bitfield (AKA bitmap) is defined
as a set of bits where each bit (0 or 1) represents if
you have or do not have a piece of data at that bit
index. So if there is a dataset of 10 cat pictures, and
you have pictures 1, 3, and 5 but are missing the rest,
your bitfield would look like 1010100000.

Each entry contains three objects:

• Data Bitfield (1024 bytes) - 1 bit for for each data
entry that you have synced (1 for every entry in
data).

• Tree Bitfield (2048 bytes) - 1 bit for every tree
entry (all nodes in tree)

• Bitfield Index (256 bytes) - This is an index of
the Data Bitfield that makes it efficient to figure
out which pieces of data are missing from the
Data Bitfield without having to do a linear scan.

The Data Bitfield is 1Kb somewhat arbitrarily, but
the idea is that because most filesystems work in 4Kb
chunk sizes, we can fit the Data, Tree and Index in less
then 4Kb of data for efficient writes to the filesystem.
The Tree and Index sizes are based on the Data size
(the Tree has twice the entries as the Data, odd and
even nodes vs just even nodes in tree, and Index is
always 1/4th the size).

To generate the Index, you take pairs of 2 bytes at a
time from the Data Bitfield, check if all bits in the
2 bytes are the same, and generate 4 bits of Index
metadata for every 2 bytes of Data (hence how 1024
bytes of Data ends up as 256 bytes of Index).

First you generate a 2 bit tuple for the 2 bytes of
Data:

if (data is all 1's) then [1,1]

if (data is all 0's) then [0,0]
if (data is not all the same) then [1, 0]

The Index itself is an in-order binary tree, not a
traditional bitfield. To generate the tree, you take the
tuples you generate above and then write them into a
tree like the following example, where non-leaf nodes
are generated using the above scheme by looking at
the results of the relative even child tuples for each
odd parent tuple:

// for e.g. 16 bytes (8 tuples) of
// sparsely replicated data
0 - [00 00 00 00]
1 - [10 10 10 10]
2 - [11 11 11 11]

The tuples at entry 1 above are [1,0] because the
relative child tuples are not uniform. In the following
example, all non-leaf nodes are [1,1] because their
relative children are all uniform ([1,1])

// for e.g. 32 bytes (16 tuples) of
// fully replicated data (all 1's)
0 - [11 11 11 11]
1 - [11 11 11 11]
2 - [11 11 11 11]
3 - [11 11 11 11]
4 - [11 11 11 11]
5 - [11 11 11 11]
6 - [11 11 11 11]

Using this scheme, to represent 32 bytes of data it
takes at most 8 bytes of Index. In this example it
compresses nicely as its all contiguous ones on disk,
similarly for an empty bitfield it would be all zeroes.

If you write 4GB of data using on average 64KB data
chunk size, your bitfield will be at most 32KB.

metadata.data

This file is used to store content described by the rest
of the metadata.* hypercore SLEEP files. Whereas
the content.* SLEEP files describe the data stored in
the actual data cloned in the Dat repository filesystem,
the metadata data feed is stored inside the .dat folder
along with the rest of the SLEEP files.

5



The contents of this file is a series of versions of the
Dat filesystem tree. As this is a hypercore data feed,
it’s just an append only log of binary data entries. The
challenge is representing a tree in a one-dimensional
way to make it representable as a Hypercore register.
For example, imagine three files:

~/dataset $ ls
figures

graph1.png
graph2.png

results.csv

1 directory, 3 files

We want to take this structure and map it to a serial-
ized representation that gets written into an append
only log in a way that still allows for efficient random
access by file path.

To do this, we convert the filesystem metadata into
entries in a feed like this:

{
"path": "/results.csv",
trie: [[]],
sequence: 0

}
{

"path": "/figures/graph1.png",
trie: [[0], []],
sequence: 1

}
{

"path": "/figures/graph2.png",
trie: [[0], [1]],
sequence: 2

}

Filename Resolution

Each sequence represents adding one of the files to
the register, so at sequence 0 the filesystem state only
has a single file, results.csv in it. At sequence 1,
there are only 2 files added to the register, and at
sequence 3 all files are finally added. The children
field represents a shorthand way of declaring which

other files at every level of the directory hierarchy
exist alongside the file being added at that revision.
For example at the time of sequence 1, children is
[[0], []]. The first sub-array, [0], represents the
first folder in the path, which is the root folder /. In
this case [0] means the root folder at this point in
time only has a single file, the file that is the subject of
sequence 0. The second subarray is empty [] because
there are no other existing files in the second folder
in the path, figures.

