diff -Nupr a/include/Qt/qatomic_avr32.h b/include/Qt/qatomic_avr32.h
--- a/include/Qt/qatomic_avr32.h	1970-01-01 01:00:00.000000000 +0100
+++ b/include/Qt/qatomic_avr32.h	2006-07-27 07:55:09.000000000 +0200
@@ -0,0 +1 @@
+#include "../../src/corelib/arch/qatomic_avr32.h"
diff -Nupr a/include/QtCore/qatomic_avr32.h b/include/QtCore/qatomic_avr32.h
--- a/include/QtCore/qatomic_avr32.h	1970-01-01 01:00:00.000000000 +0100
+++ b/include/QtCore/qatomic_avr32.h	2006-07-27 07:55:28.000000000 +0200
@@ -0,0 +1 @@
+#include "../../src/corelib/arch/qatomic_avr32.h"
diff -Nupr a/src/corelib/arch/arch.pri b/src/corelib/arch/arch.pri
--- a/src/corelib/arch/arch.pri	2006-06-30 09:49:44.000000000 +0200
+++ b/src/corelib/arch/arch.pri	2006-07-26 11:03:43.000000000 +0200
@@ -13,6 +13,7 @@ mac:HEADERS += arch/qatomic_macosx.h \
                        arch/qatomic_generic.h \
                        arch/qatomic_powerpc.h \
                        arch/qatomic_arm.h \
+                       arch/qatomic_avr32.h \
                        arch/qatomic_i386.h \
                        arch/qatomic_mips.h \
                        arch/qatomic_s390.h \
diff -Nupr a/src/corelib/arch/avr32/arch.pri b/src/corelib/arch/avr32/arch.pri
--- a/src/corelib/arch/avr32/arch.pri	1970-01-01 01:00:00.000000000 +0100
+++ b/src/corelib/arch/avr32/arch.pri	2006-07-26 11:02:16.000000000 +0200
@@ -0,0 +1,5 @@
+#
+# AVR32 architecture
+#
+SOURCES += $$QT_ARCH_CPP/qatomic.cpp \
+           $$QT_ARCH_CPP/malloc.c
diff -Nupr a/src/corelib/arch/avr32/malloc.c b/src/corelib/arch/avr32/malloc.c
--- a/src/corelib/arch/avr32/malloc.c	1970-01-01 01:00:00.000000000 +0100
+++ b/src/corelib/arch/avr32/malloc.c	2006-07-28 10:29:44.000000000 +0200
@@ -0,0 +1,5819 @@
+/****************************************************************************
+**
+** This file is part of the QtCore module of the Qt Toolkit.
+**
+** This file contains third party code which is not governed by the Qt
+** Commercial License Agreement. Please read the license headers below
+** for more information.
+**
+** Further information about Qt licensing is available at:
+** http://www.trolltech.com/products/qt/licensing.html or by
+** contacting info@trolltech.com.
+**
+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+**
+****************************************************************************/
+
+/* ---- config.h */
+#define KDE_MALLOC
+#define KDE_MALLOC_FULL
+#define KDE_MALLOC_AVR32
+/* ---- */
+
+#ifdef KDE_MALLOC
+
+#ifdef KDE_MALLOC_DEBUG
+#define DEBUG
+#endif
+
+#define USE_MALLOC_LOCK
+#define INLINE __inline__
+/*#define INLINE*/
+#define USE_MEMCPY 0
+#define MMAP_CLEARS 1
+
+/*
+  This is a version (aka dlmalloc) of malloc/free/realloc written by
+  Doug Lea and released to the public domain.  Use, modify, and
+  redistribute this code without permission or acknowledgment in any
+  way you wish.  Send questions, comments, complaints, performance
+  data, etc to dl@cs.oswego.edu
+
+* VERSION 2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
+
+   Note: There may be an updated version of this malloc obtainable at
+           ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+         Check before installing!
