aboutsummaryrefslogtreecommitdiffstats
path: root/toolchain/helpers.mk
blob: 05d43e788bad22197b2b8e21245a57adb2efca48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# This Makefile fragment declares helper functions, usefull to handle
# non- buildroot-built toolchains, eg. purely external toolchains or
# toolchains (internally) built using crosstool-NG.

#
# Copy a toolchain library and its symbolic links from the sysroot
# directory to the target directory. Also optionaly strips the
# library.
#
# Most toolchains have their libraries either in /lib or /usr/lib
# relative to their ARCH_SYSROOT_DIR. Buildroot toolchains, however,
# have basic libraries in /lib, and libstdc++/libgcc_s in
# /usr/<target-name>/lib(64).
#
# $1: arch specific sysroot directory
# $2: library name
# $3: destination directory of the libary, relative to $(TARGET_DIR)
# $4: strip (y|n), default is to strip
#
copy_toolchain_lib_root = \
	ARCH_SYSROOT_DIR="$(strip $1)"; \
	LIB="$(strip $2)"; \
	DESTDIR="$(strip $3)" ; \
	STRIP="$(strip $4)"; \
 \
	LIBS=`(cd $${ARCH_SYSROOT_DIR}; \
		find -L . -path "./lib/$${LIB}.*"     -o \
			  -path "./usr/lib/$${LIB}.*" -o \
			  -path "./usr/$(TOOLCHAIN_EXTERNAL_PREFIX)/lib*/$${LIB}.*" \
		)` ; \
	for FILE in $${LIBS} ; do \
		LIB=`basename $${FILE}`; \
		LIBDIR=`dirname $${FILE}` ; \
		while test \! -z "$${LIB}"; do \
			FULLPATH="$${ARCH_SYSROOT_DIR}/$${LIBDIR}/$${LIB}" ; \
			rm -fr $(TARGET_DIR)/$${DESTDIR}/$${LIB}; \
			mkdir -p $(TARGET_DIR)/$${DESTDIR}; \
			if test -h $${FULLPATH} ; then \
				cp -d $${FULLPATH} $(TARGET_DIR)/$${DESTDIR}/; \
			elif test -f $${FULLPATH}; then \
				$(INSTALL) -D -m0755 $${FULLPATH} $(TARGET_DIR)/$${DESTDIR}/$${LIB}; \
				case "$${STRIP}" in \
				(0 | n | no) \
;; \
				(*) \
					$(TARGET_CROSS)strip "$(TARGET_DIR)/$${DESTDIR}/$${LIB}"; \
;; \
				esac; \
			else \
				exit -1; \
			fi; \
			LIB="`readlink $${FULLPATH}`"; \
		done; \
	done; \
 \
	echo -n