To look up a file by filename, you fetch the latest
entry in the log, then use the children metadata in
that entry to look up the longest common ancestor
based on the parent folders of the filename you are
querying. You can then recursively repeat this oper-
ation until you find the path entry you are looking
for (or you exhaust all options which means the file
does not exist). This is a O(number of slashes in
your path) operation.

For example, if you wanted to look up /results.csv
given the above register, you would start by grabbing
the metadata at sequence 2. The longest common an-
cestor between /results.csv and /figures/graph2
is /. You then grab the corresponding entry in the
children array for /, which in this case is the first en-
try, [0]. You then repeat this with all of the children
entries until you find a child that is closer to the entry
you are looking for. In this example, the first entry
happens to be the match we are looking for.

You can also perform lookups relative to a point in
time by starting from a specific sequence number in
the register. For example to get the state of some
file relative to an old sequence number, similar to
checking out an old version of a repository in Git.

Data Serialization

The format of the metadata.data file is as follows:

<Header>
<Node 1>
<Node 2>
<Node ...>
<Node N>

6



Each entry in the file is encoded using Protocol Buffers
(Varda 2008).

The first message we write to the file is of a type
called Header which uses this schema:

message Header {
required string type = 1;
optional bytes content = 2;

}

This is used to declare two pieces of metadata used
by Dat. It includes a type string with the value
hyperdrive and content binary value that holds the
public key of the content register that this metadata
register represents. When you share a Dat, the meta-
data key is the main key that gets used, and the
content register key is linked from here in the meta-
data.

After the header the file will contain many filesystem
Node entries:

message Node {
required string path = 1;
optional Stat value = 2;
optional bytes trie = 3;
repeated Writer writers = 4;
optional uint64 writersSequence = 5;

}

message Writer {
required bytes publicKey = 1;
optional string permission = 2;

}

The Node object has five fields

• path - the string of the absolute file path of this
file.

• Stat - a Stat encoded object representing the file
metadata

• trie - a compressed list of the sequence numbers
as described earlier

• writers - a list of the writers who are allowed
to write to this dat

• writersSequence - a reference to the last se-
quence where the writers array was modified.
you can use this to quickly find the value of the

writers keys.

The trie value is encoded by starting with the nested
array of sequence numbers, e.g. [[[0, 3]], [[0,
2], [0, 1]]]. Each entry is a tuple where the first
item is the index of the feed in the writers array and
the second value is the sequence number. Finally you
prepend the trie value with a version number varint.

To write these subarrays we use variable width integers
(varints), using a repeating pattern like this, one for
each array:

<varint of 0>
<varint of 3>
<varint of 0>
<varint of 2>
<varint of 0>
<varint of 1>

This encoding is designed for efficiency as it reduces
the filesystem path + feed index metadata down to a
series of small integers.

The Stat objects use this encoding:

message Stat {
required uint32 mode = 1;
optional uint32 uid = 2;
optional uint32 gid = 3;
optional uint64 size = 4;
optional uint64 blocks = 5;
optional uint64 offset = 6;
optional uint64 byteOffset = 7;
optional uint64 mtime = 8;
optional uint64 ctime = 9;

}

These are the field definitions:

• mode - POSIX file mode bitmask
• uid - POSIX user id
• gid - POSIX group id
• size - file size in bytes
• blocks - number of data chunks that make up

this file
• offset - the data feed entry index for the first

chunk in this file
• byteOffset - the data feed file byte offset for the

first chunk in this file

7



• mtime - POSIX modified_at time
• mtime - POSIX created_at time

Varda, Kenton. 2008. “Protocol Buffers: Google’s
Data Interchange Format.” Google Open Source Blog,
Available at Least as Early as Jul.

8


	SLEEP
	SLEEP Files
	SLEEP File Headers
	File Descriptions


