Dat - Distributed Dataset Synchronization And Versioning

Maxwell Ogden, Karissa McKelvey, Mathias Buus

DRAFT, April 2017

Abstract

Dat is a protocol designed for syncing distributed,
dynamic datasets. A secure changelog is used to
ensure dataset versions are distributed safely. Files
are efficiently versioned by checking new file regions
against existing ones to duplication of existing similar
file regions. Any byte range of any version of any file
can be efficiently accessed as a stream from a Dat
repository over a network connection. Consumers can
choose to fully or partially replicate the contents of a
remote Dat repository, and can also subscribe to live
changes. Dat uses built-in public key cryptography
to encrypt and sign all network traffic, allowing it to
make certain privacy and security guarantees.

1. Background

Sharing datasets over the Internet is a subject of much
study, but approaches remain relatively limiting. The
most widely used approach, sharing files over HT'TP,
is subject to dead links when files are moved or deleted,
as HTTP has no concept of history or versioning built
in. E-mailing datasets as attachments is also widely
used, and has the concept of history built in, but
many email providers limit the maximum attachment
size which makes it impractical for many datasets.

Cloud storage services like S3 ensure availability of
data, but they have a centralized hub-and-spoke net-
working model and tend to be limited by their band-
width, meaning popular files can be come very ex-
pensive to share. Services like Dropbox and Google
Drive provide version control and synchronization on
top of cloud storage services which fixes many issues

with broken links but rely on proprietary code and
services requiring users to store their data on cloud
infrastructure which has implications on cost, transfer
speeds, and user privacy.

Distributed file sharing tools can become faster as
files become more popular, removing the bandwidth
bottleneck and making file distribution cheaper. They
also implement discovery systems which can prevent
broken links meaning if the original source goes offline
other backup sources can be automatically discovered.
However these file sharing tools today are not sup-
ported by Web browsers, do not have good privacy
guarantees, and do not provide a mechanism for up-
dating files without redistributing a new dataset which
could mean entire redownloading data you already
have.

Scientists are an example of a group that would benefit
from better solutions to these problems. Increasingly
scientific datasets are being provided online using
one of the above approaches and cited in published
literature. Broken links and systems that do not pro-
vide version checking or content addressability of data
directly limit the reproducibility of scientific analy-
ses based on shared datasets. Services that charge
a premium for bandwidth cause monetary and data
transfer strain on the users sharing the data, who are
often on fast public university networks with effec-
tively unlimited bandwidth that go unused. Version
control tools designed for text files do not keep up
with the demands of data analysis in science today.

2. Existing Work

Dat is inspired by a number of features from existing
systems.

2.1 Git

Git popularized the idea of a directed acyclic graph
(DAG) combined with a Merkle tree, a way to repre-
sent changes to data where each change is addressed
by the secure hash of the change plus all ancestor
hashes in a graph. This provides a way to trust data
integrity, as the only way a specific hash could be de-
rived by another peer is if they have the same data and
change history required to reproduce that hash. This
is important for reproducibility as it lets you trust
that a specific git commit hash refers to a specific
source code state.

Decentralized version control tools for source code
like Git provide a protocol for efficiently downloading
changes to a set of files, but are optimized for text
files and have issues with large files. Solutions like Git-
LFS solve this by using HT'TP to download large files,
rather than the Git protocol. GitHub offers Git-LFS
hosting but charges repository owners for bandwidth
on popular files. Building a distributed distribution
layer for files in a Git repository is difficult due to
design of Git Packfiles which are delta compressed
repository states that do not easily support random
access to byte ranges in previous file versions.

2.2 LBFS

LBFS is a networked file system that avoids transfer-
ring redundant data by deduplicating common regions
of files and only transferring unique regions once. The
deduplication algorithm they use is called Rabin fin-
gerprinting and works by hashing the contents of the
file using a sliding window and looking for content de-
fined chunk boundaries that probabilistically appear
at the desired byte offsets (e.g. every 1kb).

Content defined chunking has the benefit of being shift
resistant, meaning if you insert a byte into the middle

of a file only the first chunk boundary to the right of
the insert will change, but all other boundaries will
remain the same. With a fixed size chunking strategy,
such as the one used by rsync, all chunk boundaries
to the right of the insert will be shifted by one byte,
meaning half of the chunks of the file would need to
be retransmitted.

2.3 BitTorrent

BitTorrent implements a swarm based file sharing
protocol for static datasets. Data is split into fixed
sized chunks, hashed, and then that hash is used to
discover peers that have the same data. An advantage
of using BitTorrent for dataset transfers is that down-
load bandwidth can be fully saturated. Since the file
is split into pieces, and peers can efficiently discover
which pieces each of the peers they are connected to
have, it means one peer can download non-overlapping
regions of the dataset from many peers at the same
time in parallel, maximizing network throughput.

Fixed sized chunking has drawbacks for data that
changes (see LBFS above). BitTorrent assumes all
metadata will be transferred up front which makes it
impractical for streaming or updating content. Most
BitTorrent clients divide data into 1024 pieces mean-
ing large datasets could have a very large chunk size
which impacts random access performance (e.g. for
streaming video).

Another drawback of BitTorrent is due to the way
clients advertise and discover other peers in absence
of any protocol level privacy or trust. From a user
privacy standpoint, BitTorrent leaks what users are
accessing or attempting to access, and does not pro-
vide the same browsing privacy functions as systems
like SSL.

2.4 Kademlia Distributed Hash Table

Kademlia is a distributed hash table, a distributed
key/value store that can serve a similar purpose to
DNS servers but has no hard coded server addresses.
All clients in Kademlia are also servers. As long as

you know at least one address of another peer in the
network, you can ask them for the key you are trying
to find and they will either have it or give you some
other people to talk to that are more likely to have it.

If you don’t have an initial peer to talk to you, most
clients use a bootstrap server that randomly gives
you a peer in the network to start with. If the boot-
strap server goes down, the network still functions as
long as other methods can be used to bootstrap new
peers (such as sending them peer addresses through
side channels like how .torrent files include tracker
addresses to try in case Kademlia finds no peers).

