# This Makefile fragment declares helper functions, usefull to handle # non- buildroot-built toolchains, eg. purely external toolchains or # toolchains (internally) built using crosstool-NG. # # Copy a toolchain library and its symbolic links from the sysroot # directory to the target directory. Also optionaly strips the # library. # # Most toolchains (CodeSourcery ones) have their libraries either in # /lib or /usr/lib relative to their ARCH_SYSROOT_DIR, so we search # libraries in: # # $${ARCH_LIB_DIR} # usr/$${ARCH_LIB_DIR} # # Buildroot toolchains, however, have basic libraries in /lib, and # libstdc++/libgcc_s in /usr/<target-name>/lib(64), so we also need to # search libraries in: # # usr/$(TOOLCHAIN_EXTERNAL_PREFIX)/$${ARCH_LIB_DIR} # # Finally, Linaro toolchains have the libraries in lib/<target-name>/, # so we need to search libraries in: # # $${ARCH_LIB_DIR}/$(TOOLCHAIN_EXTERNAL_PREFIX) # # Thanks to ARCH_LIB_DIR we also take into account toolchains that # have the libraries in lib64 and usr/lib64. # # Please be very careful to check the major toolchain sources: # Buildroot, Crosstool-NG, CodeSourcery and Linaro before doing any # modification on the below logic. # # $1: arch specific sysroot directory # $2: library directory ('lib' or 'lib64') from which libraries must be copied # $3: library name # $4: destination directory of the libary, relative to $(TARGET_DIR) # copy_toolchain_lib_root = \ ARCH_SYSROOT_DIR="$(strip $1)"; \ ARCH_LIB_DIR="$(strip $2)" ; \ LIB="$(strip $3)"; \ DESTDIR="$(strip $4)" ; \ \ LIBS=`(cd $${ARCH_SYSROOT_DIR}; \ find -L $${ARCH_LIB_DIR} usr/$${ARCH_LIB_DIR} usr/$(TOOLCHAIN_EXTERNAL_PREFIX)/$${ARCH_LIB_DIR} $${ARCH_LIB_DIR}/$(TOOLCHAIN_EXTERNAL_PREFIX) \ -maxdepth 1 -name "$${LIB}.*" 2>/dev/null \ )` ; \ for FILE in $${LIBS} ; do \ LIB=`basename $${FILE}`; \ LIBDIR=`dirname $${FILE}` ; \ while test \! -z "$${LIB}"; do \ FULLPATH="$${ARCH_SYSROOT_DIR}/$${LIBDIR}/$${LIB}" ; \ rm -fr $(TARGET_DIR)/$${DESTDIR}/$${LIB}; \ mkdir -p $(TARGET_DIR)/$${DESTDIR}; \ if test -h $${FULLPATH} ; then \ cp -d $${FULLPATH} $(TARGET_DIR)/$${DESTDIR}/; \ elif test -f $${FULLPATH}; then \ $(INSTALL) -D -m0755 $${FULLPATH} $(TARGET_DIR)/$${DESTDIR}/$${LIB}; \ else \ exit -1; \ fi; \ LIB="`readlink $${FULLPATH}`"; \ done; \ done; \ \ echo -n # # Copy the full external toolchain sysroot directory to the staging # dir. The operation of this function is rendered a little bit # complicated by the support for multilib toolchains. # # We start by copying etc, lib, sbin and usr from the sysroot of the # selected architecture variant (as pointed by ARCH_SYSROOT_DIR). This # allows to import into the staging directory the C library and # companion libraries for the correct architecture variant. We # explictly only copy etc, lib, sbin and usr since other directories # might exist for other architecture variants (on Codesourcery # toolchain, the sysroot for the default architecture variant contains # the armv4t and thumb2 subdirectories, which are the sysroot for the # corresponding architecture variants), and we don't want to import # them. # # Then, if the selected architecture variant is not the default one # (i.e, if SYSROOT_DIR != ARCH_SYSROOT_DIR), then we : # # * Import the header files from the default architecture # variant. Header files are typically shared between the sysroots # for the different architecture variants. If we use the # non-default one, header files were not copied by the previous # step, so we copy them here from the sysroot of the default # architecture variant. # # * Create a symbolic link that matches the name of the subdirectory # for the architecture variant in the original sysroot. This is # required as the compiler will by default look in # sysroot_dir/arch_variant/ for libraries and headers, when the # non-default architecture variant is used. Without this, the # compiler fails to find libraries and headers. # # Note that the 'locale' directories are not copied. They are huge # (400+MB) in CodeSourcery toolchains, and they are not really useful. # # $1: main sysroot directory of the toolchain # $2: arch specific sysroot directory of the toolchain # $3: arch specific subdirectory in the sysroot # $4: directory of libraries ('lib' or 'lib64') # copy_toolchain_sysroot = \ SYSROOT_DIR="$(strip $1)"; \ ARCH_SYSROOT_DIR="$(strip $2)"; \ ARCH_SUBDIR="$(strip $3)"; \ ARCH_LIB_DIR="$(strip $4)" ; \ for i in etc $${ARCH_LIB_DIR} sbin usr ; do \ if [ -d $${ARCH_SYSROOT_DIR}/$$i ] ; then \ rsync -au --chmod=Du+w --exclude 'usr/lib/locale' $${ARCH_SYSROOT_DIR}/$$i $(STAGING_DIR)/ ; \ fi ; \ done ; \ if [ `readlink -f $${SYSROOT_DIR}` != `readlink -f $${ARCH_SYSROOT_DIR}` ] ; then \ if [ ! -d $${ARCH_SYSROOT_DIR}/usr/include ] ; then \ cp -a $${SYSROOT_DIR}/usr/include $(STAGING_DIR)/usr ; \ fi ; \ mkdir -p `dirname $(STAGING_DIR)/$${ARCH_SUBDIR}` ; \ relpath="./" ; \ nbslashs=`echo -n $${ARCH_SUBDIR} | sed 's%[^/]%%g' | wc -c` ; \ for slash in `seq 1 $${nbslashs}` ; do \ relpath=$${relpath}"../" ; \ done ; \ ln -s $${relpath} $(STAGING_DIR)/$${ARCH_SUBDIR} ; \ echo "Symlinking $(STAGING_DIR)/$${ARCH_SUBDIR} -> $${relpath}" ; \ fi ; \ find $(STAGING_DIR) -type d | xargs chmod 755 # # Create lib64 -> lib and usr/lib64 -> usr/lib symbolic links in the # target and staging directories. This is needed for some 64 bits # toolchains such as the Crosstool-NG toolchains, for which the path # to the dynamic loader and other libraries is /lib64, but the # libraries are stored in /lib. # create_lib64_symlinks = \ (cd $(TARGET_DIR) ; ln -s lib lib64) ; \ (cd $(TARGET_DIR)/usr ; ln -s lib lib64) ; \ (cd $(STAGING_DIR) ; ln -s lib lib64) ; \ (cd $(STAGING_DIR)/usr ; ln -s lib lib64) # # Check the availability of a particular glibc feature. We assume that # all Buildroot toolchain options are supported by glibc, so we just # check that they are enabled. # # $1: Buildroot option name # $2: feature description # check_glibc_feature = \ if [ x$($(1)) != x"y" ] ; then \ echo "$(2) available in C library, please enable $(1)" ; \ exit 1 ; \ fi # # Check the correctness of a glibc external toolchain configuration. # 1. Check that the C library selected in Buildroot matches the one # of the external toolchain # 2. Check that all the C library-related features are enabled in the # config, since glibc always supports all of them # # $1: sysroot directory # check_glibc = \ SYSROOT_DIR="$(strip $1)"; \ if ! test -f $${SYSROOT_DIR}/lib/ld-linux*.so.* -o -f $${SYSROOT_DIR}/lib/ld.so.