+
+* Quickstart
+
+  This library is all in one file to simplify the most common usage:
+  ftp it, compile it (-O), and link it into another program. All
+  of the compile-time options default to reasonable values for use on
+  most unix platforms. Compile -DWIN32 for reasonable defaults on windows.
+  You might later want to step through various compile-time and dynamic
+  tuning options.
+
+  For convenience, an include file for code using this malloc is at:
+     ftp://gee.cs.oswego.edu/pub/misc/malloc-2.7.0.h
+  You don't really need this .h file unless you call functions not
+  defined in your system include files.  The .h file contains only the
+  excerpts from this file needed for using this malloc on ANSI C/C++
+  systems, so long as you haven't changed compile-time options about
+  naming and tuning parameters.  If you do, then you can create your
+  own malloc.h that does include all settings by cutting at the point
+  indicated below.
+
+* Why use this malloc?
+
+  This is not the fastest, most space-conserving, most portable, or
+  most tunable malloc ever written. However it is among the fastest
+  while also being among the most space-conserving, portable and tunable.
+  Consistent balance across these factors results in a good general-purpose
+  allocator for malloc-intensive programs.
+
+  The main properties of the algorithms are:
+  * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
+    with ties normally decided via FIFO (i.e. least recently used).
+  * For small (<= 64 bytes by default) requests, it is a caching
+    allocator, that maintains pools of quickly recycled chunks.
+  * In between, and for combinations of large and small requests, it does
+    the best it can trying to meet both goals at once.
+  * For very large requests (>= 128KB by default), it relies on system
+    memory mapping facilities, if supported.
+
+  For a longer but slightly out of date high-level description, see
+     http://gee.cs.oswego.edu/dl/html/malloc.html
+
+  You may already by default be using a C library containing a malloc
+  that is  based on some version of this malloc (for example in
+  linux). You might still want to use the one in this file in order to
+  customize settings or to avoid overheads associated with library
+  versions.
+
+* Contents, described in more detail in "description of public routines" below.
+
+  Standard (ANSI/SVID/...)  functions:
+    malloc(size_t n);
+    calloc(size_t n_elements, size_t element_size);
+    free(Void_t* p);
+    realloc(Void_t* p, size_t n);
+    memalign(size_t alignment, size_t n);
+    valloc(size_t n);
+    mallinfo()
+    mallopt(int parameter_number, int parameter_value)
+
+  Additional functions:
+    independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
+    independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
+    pvalloc(size_t n);
+    cfree(Void_t* p);
+    malloc_trim(size_t pad);
+    malloc_usable_size(Void_t* p);
+    malloc_stats();
+
+* Vital statistics:
+
+  Supported pointer representation:       4 or 8 bytes
+  Supported size_t  representation:       4 or 8 bytes
+       Note that size_t is allowed to be 4 bytes even if pointers are 8.
+       You can adjust this by defining INTERNAL_SIZE_T
+
+  Alignment:                              2 * sizeof(size_t) (default)
+       (i.e., 8 byte alignment with 4byte size_t). This suffices for
+       nearly all current machines and C compilers. However, you can
+       define MALLOC_ALIGNMENT to be wider than this if necessary.
+
+  Minimum overhead per allocated chunk:   4 or 8 bytes
+       Each malloced chunk has a hidden word of overhead holding size
+       and status information.
+
+  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
+                          8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
+
+       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
+       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
+       needed; 4 (8) for a trailing size field and 8 (16) bytes for
+       free list pointers. Thus, the minimum allocatable size is
+       16/24/32 bytes.
+
+       Even a request for zero bytes (i.e., malloc(0)) returns a
+       pointer to something of the minimum allocatable size.
+
+       The maximum overhead wastage (i.e., number of extra bytes
+       allocated than were requested in malloc) is less than or equal
+       to the minimum size, except for requests >= mmap_threshold that
+       are serviced via mmap(), where the worst case wastage is 2 *
+       sizeof(size_t) bytes plus the remainder from a system page (the
+       minimal mmap unit); typically 4096 or 8192 bytes.