Kademlia is distinct from previous DHT designs due
to its simplicity. It uses a very simple XOR operation
between two keys as its “distance” metric to decide
which peers are closer to the data being searched for.
On paper it seems like it wouldn’t work as it doesn’t
take into account things like ping speed or bandwidth.
Instead its design is very simple on purpose to mini-
mize the amount of control/gossip messages and to
minimize the amount of complexity required to im-
plement it. In practice Kademlia has been extremely
successful and is widely deployed as the “Mainline
DHT” for BitTorrent, with support in all popular
BitTorrent clients today.

Due to the simplicity in the original Kademlia design
a number of attacks such as DDOS and/or sybil have
been demonstrated. There are protocol extensions
(BEPs) which in certain cases mitigate the effects
of these attacks, such as BEP 44 which includes a
DDOS mitigation technique. Nonetheless anyone us-
ing Kademlia should be aware of the limitations.

2.5 Peer to Peer Streaming Peer Pro-
tocol (PPSPP)

PPSPP (IETF RFC 7574) is a protocol for live stream-
ing content over a peer to peer network. In it they
define a specific type of Merkle Tree that allows for
subsets of the hashes to be requested by a peer in
order to reduce the time-till-playback for end users.
BitTorrent for example transfers all hashes up front,
which is not suitable for live streaming.

Their Merkle trees are ordered using a scheme they
call “bin numbering”, which is a method for determin-
istically arranging an append-only log of leaf nodes
into an in-order layout tree where non-leaf nodes are
derived hashes. If you want to verify a specific node,
you only need to request its sibling’s hash and all its
uncle hashes. PPSPP is very concerned with reducing
round trip time and time-till-playback by allowing for
many kinds of optimizations, such as to pack as many
hashes into datagrams as possible when exchanging
tree information with peers.

Although PPSPP was designed with streaming video
in mind, the ability to request a subset of metadata
from a large and /or streaming dataset is very desirable
for many other types of datasets.

2.6 WebTorrent

With WebRTC browsers can now make peer to peer
connections directly to other browsers. BitTorrent
uses UDP sockets which aren’t available to browser
JavaScript, so can’t be used as-is on the Web.

WebTorrent implements the BitTorrent protocol in
JavaScript using WebRTC as the transport. This
includes the BitTorrent block exchange protocol as
well as the tracker protocol implemented in a way
that can enable hybrid nodes, talking simultaneously
to both BitTorrent and WebTorrent swarms (if a
client is capable of making both UDP sockets as well
as WebRTC sockets, such as Node.js). Trackers are
exposed to web clients over HT'TP or WebSockets.

2.7 InterPlanetary File System

IPFS is a family of application and network protocols
that have peer to peer file sharing and data perma-
nence baked in. IPFS abstracts network protocols
and naming systems to provide an alternative appli-
cation delivery platform to todays Web. For example,
instead of using HTTP and DNS directly, in IPFS
you would use LibP2P streams and IPNS in order to
gain access to the features of the IPFS platform.

https://datatracker.ietf.org/doc/rfc7574/?include_text=1

2.8 Certificate Transparency/Secure
Registers

The UK Government Digital Service have developed
the concept of a register which they define as a digital
public ledger you can trust. In the UK government
registers are beginning to be piloted as a way to expose
essential open data sets in a way where consumers
can verify the data has not been tampered with, and
allows the data publishers to update their data sets
over time.

The design of registers was inspired by the infras-
tructure backing the Certificate Transparency project,
initated at Google, which provides a service on top
of SSL certificates that enables service providers to
write certificates to a distributed public ledger. Any-
one client or service provider can verify if a certificate
they received is in the ledger, which protects against
so called “rogue certificates”.

3. Dat

Dat is a dataset synchronization protocol that does
not assume a dataset is static or that the entire dataset
will be downloaded. The protocol is agnostic to the
underlying transport e.g. you could implement Dat
over carrier pigeon. The key properties of the Dat
design are explained in this section.

e« 1. Mirroring - Any participant in the network

can simultaneously share and consume data.

. Content Integrity - Data and publisher
integrity is verified through use of signed
hashes of the content.

. Parallel Replication - Subsets of the data
can be accessed from multiple peers simul-
taneously, improving transfer speeds.

Efficient Versioning - Datasets can be
efficiently synced, even in real time, to other
peers using Dat Streams.

. Network Privacy - Dat employs a capa-
bility system whereby anyone with a Dat

link can connect to the swarm, but the link
itself is very difficult to guess.

3.1 Mirroring

Dat is a peer to peer protocol designed to exchange
pieces of a dataset amongst a swarm of peers. As
soon as a peer acquires their first piece of data in the
dataset they can choose to become a partial mirror
for the dataset. If someone else contacts them and
needs the piece they have, they can choose to share
it. This can happen simultaneously while the peer is
still downloading the pieces they want.

3.1.1 Source Discovery

An important aspect of mirroring is source discov-
ery, the techniques that peers use to find each other.
Source discovery means finding the IP and port of
data sources online that have a copy of that data
you are looking for. You can then connect to them
and begin exchanging data using a Dat Stream. By
using source discovery techniques Dat is able to create
a network where data can be discovered even if the
original data source disappears.

Source discovery can happen over many kinds of net-
works, as long as you can model the following actions:

e join(key, [port]) - Begin performing regular
lookups on an interval for key. Specify port if
you want to announce that you share key as well.

e leave(key, [port]) - Stop looking for key.
Specify port to stop announcing that you share
key as well.

o foundpeer(key, ip, port) - Called when a
peer is found by a lookup

In the Dat implementation we implement the above
actions on top of four types of discovery networks:

e DNS name servers - An Internet standard mech-
anism for resolving keys to addresses

e Multicast DNS - Useful for discovering peers on
local networks

o Kademlia Mainline Distributed Hash Table - Zero
point of failure, increases probability of Dat work-
ing even if DNS servers are unreachable

e Signalhub - An HTTP key resolving service, non-
distributed. Used by web browser clients who
can’t form raw UDP/TCP packets.