* ; then \ echo "Incorrect selection of the C library"; \ exit -1; \ fi; \ $(call check_glibc_feature,BR2_LARGEFILE,Large file support) ;\ $(call check_glibc_feature,BR2_INET_IPV6,IPv6 support) ;\ $(call check_glibc_feature,BR2_INET_RPC,RPC support) ;\ $(call check_glibc_feature,BR2_ENABLE_LOCALE,Locale support) ;\ $(call check_glibc_feature,BR2_USE_MMU,MMU support) ;\ $(call check_glibc_feature,BR2_USE_WCHAR,Wide char support) # # Check the conformity of Buildroot configuration with regard to the # uClibc configuration of the external toolchain, for a particular # feature. # # $1: uClibc macro name # $2: Buildroot option name # $3: uClibc config file # $4: feature description # check_uclibc_feature = \ IS_IN_LIBC=`grep -q "\#define $(1) 1" $(3) && echo y` ; \ if [ x$($(2)) != x"y" -a x$${IS_IN_LIBC} = x"y" ] ; then \ echo "$(4) available in C library, please enable $(2)" ; \ exit 1 ; \ fi ; \ if [ x$($(2)) = x"y" -a x$${IS_IN_LIBC} != x"y" ] ; then \ echo "$(4) not available in C library, please disable $(2)" ; \ exit 1 ; \ fi # # Check the correctness of a uclibc external toolchain configuration # 1. Check that the C library selected in Buildroot matches the one # of the external toolchain # 2. Check that the features enabled in the Buildroot configuration # match the features available in the uClibc of the external # toolchain # # $1: sysroot directory # check_uclibc = \ SYSROOT_DIR="$(strip $1)"; \ if ! test -f $${SYSROOT_DIR}/usr/include/bits/uClibc_config.h ; then \ echo "Incorrect selection of the C library"; \ exit -1; \ fi; \ UCLIBC_CONFIG_FILE=$${SYSROOT_DIR}/usr/include/bits/uClibc_config.h ; \ $(call check_uclibc_feature,__ARCH_USE_MMU__,BR2_USE_MMU,$${UCLIBC_CONFIG_FILE},MMU support) ;\ $(call check_uclibc_feature,__UCLIBC_HAS_LFS__,BR2_LARGEFILE,$${UCLIBC_CONFIG_FILE},Large file support) ;\ $(call check_uclibc_feature,__UCLIBC_HAS_IPV6__,BR2_INET_IPV6,$${UCLIBC_CONFIG_FILE},IPv6 support) ;\ $(call check_uclibc_feature,__UCLIBC_HAS_RPC__,BR2_INET_RPC,$${UCLIBC_CONFIG_FILE},RPC support) ;\ $(call check_uclibc_feature,__UCLIBC_HAS_LOCALE__,BR2_ENABLE_LOCALE,$${UCLIBC_CONFIG_FILE},Locale support) ;\ $(call check_uclibc_feature,__UCLIBC_HAS_WCHAR__,BR2_USE_WCHAR,$${UCLIBC_CONFIG_FILE},Wide char support) ;\ $(call check_uclibc_feature,__UCLIBC_HAS_THREADS__,BR2_TOOLCHAIN_HAS_THREADS,$${UCLIBC_CONFIG_FILE},Thread support) ;\ $(call check_uclibc_feature,__PTHREADS_DEBUG_SUPPORT__,BR2_TOOLCHAIN_HAS_THREADS_DEBUG,$${UCLIBC_CONFIG_FILE},Thread debugging support) # # Check that the Buildroot configuration of the ABI matches the # configuration of the external toolchain. # # $1: cross-gcc path # check_arm_abi = \ __CROSS_CC=$(strip $1) ; \ EXT_TOOLCHAIN_TARGET=`LANG=C $${__CROSS_CC} -v 2>&1 | grep ^Target | cut -f2 -d ' '` ; \ if echo $${EXT_TOOLCHAIN_TARGET} | grep -q 'eabi$$' ; then \ EXT_TOOLCHAIN_ABI="eabi" ; \ else \ EXT_TOOLCHAIN_ABI="oabi" ; \ fi ; \ if [ x$(BR2_ARM_OABI) = x"y" -a $${EXT_TOOLCHAIN_ABI} = "eabi" ] ; then \ echo "Incorrect ABI setting" ; \ exit 1 ; \ fi ; \ if [ x$(BR2_ARM_EABI) = x"y" -a $${EXT_TOOLCHAIN_ABI} = "oabi" ] ; then \ echo "Incorrect ABI setting" ; \ exit 1 ; \ fi # # Check that the external toolchain supports C++ # # $1: cross-g++ path # check_cplusplus = \ __CROSS_CXX=$(strip $1) ; \ $${__CROSS_CXX} -v > /dev/null 2>&1 ; \ if test $$? -ne 0 ; then \ echo "C++ support is selected but is not available in external toolchain" ; \ exit 1 ; \ fi # # Check that the cross-compiler given in the configuration exists # # $1: cross-gcc path # check_cross_compiler_exists = \ __CROSS_CC=$(strip $1) ; \ $${__CROSS_CC} -v > /dev/null 2>&1 ; \ if test $$? -ne 0 ; then \ echo "Cannot execute cross-compiler '$${__CROSS_CC}'" ; \ exit 1 ; \ fi