+
+  Maximum allocated size:  4-byte size_t: 2^32 minus about two pages
+                           8-byte size_t: 2^64 minus about two pages
+
+       It is assumed that (possibly signed) size_t values suffice to
+       represent chunk sizes. `Possibly signed' is due to the fact
+       that `size_t' may be defined on a system as either a signed or
+       an unsigned type. The ISO C standard says that it must be
+       unsigned, but a few systems are known not to adhere to this.
+       Additionally, even when size_t is unsigned, sbrk (which is by
+       default used to obtain memory from system) accepts signed
+       arguments, and may not be able to handle size_t-wide arguments
+       with negative sign bit.  Generally, values that would
+       appear as negative after accounting for overhead and alignment
+       are supported only via mmap(), which does not have this
+       limitation.
+
+       Requests for sizes outside the allowed range will perform an optional
+       failure action and then return null. (Requests may also
+       also fail because a system is out of memory.)
+
+  Thread-safety: NOT thread-safe unless USE_MALLOC_LOCK defined
+
+       When USE_MALLOC_LOCK is defined, wrappers are created to
+       surround every public call with either a pthread mutex or
+       a win32 spinlock (depending on WIN32). This is not
+       especially fast, and can be a major bottleneck.
+       It is designed only to provide minimal protection
+       in concurrent environments, and to provide a basis for
+       extensions.  If you are using malloc in a concurrent program,
+       you would be far better off obtaining ptmalloc, which is
+       derived from a version of this malloc, and is well-tuned for
+       concurrent programs. (See http://www.malloc.de)
+
+  Compliance: I believe it is compliant with the 1997 Single Unix Specification
+       (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
+       others as well.
+
+* Synopsis of compile-time options:
+
+    People have reported using previous versions of this malloc on all
+    versions of Unix, sometimes by tweaking some of the defines
+    below. It has been tested most extensively on Solaris and
+    Linux. It is also reported to work on WIN32 platforms.
+    People also report using it in stand-alone embedded systems.
+
+    The implementation is in straight, hand-tuned ANSI C.  It is not
+    at all modular. (Sorry!)  It uses a lot of macros.  To be at all
+    usable, this code should be compiled using an optimizing compiler
+    (for example gcc -O3) that can simplify expressions and control
+    paths. (FAQ: some macros import variables as arguments rather than
+    declare locals because people reported that some debuggers
+    otherwise get confused.)
+
+    OPTION                     DEFAULT VALUE
+
+    Compilation Environment options:
+
+    __STD_C                    derived from C compiler defines
+    WIN32                      NOT defined
+    HAVE_MEMCPY                defined
+    USE_MEMCPY                 1 if HAVE_MEMCPY is defined
+    HAVE_MMAP                  defined as 1
+    MMAP_CLEARS                1
+    HAVE_MREMAP                0 unless linux defined
+    malloc_getpagesize         derived from system #includes, or 4096 if not
+    HAVE_USR_INCLUDE_MALLOC_H  NOT defined
+    LACKS_UNISTD_H             NOT defined unless WIN32
+    LACKS_SYS_PARAM_H          NOT defined unless WIN32
+    LACKS_SYS_MMAN_H           NOT defined unless WIN32
+
+    Changing default word sizes:
+
+    INTERNAL_SIZE_T            size_t
+    MALLOC_ALIGNMENT           2 * sizeof(INTERNAL_SIZE_T)
+
+    Configuration and functionality options:
+
+    USE_DL_PREFIX              NOT defined
+    USE_PUBLIC_MALLOC_WRAPPERS NOT defined
+    USE_MALLOC_LOCK            NOT defined
+    DEBUG                      NOT defined
+    REALLOC_ZERO_BYTES_FREES   NOT defined
+    MALLOC_FAILURE_ACTION      errno = ENOMEM, if __STD_C defined, else no-op
+    TRIM_FASTBINS              0
+
+    Options for customizing MORECORE:
+
+    MORECORE                   sbrk
+    MORECORE_CONTIGUOUS        1
+    MORECORE_CANNOT_TRIM       NOT defined
+    MMAP_AS_MORECORE_SIZE      (1024 * 1024)
+
+    Tuning options that are also dynamically changeable via mallopt:
+
+    DEFAULT_MXFAST             64
+    DEFAULT_TRIM_THRESHOLD     128 * 1024
+    DEFAULT_TOP_PAD            0
+    DEFAULT_MMAP_THRESHOLD     128 * 1024
+    DEFAULT_MMAP_MAX           65536
+
+    There are several other #defined constants and macros that you
+    probably don't want to touch unless you are extending or adapting malloc.