Additional discovery networks can be implemented as
needed. We chose the above four as a starting point
to have a complementary mix of strategies to increase
the probability of source discovery.

Our implementation of source discovery is called
discovery-channel. We also run a custom DNS server
that Dat clients use (in addition to specifying their
own if they need to), as well as a DHT bootstrap
server. These discovery servers are the only central-
ized infrastructure we need for Dat to work over the
Internet, but they are redundant, interchangeable,
never see the actual data being shared, anyone can
run their own and Dat will still work even if they all
are unavailable. If this happens discovery will just be
manual (e.g. manually sharing IP /ports).

TODO detail each discovery mechanism

3.1.2 Peer Connections

After the discovery phase, Dat should have a list of
potential data sources to try and contact. Dat uses
either TCP, UTP, WebSockets or WebRTC for the
network connections. UTP is designed to not take
up all available bandwidth on a network (e.g. so that
other people sharing wifi can still use the Internet).
WebSockets and WebRTC makes Dat work in modern
web browsers. Note that these are the protocols we
support in the reference Dat implementation, but the
Dat protocol itself is transport agnostic.

When Dat gets the IP and port for a potential source
it tries to connect using all available protocols and
hopes one works. If one connects first, Dat aborts the
other ones. If none connect, Dat will try again until it
decides that source is offline or unavailable and then
stops trying to connect to them. Sources Dat is able
to connect to go into a list of known good sources, so
that the Internet connection goes down Dat can use

that list to reconnect to known good sources again
quickly.

If Dat gets a lot of potential sources it picks a handful
at random to try and connect to and keeps the rest
around as additional sources to use later in case it
decides it needs more sources.

The connection logic is implemented in a module
called discovery-swarm. This builds on discovery-
channel and adds connection establishment, manage-
ment and statistics. It provides statistics such as how
many sources are currently connected, how many good
and bad behaving sources have been talked to, and it
automatically handles connecting and reconnecting to
sources. UTP support is implemented in the module
utp-native.

Once a duplex binary connection to a remote source
is open Dat then layers on its own protocol on top
called a Dat Stream.

3.2 Content Integrity

Content integrity means being able to verify the data
you received is the exact same version of the data that
you expected. This is imporant in a distributed system
as this mechanism will catch incorrect data sent by
bad peers. It also has implications for reproducibility
as it lets you refer to a specific version of a dataset.

Link rot, when links online stop resolving, and content
drift, when data changes but the link to the data
remains the same, are two common issues in data
analysis. For example, one day a file called data.zip
might change, but a typical HTTP link to the file does
not include a hash of the content, or provide a way to
get updated metadata, so clients that only have the
HTTP link have no way to check if the file changed
without downloading the entire file again. Referring
to a file by the hash of its content is called content
addressability, and lets users not only verify that the
data they receive is the version of the data they want,
but also lets people cite specific versions of the data
by referring to a specific hash.

Dat uses SHA256 hashes to address content. Hashes

https://npmjs.org/signalhub
https://npmjs.org/discovery-channel
https://www.npmjs.com/package/dns-discovery
https://github.com/bittorrent/bootstrap-dht
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Micro_Transport_Protocol
https://www.npmjs.com/package/discovery-swarm
https://www.npmjs.com/package/utp-native

are arranged in a Merkle tree, a tree where each non-
leaf node is the hash of all child nodes. Leaf nodes
contain pieces of the dataset. This means that in order
to verify the integrity of some subset of content only
the top most common ancestors of the leaf nodes that
contain that content must be fetched. For example
to verify all content in a Merkle tree the top level
node of the tree can be used. Due to the behavior of
secure cryptographic hashes the top hash can only be
produced if all data below it matches exactly. If two
trees have matching top hashes then you know that
all other nodes in the tree must match as well, and
you can conclude that your dataset is synchronized.

3.2.1 Hypercore and Hyperdrive

The Dat storage, content integrity, and networking
protocols are implemented in a module called Hy-
percore. Hypercore is agnostic to the format of the
input data, it operates on any stream of binary data.
For the Dat use case of synchronizing datasets we
use a file system module on top of Hypercore called
Hyperdrive.

We have a layered abstraction so that if someone
wishes they can use Hypercore directly to have full
control over how they model their data. Hyperdrive
works well when your data can be represented as files
on a filesystem, which is our main use case with Dat.

3.2.2 Dat Streams

Dat Streams are binary append-only stream whose
contents are cryptographically hashed and signed and
therefore can be verified by anyone with access to the
public key of the writer. They are an implemenation
of the concept known as a register, a digital ledger
you can trust. Dat lets you create many Streams,
and replicates them when synchronizing with another
peer.

Dat Streams use a specific method of encoding a
Merkle tree where hashes are positioned by a scheme
called binary interval numbering or just simply “bin”
numbering. This is just a specific, deterministic way

of laying out the nodes in a tree. For example a tree
with 7 nodes will always be arranged like this:

In our use case, the hashes of the actual content are
always even numbers, at the wide end of the tree. So
the above tree had four original values that become
the even numbers:

value0 -> 0
valuel -> 2
value2 -> 4
value3 -> 6

A Dat Stream contains two pieces of information:

Evens: List of binary values with their hash and size:
[valueO, valuel, value2, ...] Odds: List of Merkle
hashes with the size of all their children: [hashO,
hashl, hash2, ...]

These two lists get interleaved into a single register
such that the indexes (position) in the register are
the same as the bin numbers from the Merkle tree.

All odd hashes are derived by hashing the two child
nodes, e.g. given hashO is hash(value0) and hash2
is hash(valuel), hashl is hash(hashO + hash?2).