#
# Copy the full external toolchain sysroot directory to the staging
# dir. The operation of this function is rendered a little bit
# complicated by the support for multilib toolchains.
#
# We start by copying etc, lib, sbin and usr from the sysroot of the
# selected architecture variant (as pointed by ARCH_SYSROOT_DIR). This
# allows to import into the staging directory the C library and
# companion libraries for the correct architecture variant. We
# explictly only copy etc, lib, sbin and usr since other directories
# might exist for other architecture variants (on Codesourcery
# toolchain, the sysroot for the default architecture variant contains
# the armv4t and thumb2 subdirectories, which are the sysroot for the
# corresponding architecture variants), and we don't want to import
# them.
#
# Then, if the selected architecture variant is not the default one
# (i.e, if SYSROOT_DIR != ARCH_SYSROOT_DIR), then we :
#
#  * Import the header files from the default architecture
#    variant. Header files are typically shared between the sysroots
#    for the different architecture variants. If we use the
#    non-default one, header files were not copied by the previous
#    step, so we copy them here from the sysroot of the default
#    architecture variant.
#
#  * Create a symbolic link that matches the name of the subdirectory
#    for the architecture variant in the original sysroot. This is
#    required as the compiler will by default look in
#    sysroot_dir/arch_variant/ for libraries and headers, when the
#    non-default architecture variant is used. Without this, the
#    compiler fails to find libraries and headers.
#
# $1: main sysroot directory of the toolchain
# $2: arch specific sysroot directory of the toolchain
# $3: arch specific subdirectory in the sysroot
#
copy_toolchain_sysroot = \
	SYSROOT_DIR="$(strip $1)"; \
	ARCH_SYSROOT_DIR="$(strip $2)"; \
	ARCH_SUBDIR="$(strip $3)"; \
	for i in etc lib sbin usr ; do \
		if [ -d $${ARCH_SYSROOT_DIR}/$$i ] ; then \
			cp -a $${ARCH_SYSROOT_DIR}/$$i $(STAGING_DIR)/ ; \
		fi ; \
	done ; \
	if [ `readlink -f $${SYSROOT_DIR}` != `readlink -f $${ARCH_SYSROOT_DIR}` ] ; then \
		if [ ! -d $${ARCH_SYSROOT_DIR}/usr/include ] ; then \
			cp -a $${SYSROOT_DIR}/usr/include $(STAGING_DIR)/usr ; \
		fi ; \
		ln -s . $(STAGING_DIR)/$(ARCH_SUBDIR) ; \
	fi ; \
	find $(STAGING_DIR) -type d | xargs chmod 755

#
# Create lib64 -> lib and usr/lib64 -> usr/lib symbolic links in the
# target and staging directories. This is needed for some 64 bits
# toolchains such as the Crosstool-NG toolchains, for which the path
# to the dynamic loader and other libraries is /lib64, but the
# libraries are stored in /lib.
#
create_lib64_symlinks = \
	(cd $(TARGET_DIR) ;      ln -s lib lib64) ; \
	(cd $(TARGET_DIR)/usr ;  ln -s lib lib64) ; \
	(cd $(STAGING_DIR) ;     ln -s lib lib64) ; \
	(cd $(STAGING_DIR)/usr ; ln -s lib lib64)

#
# Check the availability of a particular glibc feature. We assume that
# all Buildroot toolchain options are supported by glibc, so we just
# check that they are enabled.
#
# $1: Buildroot option name
# $2: feature description
#
check_glibc_feature = \
	if [ x$($(1)) != x"y" ] ; then \
		echo "$(2) available in C library, please enable $(1)" ; \
		exit 1 ; \
	fi

#
# Check the correctness of a glibc external toolchain configuration.
#  1. Check that the C library selected in Buildroot matches the one
#     of the external toolchain
#  2. Check that all the C library-related features are enabled in the
#     config, since glibc always supports all of them
#
# $1: sysroot directory
#
check_glibc = \
	SYSROOT_DIR="$(strip $1)"; \
	if ! test -f $${SYSROOT_DIR}/lib/ld-linux*.so.* -o -f $${SYSROOT_DIR}/lib/ld.so.* ; then \
		echo "Incorrect selection of the C library"; \
		exit -1; \
	fi; \
	$(call check_glibc_feature,BR2_LARGEFILE,Large file support) ;\
	$(call check_glibc_feature,BR2_INET_IPV6,IPv6 support) ;\
	$(call check_glibc_feature,BR2_INET_RPC,RPC support) ;\
	$(call check_glibc_feature,BR2_ENABLE_LOCALE,Locale support) ;\
	$(call check_glibc_feature,BR2_USE_WCHAR,Wide char support) ;\
	$(call check_glibc_feature,BR2_PROGRAM_INVOCATION,Program invocation support)

#
# Check the conformity of Buildroot configuration with regard to the
# uClibc configuration of the external toolchain, for a particular
# feature.
#
# $1: uClibc macro name
# $2: Buildroot option name
# $3: uClibc config file
# $4: feature description
#
check_uclibc_feature = \
	IS_IN_LIBC=`grep -q "\#define $(1) 1" $(3) && echo y` ; \
	if [ x$($(2)) != x"y" -a x$${IS_IN_LIBC} = x"y" ] ; then \
		echo "$(4) available in C library, please enable $(2)" ; \
		exit 1 ; \
	fi ; \
	if [ x$($(2)) = x"y" -a x$${IS_IN_LIBC} != x"y" ] ; then \
		echo "$(4) not available in C library, please disable $(2)" ; \
		exit 1 ; \
	fi