+*/
+
+/*
+  WIN32 sets up defaults for MS environment and compilers.
+  Otherwise defaults are for unix.
+*/
+
+/* #define WIN32 */
+
+#ifdef WIN32
+
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+
+/* Win32 doesn't supply or need the following headers */
+#define LACKS_UNISTD_H
+#define LACKS_SYS_PARAM_H
+#define LACKS_SYS_MMAN_H
+
+/* Use the supplied emulation of sbrk */
+#define MORECORE sbrk
+#define MORECORE_CONTIGUOUS 1
+#define MORECORE_FAILURE    ((void*)(-1))
+
+/* Use the supplied emulation of mmap and munmap */
+#define HAVE_MMAP 1
+#define MUNMAP_FAILURE  (-1)
+#define MMAP_CLEARS 1
+
+/* These values don't really matter in windows mmap emulation */
+#define MAP_PRIVATE 1
+#define MAP_ANONYMOUS 2
+#define PROT_READ 1
+#define PROT_WRITE 2
+
+/* Emulation functions defined at the end of this file */
+
+/* If USE_MALLOC_LOCK, use supplied critical-section-based lock functions */
+#ifdef USE_MALLOC_LOCK
+static int slwait(int *sl);
+static int slrelease(int *sl);
+#endif
+
+static long getpagesize(void);
+static long getregionsize(void);
+static void *sbrk(long size);
+static void *mmap(void *ptr, long size, long prot, long type, long handle, long arg);
+static long munmap(void *ptr, long size);
+
+static void vminfo (unsigned long *free, unsigned long *reserved, unsigned long *committed);
+static int cpuinfo (int whole, unsigned long *kernel, unsigned long *user);
+
+#endif
+
+/*
+  __STD_C should be nonzero if using ANSI-standard C compiler, a C++
+  compiler, or a C compiler sufficiently close to ANSI to get away
+  with it.
+*/
+
+#ifndef __STD_C
+#if defined(__STDC__) || defined(_cplusplus)
+#define __STD_C     1
+#else
+#define __STD_C     0
+#endif
+#endif /*__STD_C*/
+
+
+/*
+  Void_t* is the pointer type that malloc should say it returns
+*/
+
+#ifndef Void_t
+#if (__STD_C || defined(WIN32))
+#define Void_t      void
+#else
+#define Void_t      char
+#endif
+#endif /*Void_t*/
+
+#if __STD_C
+#include <stddef.h>   /* for size_t */
+#else
+#include <sys/types.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
+
+/* #define  LACKS_UNISTD_H */
+
+#ifndef LACKS_UNISTD_H
+#include <unistd.h>
+#endif
+
+/* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
+
+/* #define  LACKS_SYS_PARAM_H */
+
+
+#include <stdio.h>    /* needed for malloc_stats */
+#include <errno.h>    /* needed for optional MALLOC_FAILURE_ACTION */
+
+
+/*
+  Debugging:
+
+  Because freed chunks may be overwritten with bookkeeping fields, this
+  malloc will often die when freed memory is overwritten by user
+  programs.  This can be very effective (albeit in an annoying way)
+  in helping track down dangling pointers.