For example a Dat Stream with two data entries would
look something like this (pseudocode):

0. hash(valueO)
1. hash(hash(value0) + hash(valuel))
2. hash(valuel)

3.3 Parallel Replication

Dat Streams include a message based replication pro-
tocol so two peers can communicate over a stateless
channel to discover and exchange data. Once you
have received the Stream metadata, you can make

https://npmjs.org/hypercore
https://npmjs.org/hypercore
https://npmjs.org/hyperdrive

individual requests for chunks from any peer you are
connected to. This allows clients to parallelize data
requests across the entire pool of peers they have
established connections with.

3.4 Efficient Versioning

Given a stream of binary data, Dat splits the stream
into chunks using Rabin fingerprints, hashes each
chunk, and arranges the hashes in a specific type of
Merkle tree that allows for certain replication prop-
erties. Dat uses the chunk boundaries provided by
Rabin fingerprinting to decide where to slice up the
binary input stream. The Rabin implementation in
Dat is tuned to produce a chunk every 16kb on aver-
age. This means for a 1MB file the initial chunking
will produce around 64 chunks.

If a 1 byte edit is made to the file, chunking again
should produce 63 existing chunks and 1 new chunk.
This allows for deduplication of similar file regions
across versions, which means Dat can avoid retrans-
mitting or storing the same chunk twice even if it
appears in multiple files.

Dat is also able to fully or partially synchronize
streams in a distributed setting even if the stream is
being appended to. This is accomplished by using
the messaging protocol to traverse the Merkle tree
of remote sources and fetch a strategic set of nodes.
Due to the low level message oriented design of the
replication protocol different node traversal strategies
can be implemented.

TODO example of using protocol messages to request
a subset of nodes in a live sync scenario

var log = [

{
hash: hash(value + size),
size: value.length

value: <some buffer>

s

{
hash: hash(logl[0].hash+log[2].hash+size),
size: log[0].size + logl[l].size

1,

{
hash: hash(value + size),
size: value.length
value: <some buffer>

3.6 Network Privacy

On the Web today, with SSL, there is a guarantee
that the traffic between your computer and the server
is private. As long as you trust the server to not leak
your logs, attackers who intercept your network traffic
will not be able to read the HT'TP traffic exchanged
between you and the server. This is a fairly straight-
forward model as clients only have to trust a single
server for some domain.

There is an inherent tradeoff in peer to peer systems
of source discovery vs. user privacy. The more sources
you contact and ask for some data, the more sources
you trust to keep what you asked for private. Our
goal is to have Dat be configurable in respect to this
tradeoff to allow application developers to meet their
own privacy guidelines.

It is up to client programs to make design decisions
around which discovery networks they trust. For
example if a Dat client decides to use the BitTorrent
DHT to discover peers, and they are searching for a
publicly shared Dat key with known contents, then
because of the privacy design of the BitTorrent DHT
it becomes public knowledge what key that client is
searching for.

A client could choose to only use discovery networks
with certain privacy guarantees. For example a client
could only connect to an approved list of sources that
they trust, similar to SSL. As long as they trust each
source, the encryption built into the Dat network
protocol will prevent the Dat key they are looking for
from being leaked.

3.6.2 Security

Dat links are Ed25519 public keys which have a length
of 32 bytes (64 characters when Base64 encoded).
Every Dat repository has corresponding a private key
that kept internally in the Dat metadata and never
shared.

Dat never exposes either the public or private key
over the network. During the discovery phase the
SHA256 hash of the public key is used as the discovery
key. This means that the original key is impossible
to discover (unless it was shared publicly through a
separate channel) since only the hash of the key is
exposed publicly.

All messages in the Dat protocol are encrypted using
the public key during transport. This means that
unless you know the public key (e.g. unless the Dat
link was shared with you) then you will not be able
to discover or communicate with any member of the
swarm for that Dat. Anyone with the public key can
verify that messages (such as entries in a Dat Stream)
were created by a holder of the private key.

Dat does not provide an authentication mechanism.
Instead it provides a capability system. Anyone with
the Dat link is currently considered able to discover
and access data. Do not share your Dat links publicly
if you do not want them to be accessed.

SLEEP
What is SLEEP?

SLEEP is the the on-disk format that Dat produces
and uses. It is a set of 9 files that hold all of the meta-
data needed to list the contents of a Dat repository and
verify the integrity of the data you receive. SLEEP
is designed to work with REST, allowing servers to
be plain HTTP file servers serving the static SLEEP
files, meaning you can implement a Dat protocol client
using HTTP with a static HT'TP file server as the
backend.

SLEEP files contain metadata about the data inside a
Dat repository, including cryptographic hashes, cryp-

tographic signatures, filenames and file permissions.
The SLEEP format is specifically engineered to al-
low efficient access to subsets of the metadat and/or
data in the repository, even on very large repositories,
which enables Dat’s peer to peer networking to be
fast.

The acronym SLEEP is a slumber related pun on
REST and stands for Syncable Lightweight Event
Emitting Persistence. The Event Emitting part refers
to how SLEEP files are append-only in nature, mean-
ing they grow over time and new updates can be
subscribed to as a realtime feed of events through the
Dat protocol.

The SLEEP version used in Dat as of 2017 is
SLEEP V2. The previous version is documented at
http://specs.okfnlabs.org/sleep.

SLEEP Files

SLEEP is a set of 9 files that should be stored in a
folder with the following names. In Dat, the files are
stored in a folder called .dat in the top level of the
repository.

metadata.key
metadata.signatures
metadata.bitfield
metadata.tree
metadata.data
content.key
content.signatures
content.bitfield
content.tree

The files prefixed with content store metadata about
the primary data in a Dat repository, for example the
raw binary contents of the files. The files prefixed
with metadata store metadata about the files in the
repository, for example the filenames, file sizes, file per-
missions. The content and metadata files are both
serialized representations of Hypercore feeds, making
SLEEP a set of two Hypercore feeds to represent a
set of files, one for file data and one for file metadata.

