summaryrefslogtreecommitdiffstats
path: root/package/xorg/mcookie.c
blob: 902d92fc47a1e584e36638edd1e205b0684aa354 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/* mcookie.c -- Generates random numbers for xauth
 * Created: Fri Feb  3 10:42:48 1995 by faith@cs.unc.edu
 * Revised: Fri Mar 19 07:48:01 1999 by faith@acm.org
 * Public Domain 1995, 1999 Rickard E. Faith (faith@acm.org)
 * This program comes with ABSOLUTELY NO WARRANTY.
 * 
 * $Id: mcookie.c,v 1.5 1997/07/06 00:13:06 aebr Exp $
 *
 * This program gathers some random bits of data and used the MD5
 * message-digest algorithm to generate a 128-bit hexadecimal number for
 * use with xauth(1).
 *
 * NOTE: Unless /dev/random is available, this program does not actually
 * gather 128 bits of random information, so the magic cookie generated
 * will be considerably easier to guess than one might expect.
 *
 * 1999-02-22 Arkadiusz Mi¶kiewicz <misiek@pld.ORG.PL>
 * - added Native Language Support
 * 1999-03-21 aeb: Added some fragments of code from Colin Plumb.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define BUFFERSIZE 4096


#ifndef MD5_H
#define MD5_H

#if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__)
typedef unsigned int uint32;
#else
typedef unsigned long uint32;
#endif

struct MD5Context {
	uint32 buf[4];
	uint32 bits[2];
	unsigned char in[64];
};

void MD5Init(struct MD5Context *context);
void MD5Update(struct MD5Context *context, unsigned char const *buf,
	       unsigned len);
void MD5Final(unsigned char digest[16], struct MD5Context *context);
void MD5Transform(uint32 buf[4], uint32 const in[16]);

/*
 * This is needed to make RSAREF happy on some MS-DOS compilers.
 */
typedef struct MD5Context MD5_CTX;

#endif /* !MD5_H */



/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */
#include <string.h>		/* for memcpy() */
#include <endian.h>

#if __BYTE_ORDER == __LITTLE_ENDIAN
#define byteReverse(buf, len)	/* Nothing */
#else
void byteReverse(unsigned char *buf, unsigned longs);

/*
 * Note: this code is harmless on little-endian machines.
 */
void byteReverse(unsigned char *buf, unsigned longs)
{
    uint32 t;
    do {
	t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
	    ((unsigned) buf[1] << 8 | buf[0]);
	*(uint32 *) buf = t;
	buf += 4;
    } while (--longs);
}
#endif

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(struct MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
{
    uint32 t;

    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
	ctx->bits[1]++;		/* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */

    if (t) {
	unsigned char *p = (unsigned char *) ctx->in + t;

	t = 64 - t;
	if (len < t) {
	    memcpy(p, buf, len);
	    return;
	}
	memcpy(p, buf, t);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += t;
	len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
	memcpy(ctx->in, buf, 64);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += 64;
	len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
    unsigned count;
    unsigned char *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
	/* Two lots of padding:  Pad the first block to 64 bytes */
	memset(p, 0, count);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);

	/* Now fill the next block with 56 bytes */
	memset(ctx->in, 0, 56);
    } else {
	/* Pad block to 56 bytes */
	memset(p, 0, count - 8);
    }
    byteReverse(ctx->in, 14);

    /* Append length in bits and transform */
    ((uint32 *) ctx->in)[14] = ctx->bits[0];
    ((uint32 *) ctx->in)[15] = ctx->bits[1];

    MD5Transform(ctx->buf, (uint32 *) ctx->in);
    byteReverse((unsigned char *) ctx->buf, 4);
    memcpy(digest, ctx->buf, 16);
    memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5Transform(uint32 buf[4], uint32 const in[16])
{
    register uint32 a, b, c, d;

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}




struct rngs {
   const char *path;
   int minlength, maxlength;
} rngs[] = {
   { "/dev/random",              16,  16 }, /* 16 bytes = 128 bits suffice */
   { "/proc/interrupts",          0,   0 },
   { "/proc/slabinfo",            0,   0 },
   { "/proc/stat",                0,   0 },
   { "/dev/urandom",             32,  64 },
};
#define RNGS (sizeof(rngs)/sizeof(struct rngs))

int Verbose = 0;

/* The basic function to hash a file */
static off_t
hash_file(struct MD5Context *ctx, int fd)
{
   off_t count = 0;
   ssize_t r;
   unsigned char buf[BUFFERSIZE];

   while ((r = read(fd, buf, sizeof(buf))) > 0) {
      MD5Update(ctx, buf, r);
      count += r;
   }
   /* Separate files with a null byte */
   buf[0] = 0;
   MD5Update(ctx, buf, 1);
   return count;
}

int main( int argc, char **argv )
{
   int               i;
   struct MD5Context ctx;
   unsigned char     digest[16];
   unsigned char     buf[BUFFERSIZE];
   int               fd;
   int               c;
   pid_t             pid;
   char              *file = NULL;
   int               r;
   struct timeval    tv;
   struct timezone   tz;

   while ((c = getopt( argc, argv, "vf:" )) != -1)
      switch (c) {
      case 'v': ++Verbose;     break;
      case 'f': file = optarg; break;
      }

   MD5Init( &ctx );
   
   gettimeofday( &tv, &tz );
   MD5Update( &ctx, (unsigned char *)&tv, sizeof( tv ) );
   pid = getppid();
   MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));
   pid = getpid();
   MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));

   if (file) {
      int count = 0;
      
      if (file[0] == '-' && !file[1])
	 fd = fileno(stdin);
      else
	 fd = open( file, O_RDONLY );

      if (fd < 0) {
	 fprintf( stderr, "Could not open %s\n", file );
      } else {
         count = hash_file( &ctx, fd );
	 if (Verbose)
	    fprintf( stderr, "Got %d bytes from %s\n", count, file );

	 if (file[0] != '-' || file[1]) close( fd );
      }
   }

   for (i = 0; i < RNGS; i++) {
      if ((fd = open( rngs[i].path, O_RDONLY|O_NONBLOCK )) >= 0) {
	 int count = sizeof(buf);

	 if (rngs[i].maxlength && count > rngs[i].maxlength)
	    count = rngs[i].maxlength;
	 r = read( fd, buf, count );
	 if (r > 0)
	    MD5Update( &ctx, buf, r );
	 else
	    r = 0;
	 close( fd );
	 if (Verbose)
	    fprintf( stderr, "Got %d bytes from %s\n", r, rngs[i].path );
	 if (rngs[i].minlength && r >= rngs[i].minlength)
	    break;
      } else if (Verbose)
	 fprintf( stderr, "Could not open %s\n", rngs[i].path );
   }

   MD5Final( digest, &ctx );
   for (i = 0; i < 16; i++) printf( "%02x", digest[i] );
   putchar ( '\n' );
   
   /*
    * The following is important for cases like disk full, so shell scripts
    * can bomb out properly rather than think they succeeded.
    */
   if (fflush(stdout) < 0 || fclose(stdout) < 0)
      return 1;

   return 0;
}