+
+  If you compile with -DDEBUG, a number of assertion checks are
+  enabled that will catch more memory errors. You probably won't be
+  able to make much sense of the actual assertion errors, but they
+  should help you locate incorrectly overwritten memory.  The
+  checking is fairly extensive, and will slow down execution
+  noticeably. Calling malloc_stats or mallinfo with DEBUG set will
+  attempt to check every non-mmapped allocated and free chunk in the
+  course of computing the summmaries. (By nature, mmapped regions
+  cannot be checked very much automatically.)
+
+  Setting DEBUG may also be helpful if you are trying to modify
+  this code. The assertions in the check routines spell out in more
+  detail the assumptions and invariants underlying the algorithms.
+
+  Setting DEBUG does NOT provide an automated mechanism for checking
+  that all accesses to malloced memory stay within their
+  bounds. However, there are several add-ons and adaptations of this
+  or other mallocs available that do this.
+*/
+
+#ifdef DEBUG
+#include <assert.h>
+#else
+#define assert(x) ((void)0)
+#endif
+
+
+/*
+  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
+  of chunk sizes.
+
+  The default version is the same as size_t.
+
+  While not strictly necessary, it is best to define this as an
+  unsigned type, even if size_t is a signed type. This may avoid some
+  artificial size limitations on some systems.
+
+  On a 64-bit machine, you may be able to reduce malloc overhead by
+  defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
+  expense of not being able to handle more than 2^32 of malloced
+  space. If this limitation is acceptable, you are encouraged to set
+  this unless you are on a platform requiring 16byte alignments. In
+  this case the alignment requirements turn out to negate any
+  potential advantages of decreasing size_t word size.
+
+  Implementors: Beware of the possible combinations of:
+     - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
+       and might be the same width as int or as long
+     - size_t might have different width and signedness as INTERNAL_SIZE_T
+     - int and long might be 32 or 64 bits, and might be the same width
+  To deal with this, most comparisons and difference computations
+  among INTERNAL_SIZE_Ts should cast them to unsigned long, being
+  aware of the fact that casting an unsigned int to a wider long does
+  not sign-extend. (This also makes checking for negative numbers
+  awkward.) Some of these casts result in harmless compiler warnings
+  on some systems.
+*/
+
+#ifndef INTERNAL_SIZE_T
+#define INTERNAL_SIZE_T size_t
+#endif
+
+/* The corresponding word size */
+#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
+
+
+/*
+  MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
+  It must be a power of two at least 2 * SIZE_SZ, even on machines
+  for which smaller alignments would suffice. It may be defined as
+  larger than this though. Note however that code and data structures
+  are optimized for the case of 8-byte alignment.
+*/
+
+
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT       (2 * SIZE_SZ)
+#endif
+
+/* The corresponding bit mask value */
+#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
+
+
+
+/*
+  REALLOC_ZERO_BYTES_FREES should be set if a call to
+  realloc with zero bytes should be the same as a call to free.
+  Some people think it should. Otherwise, since this malloc
+  returns a unique pointer for malloc(0), so does realloc(p, 0).
+*/
+
+/*   #define REALLOC_ZERO_BYTES_FREES */
+
+/*
+  TRIM_FASTBINS controls whether free() of a very small chunk can
+  immediately lead to trimming. Setting to true (1) can reduce memory
+  footprint, but will almost always slow down programs that use a lot
+  of small chunks.
+
+  Define this only if you are willing to give up some speed to more
+  aggressively reduce system-level memory footprint when releasing
+  memory in programs that use many small chunks.  You can get
+  essentially the same effect by setting MXFAST to 0, but this can
+  lead to even greater slowdowns in programs using many small chunks.
+  TRIM_FASTBINS is an in-between compile-time option, that disables
+  only those chunks bordering topmost memory from being placed in
+  fastbins.