SLEEP File Headers

The following structured binary format is used for
signatures, bitfield, and tree files. The header
contains metadata as well as information needed to
decode the rest of the files after the header. SLEEP
files are designed to be easy to append new data to
at the end, easy to read arbitrary byte offsets in the
middle, and are relatively flat, simple files that rely
on the filesystem for the heavy lifting.

SLEEP files are laid out like this:

<32 byte header>
<fixed-size entry 1>
entry 2>
entry ...>
entry n>

<fixed-size
<fixed-size
<fixed-size

e 32 byte header

e 4 bytes - magic byte (value varies depending on
which file, used to quickly identify which file type
it is)

e 1 byte - version number of the file header protocol,
current version is 0

e 2 byte Uint16BE - entry size, describes how long
each entry in the file is

e 1 byte - length prefix for body

e rest of 32 byte header - string describing key
algorithm (in dat ‘ed25519’). length of this string
matches the length in the previous length prefix
field. This string must fit within the 32 byte
header limitation (24 bytes reserved for string).
Unused bytes should be filled with zeroes.

Possible values in the Dat implementation for the
body field are:

Ed25519
BLAKE2b

To calculate the offset of some entry position, first
read the header and get the entry size, then do
32 + entrySize * entryIndex. To calculate how
many entries are in a file, you can use the entry size
and the filesize on disk and do (fileSize - 32) /
entrySize.

As mentioned above, signatures, bitfield and
tree are the three SLEEP files. There are two ad-

ditional files, key, and data, which do not contain
SLEEP file headers and store plain serialized data
for easy access. key stores the public key that is de-
scribed by the signatures file, and data stores the
raw block data that the tree file contains the hashes
and metadata for.

File Descriptions

key

The public key used to verify the signatures in the
signatures file. Stored in binary as a single buffer
written to disk. To find out what format of key is
stored in this file, read the header of signatures.
In Dat, it’s always a ed25519 public key, but other
implementations can specify other key types using a
string value in that header.

tree

A SLEEP formatted 32 byte header with data entries
representing a serialized merkle tree based on the
data in the data storage layer. All the fixed size
nodes written in in-order tree notation. The header
algorithm string for tree files is BLAKE2b. The entry
size is 40 bytes. Entries are formatted like this:

<32 byte header>
<4 byte magic string: 0x05025702>
<1 byte version number: 0>
<2 byte entry size: 40>
<1 byte algorithm name length prefix: 7>
<7 byte algorithm name: BLAKE2b>
<17 zeroes>
<40 byte entries>
<32 byte BLAKE2b hash>
<8 byte Uint64BE children leaf byte length>

The children leaf byte length is the byte size containing
the sum byte length of all leaf nodes in the tree below
this node.

This file uses the in-order notation, meaning even
entries are leaf nodes and odd entries are parent nodes
(non-leaf).

To prevent pre-image attacks, all hashes start with a
one byte type descriptor:

0 - LEAF
1 - PARENT
2 - ROOT

To calculate leaf node entries (the hashes of the data
entries) we hash this data:

BLAKE2b (
<1 byte type>
0
<8 bytes Uint64BE>
length of entry data
<entry data>

)

Then we take this 32 byte hash and write it to the
tree as 40 bytes like this:

<32 bytes>
BLAKE2b hash

<8 bytes Uint64BE>
length of data

Note that the Uint64 of length of data is included
both in the hashed data and written at the end of the
entry. This is to expose more metadata to Dat for
advanced use cases such as verifying data length in
sparse replication scenarios.

To calculate parent node entries (the hashes of the
leaf nodes) we hash this data:

BLAKE2b(
<1 byte>
1
<8 bytes Uint64BE>
left child length + right child length
<32 bytes>
left child hash
<32 bytes>
right child hash
)

Then we take this 32 byte hash and write it to the
tree as 40 bytes like this:

<32 bytes>
BLAKE2b hash

<8 bytes Uint64BE>
left child length + right child length

The reason the tree entries contain data lengths is to
allow for sparse mode replication. Encoding lengths
(and including lengths in all hashes) means you can
verify the merkle subtrees independent of the rest
of the tree, which happens during sparse replication
scenarios (diagram would be useful here).

The tree file corresponds directly to the data file.

Merkle roots

It is possible for the in-order Merkle tree to have
multiple roots at once. A root is defined as a parent
node with a full set of child node slots filled below it.

For example, this tree hash 2 roots (1 and 4)
0

4
This tree hash one root (3):

This one has one root (1):

0

data

The data file is only included in the SLEEP for-
mat for the metadata.* prefixed files which contains
filesystem metadata and not actual file data. For the
content . * files, the data is stored externally (in Dat
it is stored as normal files on the filesystem and not

10

in a SLEEP file). However you can configure Dat to
use a content.data file if you want and it will still
work.

The data file does not contain a SLEEP file header.
It just contains a bunch of concatenated data entries.

Entries are written in the same order as they appear
in the tree file. To read a data file, first decode the
tree file and for every leaf in the tree file you can
calculate a data offset for the data described by that
leaf node in the data file.

Index Lookup

For example, if we wanted to seek to a specific entry
offset (say entry 42):

e First, read the header of the tree file and get
the entry size, then do 32 + entrySize * 42 to
get the raw tree index: 32 + (40 * 42)

Since we want the leaf entry (even node in the
in-order layout), we multiply the entry index by
2: 32 + (40 * (42 * 2))

Read the 40 bytes at that offset in the tree file
to get the leaf node entry.

Read the last 8 bytes of the entry to get the
length of the data entry

To calculate the offset of where in the data file
your entry begins, you need to sum all the lengths
of all the earlier entries in the tree. The most
efficient way to do this is to sum all the previous
parent node (non-leaf) entry lengths. You can
also sum all leaf node lengths, but parent nodes
contain the sum of their childrens lengths so
it’s more efficient to use parents. During Dat
replication, these nodes are fetched as part of the
Merkle tree verification so you will already have
them locally. This is a log(N) operation where
N is the entry index. Entries are also small and
therefore easily cacheable.