#
# Check the correctness of a uclibc external toolchain configuration
#  1. Check that the C library selected in Buildroot matches the one
#     of the external toolchain
#  2. Check that the features enabled in the Buildroot configuration
#     match the features available in the uClibc of the external
#     toolchain
#
# $1: sysroot directory
#
check_uclibc = \
	SYSROOT_DIR="$(strip $1)"; \
	if ! test -f $${SYSROOT_DIR}/lib/ld*-uClibc.so.* ; then \
		echo "Incorrect selection of the C library"; \
		exit -1; \
	fi; \
	UCLIBC_CONFIG_FILE=$${SYSROOT_DIR}/usr/include/bits/uClibc_config.h ; \
	$(call check_uclibc_feature,__UCLIBC_HAS_LFS__,BR2_LARGEFILE,$${UCLIBC_CONFIG_FILE},Large file support) ;\
	$(call check_uclibc_feature,__UCLIBC_HAS_IPV6__,BR2_INET_IPV6,$${UCLIBC_CONFIG_FILE},IPv6 support) ;\
	$(call check_uclibc_feature,__UCLIBC_HAS_RPC__,BR2_INET_RPC,$${UCLIBC_CONFIG_FILE},RPC support) ;\
	$(call check_uclibc_feature,__UCLIBC_HAS_LOCALE__,BR2_ENABLE_LOCALE,$${UCLIBC_CONFIG_FILE},Locale support) ;\
	$(call check_uclibc_feature,__UCLIBC_HAS_WCHAR__,BR2_USE_WCHAR,$${UCLIBC_CONFIG_FILE},Wide char support) ;\
	$(call check_uclibc_feature,__UCLIBC_HAS_PROGRAM_INVOCATION_NAME__,BR2_PROGRAM_INVOCATION,$${UCLIBC_CONFIG_FILE},Program invocation support) ;\

#
# Check that the Buildroot configuration of the ABI matches the
# configuration of the external toolchain.
#
check_arm_abi = \
	EXT_TOOLCHAIN_TARGET=$(shell LANG=C $(TARGET_CC) -v 2>&1 | grep ^Target | cut -f2 -d ' ') ; \
	if echo $${EXT_TOOLCHAIN_TARGET} | grep -q 'eabi$$' ; then \
		EXT_TOOLCHAIN_ABI="eabi" ; \
	else \
		EXT_TOOLCHAIN_ABI="oabi" ; \
	fi ; \
	if [ x$(BR2_ARM_OABI) = x"y" -a $${EXT_TOOLCHAIN_ABI} = "eabi" ] ; then \
		echo "Incorrect ABI setting" ; \
		exit 1 ; \
	fi ; \
	if [ x$(BR2_ARM_EABI) = x"y" -a $${EXT_TOOLCHAIN_ABI} = "oabi" ] ; then \
		echo "Incorrect ABI setting" ; \
		exit 1 ; \
	fi ; \

#
# Check that the external toolchain supports C++
#
check_cplusplus = \
	$(TARGET_CXX) -v > /dev/null 2>&1 ; \
	if test $$? -ne 0 ; then \
		echo "BR2_INSTALL_LIBSTDCPP is selected but C++ support not available in external toolchain" ; \
		exit 1 ; \
	fi ; \

#
# Check that the cross-compiler given in the configuration exists
#
check_cross_compiler_exists = \
	$(TARGET_CC) -v > /dev/null 2>&1 ; \
	if test $$? -ne 0 ; then \
		echo "Cannot execute cross-compiler '$(TARGET_CC)'" ; \
		exit 1 ; \
	fi ; \