Once you get the offset, you use the length you
decoded above and read N bytes (where N is the
decoded length) at the offset in the data file. You
can verify the data integrity using the 32 byte
hash from the tree entry.

11

Byte Lookup

The above method illustrates how to resolve a block
position index to a byte offset. You can also do
the reverse operation, resolving a byte offset to a
block position index. This is used to stream arbitrary
random access regions of files in sparse replication
scenarios.

o First, you start by calculating the current Merkle
roots

Each node in the tree (including these root nodes)
stores the aggregate file size of all byte sizes of
the nodes below it. So the roots cumulatively will
describe all possible byte ranges for this reposi-
tory.

Find the root that contains the byte range of
the offset you are looking for and get the node
information for all of that nodes children using
the Index Lookup method, and recursively repeat
this step until you find the lowest down child node
that describes this byte range.

The block described by this child node will con-
tain the byte range you are looking for. You can
use the byteOffset property in the Stat meta-
data object to seek into the right position in the
content for the start of this block.

Metadata Overhead

Using this scheme, if you write 4GB of data using on
average 64KB data chunks (note: chunks can be vari-
able length and do not need to be the same size), your
tree file will be around 5MB (0.00125% overhead).

signatures

A SLEEP formatted 32 byte header with data entries
being 64 byte signatures.

<32 byte header>
<4 byte magic string: 0x05025701>
<1 byte version number: 0>
<2 byte entry size: 64>
<1 byte algorithm name length prefix: 7>
<7 byte algorithm name: Ed25519>
<17 zeroes>

<64 byte entries>
<64 byte Ed25519 signature>

Every time the tree is updated we sign the current
roots of the Merkle tree, and append them to the
signatures file. The signatures file starts with no
entries. Each time a new leaf is appended to the tree
file (aka whenever data is added to a Dat), we take
all root hashes at the current state of the Merkle tree
and hash and sign them, then append them as a new
entry to the signatures file.

Ed25519 sign(
BLAKE2b(
<1 byte>
2 // root type
for (every root node) {
<32 byte root hash>
<8 byte Uint64BE root tree index>
<8 byte Uint64BE child byte lengths>
X
)
)

The reason we hash all the root nodes is that the
BLAKE2Db hash above is only calculateable if you
have all of the pieces of data required to generate all
the intermediate hashes. This is the crux of Dat’s
data integrity guarantees.

bitfield

A SLEEP formatted 32 byte header followed by a
series of 3328 byte long entries.

<32 byte header>

<4 byte magic string: 0x05025700>
<1 byte version number: 0>

<2 byte entry size: 3328>

<1 byte algorithm name length: 0>

<1 byte algorithm name: 0>
<24 zeroes>
<3328 byte entries> // (2048 + 1024 + 256)

The bitfield describes which pieces of data you have,

and which nodes in the tree file have been written.

This file exists as an index of the tree and data to
quickly figure out which pieces of data you have or

12

are missing. This file can be regenerated if you delete
it, so it is considered a materialized index.

The bitfield file actually contains three bitfields of
different sizes. A bitfield (AKA bitmap) is defined
as a set of bits where each bit (0 or 1) represents if
you have or do not have a piece of data at that bit
index. So if there is a dataset of 10 cat pictures, and
you have pictures 1, 3, and 5 but are missing the rest,
your bitfield would look like 1010100000.

Each entry contains three objects:

o Data Bitfield (1024 bytes) - 1 bit for for each data
entry that you have synced (1 for every entry in
data).

Tree Bitfield (2048 bytes) - 1 bit for every tree
entry (all nodes in tree)

Bitfield Index (256 bytes) - This is an index of
the Data Bitfield that makes it efficient to figure
out which pieces of data are missing from the
Data Bitfield without having to do a linear scan.

The Data Bitfield is 1Kb somewhat arbitrarily, but
the idea is that because most filesystems work in 4Kb
block sizes, we can fit the Data, Tree and Index in less
then 4Kb of data for efficient writes to the filesystem.
The Tree and Index sizes are based on the Data size
(the Tree has twice the entries as the Data, odd and
even nodes vs just even nodes in tree, and Index is
always 1/4th the size).

To generate the Index, you pairs of 2 bytes at a time
from the Data Bitfield, check if all bites in the 2 bytes
are the same, and generate 4 bits of Index metadata for
every 2 bytes of Data (hence how 1024 bytes of Data
ends up as 256 bytes of Index).

First you generate a 2 bit tuple for the 2 bytes of
Data:

if (data is all 1's) then [1,1]
if (data is all 0's) then [0,0]
if (data is not all the same) then [1, O]

In the above scheme, the first bit means all bits in
the data byte are the same, second bit states which
bit they are. Note that [0, 1] is unused/reserved for
future use.

The Index itself is an in-order binary tree, not a
traditional bitfield. To generate the tree, you take the
tuples you generate above and then write them into a
tree like the following example, where non-leaf nodes
are generated using the above scheme by looking at
the results of the relative even child tuples for each
odd parent tuple:

// for e.g. 16 bytes (8 tuples) of
// sparsely replicated data

0 - [00 00 00 00]

1 - [10 10 10 10]

2 - [11 11 11 11]

The tuples at entry 1 above are [1,0] because the
relative child tuples are not uniform. In the following
example, all non-leaf nodes are [1,1] because their
relative children are all uniform ([1,1])

// for e.g. 32 bytes (16 tuples) of
// fully replicated data (all 1's)
0 - [11 11 11 11]
- [11 11 11 11]
[11 11 11 11]
- [11 11 11 11]
[11 11 11 11]
[11 11 11 11]
[11 11 11 11]

DO WN -
|

Using this scheme, to represent 32 bytes of data it
takes at most 8 bytes of Index. In this example it
compresses nicely as its all contiguous ones on disk,
similarly for an empty bitfield it would be all zeroes.

If you write 4GB of data using on average 64KB data
chunk size, your bitfield will be at most 32KB.

metadata.data

This file is used to store content described by the rest
of the metadata.* hypercore SLEEP files. Whereas
the content.* SLEEP files describe the data stored in
the actual data cloned in the Dat repository filesystem,
the metadata data feed is stored inside the .dat folder
along with the rest of the SLEEP files.

The contents of this file is a series of versions of the
Dat filesystem tree. As this is a hypercore data feed,

it’s just an append only log of binary data entries. The
challenge is representing a tree in an one dimensional
way (append only log). For example, imagine three
files:

~/dataset $ 1s

figures
graphl.png
graph2.png

results.csv

1 directory, 3 files

We want to take this structure and map it to a serial-
ized representation that gets written into an append
only log in a way that still allows for efficient random
access by file path.

To do this, we convert the filesystem metadata into
entries in a feed like this:

{
"path": "/results.csv",
children: [[]],
sequence: 0

}

{
"path": "/figures/graphl.png",
children: [[0], [1],
sequence: 1

}

{
"path": "/figures/graph2",
children: [[0], [1]1,
sequence: 2

}

Filename Resolution

Each sequence represents adding one of the files to
the feed, so at sequence 0 the filesystem state only has
a single file, results.csv in it. At sequence 1, there
are only 2 files added to the feed, and at sequence 3 all
files are finally added. The children field represents
a shorthand way of declaring which other files at every
level of the directory hierarchy exist alongside the file
being added at that revision. For example at the

13

time of sequence 1, children is [[0], [1]. The first
sub-array, [0], represents the first folder in the path,
which is the root folder /. In this case [0] means
the root folder at this point in time only has a single
file, the file that is the subject of sequence 0. The
second subarray is empty [] because there are no
other existing files in the second folder in the path,
figures.

To look up a file by filename, you fetch the latest
entry in the log, then use the children metadata in
that entry to look up the longest common ancestor
based on the parent folders of the filename you are
querying. You can then recursively repeat this oper-
ation until you find the path entry you are looking
for (or you exhaust all options which means the file
does not exist). This is a 0(number of slashes in
your path) operation.

For example, if you wanted to look up /results.csv
given the above feed, you would start by grabbing the
metadata at sequence 2. The longest common ancestor
between /results.csv and /figures/graph?2 is /.
You then grab the corresponding entry in the children
array for /, which in this case is the first entry, [0].
You then repeat this with all of the chilren entries
until you find a child that is closer to the entry you are
looking for. In this example, the first entry happens
to be the match we are looking for.

You can also perform lookups relative to a point in
time by starting from a specific sequence number in
the feed. For example to get the state of some file
relative to an old sequence number, similar to checking
out an old version of a repository in Git.

Data Serialization
The format of the metadata.data file is as follows:

<Header>
<Node 1>
<Node 2>
<Node ...>
<Node N>

Each entry in the feed is encoded using Protocol
Buffers.

The first message we write to the feed is of a type
called Header which uses this schema:

message Header {
required string type = 1;
optional bytes content =

3

This is used to declare two pieces of metadata used
by Dat. It includes a type string with the value
hyperdrive and content binary value that holds the
public key of the content feed that this metadata feed
represents. When you share a Dat, the metadata key
is the main key that gets used, and the content feed
key is linked from here in the metadata.

2;

After the header the feed will contain many filesystem
Node entries:

message Node {
required string path = 1;
optional Stat value = 2;
optional bytes children = 3;
X

The Node object has three fields

e path - the string of the absolute file path of this
file.

e Stat - a Stat encoded object representing the file
metadata

e children - a compressed list of the sequence
numbers as described earlier

The children value is encoded by starting with the
nested array of sequence numbers, e.g. [[3], [2,
111. You then sort the individual arrays, in this case
resulting in [[3], [1, 2]]1. You then delta compress
each subarray by storing the difference between each
integer. In this case it would be [[3], [1, 11] be-
cause 3 is 3 more than 0, 1 is 1 more than than 0,
and 2 is 1 more than 1.

When we write these delta compressed subarrays we
write them using variable width integers (varints),
using a repeating pattern like this, one for each array:

<varint of first subarray element length>
<varint of the first delta in this array>
<varint of the next delta ...>

14

<varint of the last delta>

This encoding is designed for efficiency as it reduces
the filesystem path metadata down to a series of small
integers.

The Stat objects use this encoding;:

message Stat {
required uint32
optional uint32
optional uint32
optional uint64
optional uint64
optional uint64
optional uint64
optional uint64
optional uint64

}
These are the field defintions:

mode 1;

uid = 2;
gid = 3;
size

blocks
offset
byteOffset
mtime = 8;
ctime = 9;

2
3

’

[

5;

7

mode - posix file mode bitmask

uid - posix user id

gid - posix group id

size - file size in bytes

blocks - number of data feed entries that make
up this file

offset - the data feed entry index for the first
block in this file

byteOffset - the data feed file byte offset for the
first block in this file

mtime - posix modified_at time

mtime - posix created_ at time

Replication

The above file formats are designed to allow for sparse
replication, meaning you can efficiently download only
the metadata and data required to resolve a single
byte region of a single file, which makes Dat suitable
for a wide variety of streaming, real time and large
dataset use cases.

Replication Protocol

The Dat replication protocol is message based and
stateless, making it possible to implement on a variety

15

of network transport protocols including UDP and
TCP. Both metadata and content feeds in SLEEP
share the exact same replication protocol.

Individual messages are encoded using Protocol
Buffers and there are ten message types using the
following schema:

Wire Protocol

Over the wire messages are packed in the following
lightweight container format

<varint - length of rest of message>
<varint - header>
<message>

The header value is a single varint that has two pieces
of information, the integer type that declares a 4-bit
message type (used below), and a channel identifier,
0 for metadata and 1 for content.

To generate this varint, you bitshift the 4-bit type
integer onto the end of the channel identifier, e.g.
channel << 4 | <4-bit-type>.

Feed
Type 0, should be the first message sent on a channel.

e discoveryKey - A BLAKE2b keyed hash of the
string ‘hypercore’ using the public key of the
metadata feed as the key.

nonce - 32 bytes of random binary data, used in
our encryption scheme

message Feed {
required bytes discoveryKey = 1;
optional bytes nonce = 2;

3

Handshake

Type 1. Overall connection handshake. Should be
sent just after the feed message on the first channel
only (metadata).

e id - 32 byte random data used as a identifier
for this peer on the network, useful for checking

if you are connected to yourself or another peer
more than once

e live - Whether or not you want to operate in
live (continuous) replication mode or end after
the initial sync

message Handshake {
optional bytes id = 1;
optional bool live = 2;

}

Status

Type 2. Message indicating state changes. Used to
indicate whether you are uploading and/or download-
ing.

Initial state for uploading/downloading is true. If
both ends are not downloading and not live it is safe
to consider the stream ended.

message Status {
optional bool uploading = 1;
optional bool downloading =

}

2;

Have

Type 3. How you tell the other peer what blocks of
data you have or don’t have. You should only send
Have messages to peers who have expressed interest
in this region with Want messages.

o start - If you only specify start, it means you
are telling the other side you only have 1 block
at the position at the value in start.

e length - If you specify length, you can describe
a range of values that you have all of, starting
from start.

e bitfield - If you would like to send a range of
sparse data about haves/don’t haves via bitfield,
relative to start.

message Have {
required uint64 start = 1;
optional uint64 length = 2 [default =
optional bytes bitfield = 3;

}

11;

When sending bitfields you must run length encode
them. The encoded bitfield is a series of compressed
and uncompressed bit sequences. All sequences start
with a header that is a varint.

If the last bit is set in the varint (it is an odd number)
then a header represents a compressed bit sequence.

compressed-sequence = varint(
byte-length-of-sequence
<< 2 | bit << 1 | 1

)

If the last bit is not set then a header represents an
non compressed sequence

uncompressed-sequence = varint(
byte-length-of-bitfield << 1 | 0
) + (bitfield)

Unhave

Type 4. How you communicate that you deleted or
removed a block you used to have.

message Unhave {

required uint64 start = 1;

optional uint64 length = 2 [default =
¥

11;

Want

Type 5. How you ask the other peer to subscribe you
to Have messages for a region of blocks. The length
value defaults to Infinity or feed.length (if not live).

message Want {
required uint64 start = 1;
optional uint64 length = 2;
¥

Unwant

Type 6. How you ask to unsubscribe from Have
messages for a region of blocks from the other peer.
You should only Unwant previously Wanted regions,
but if you do Unwant something that hasn’t been

16

Wanted it won’t have any effect. The length value
defaults to Infinity or feed.length (if not live).

message Unwant {
required uint64 start = 1;
optional uint64 length = 2;
}

Request
Type 7. Request a single block of data.

e index - The block index for the block you want.
You should only ask for indexes that you have
received the Have messages for.

e bytes - You can also optimistically specify a
byte offset, and in the case the remote is able to
resolve the block for this byte offset depending
on their Merkle tree state, they will ignore the
index and send the block that resolves for this
byte offset instead. But if they cannot resolve
the byte request, index will be used.

e hash - If you only want the hash of the block and
not the block data itself.

e nodes - A 64 bit long bitfield representing which
parent nodes you have.

The nodes bitfield is an optional optimization to re-
duce the amount of duplicate nodes exchanged during
the replication lifecycle. It indicates which parents
you have or don’t have. You have a maximum of 64
parents you can specify. Because uint64 in Protocol
Buffers is implemented as a varint, over the wire this
does not take up 64 bits in most cases. The first
bit is reserved to signify whether or not you need a
signature in response. The rest of the bits represent
whether or not you have (1) or don’t have (0) the
information at this node already. The ordering is
determined by walking parent, sibling up the tree all
the way to the root.

message Request {
required uint64 index = 1;
optional uint64 bytes = 2;
optional bool hash = 3;
optional uint64 nodes = 4;

Cancel

Type 8. Cancel a previous Request message that you
haven’t received yet.

message Cancel {
required uint64 index
optional uint64 bytes
optional bool hash = 3;
}

o
N =

Data

Type 9. Sends a single block of data to the other
peer. You can send it in response to a Request or
unsolicited on it’s own as a friendly gift. The data
includes all of the Merkle tree parent nodes needed
to verify the hash chain all the way up to the Merkle
roots for this block. Because you can produce the
direct parents by hashing the block, only the roots
and ‘uncle’ hashes are included (the siblings to all of
the parent nodes).

e index - The block position for this block.

e value - The block binary data. Empty if you are
sending only the hash.

e Node.index - The index for this block in in-order

e Node.hash - The hash of this block

e Node.size- The aggregate block size for all chil-
dren below this node (The sum of all block sizes
of all children)

e signature - If you are sending a root node, all
root nodes must have the signature included.

message Data {
required uint64 index = 1;
optional bytes value = 2;
repeated Node nodes = 3;
optional bytes signature = 4;

message Node {
required uint64 index = 1;
required bytes hash =
required uint64 size
}
}

=3;

17

	Abstract
	1. Background
	2. Existing Work
	2.1 Git
	2.2 LBFS
	2.3 BitTorrent
	2.4 Kademlia Distributed Hash Table
	2.5 Peer to Peer Streaming Peer Protocol (PPSPP)
	2.6 WebTorrent
	2.7 InterPlanetary File System
	2.8 Certificate Transparency/Secure Registers

	3. Dat
	3.1 Mirroring
	3.1.1 Source Discovery
	3.1.2 Peer Connections

	3.2 Content Integrity
	3.2.1 Hypercore and Hyperdrive
	3.2.2 Dat Streams

	3.3 Parallel Replication
	3.4 Efficient Versioning
	3.6 Network Privacy
	3.6.2 Security
	SLEEP
	What is SLEEP?
	SLEEP Files
	File Descriptions