+*/
+
+#ifndef TRIM_FASTBINS
+#define TRIM_FASTBINS  0
+#endif
+
+
+/*
+  USE_DL_PREFIX will prefix all public routines with the string 'dl'.
+  This is necessary when you only want to use this malloc in one part
+  of a program, using your regular system malloc elsewhere.
+*/
+
+/* #define USE_DL_PREFIX */
+
+
+/*
+  USE_MALLOC_LOCK causes wrapper functions to surround each
+  callable routine with pthread mutex lock/unlock.
+
+  USE_MALLOC_LOCK forces USE_PUBLIC_MALLOC_WRAPPERS to be defined
+*/
+
+
+/* #define USE_MALLOC_LOCK */
+
+
+/*
+  If USE_PUBLIC_MALLOC_WRAPPERS is defined, every public routine is
+  actually a wrapper function that first calls MALLOC_PREACTION, then
+  calls the internal routine, and follows it with
+  MALLOC_POSTACTION. This is needed for locking, but you can also use
+  this, without USE_MALLOC_LOCK, for purposes of interception,
+  instrumentation, etc. It is a sad fact that using wrappers often
+  noticeably degrades performance of malloc-intensive programs.
+*/
+
+#ifdef USE_MALLOC_LOCK
+#define USE_PUBLIC_MALLOC_WRAPPERS
+#else
+/* #define USE_PUBLIC_MALLOC_WRAPPERS */
+#endif
+
+
+/*
+   Two-phase name translation.
+   All of the actual routines are given mangled names.
+   When wrappers are used, they become the public callable versions.
+   When DL_PREFIX is used, the callable names are prefixed.
+*/
+
+#ifndef USE_PUBLIC_MALLOC_WRAPPERS
+#define cALLOc      public_cALLOc
+#define fREe        public_fREe
+#define cFREe       public_cFREe
+#define mALLOc      public_mALLOc
+#define mEMALIGn    public_mEMALIGn
+#define rEALLOc     public_rEALLOc
+#define vALLOc      public_vALLOc
+#define pVALLOc     public_pVALLOc
+#define mALLINFo    public_mALLINFo
+#define mALLOPt     public_mALLOPt
+#define mTRIm       public_mTRIm
+#define mSTATs      public_mSTATs
+#define mUSABLe     public_mUSABLe
+#define iCALLOc     public_iCALLOc
+#define iCOMALLOc   public_iCOMALLOc
+#endif
+
+#ifdef USE_DL_PREFIX
+#define public_cALLOc    dlcalloc
+#define public_fREe      dlfree
+#define public_cFREe     dlcfree
+#define public_mALLOc    dlmalloc
+#define public_mEMALIGn  dlmemalign
+#define public_rEALLOc   dlrealloc
+#define public_vALLOc    dlvalloc
+#define public_pVALLOc   dlpvalloc
+#define public_mALLINFo  dlmallinfo
+#define public_mALLOPt   dlmallopt
+#define public_mTRIm     dlmalloc_trim
+#define public_mSTATs    dlmalloc_stats
+#define public_mUSABLe   dlmalloc_usable_size
+#define public_iCALLOc   dlindependent_calloc
+#define public_iCOMALLOc dlindependent_comalloc
+#else /* USE_DL_PREFIX */
+#define public_cALLOc    calloc
+#define public_fREe      free
+#define public_cFREe     cfree
+#define public_mALLOc    malloc
+#define public_mEMALIGn  memalign
+#define public_rEALLOc   realloc
+#define public_vALLOc    valloc
+#define public_pVALLOc   pvalloc
+#define public_mALLINFo  mallinfo
+#define public_mALLOPt   mallopt
+#define public_mTRIm     malloc_trim
+#define public_mSTATs    malloc_stats
+#define public_mUSABLe   malloc_usable_size
+#define public_iCALLOc   independent_calloc
+#define public_iCOMALLOc independent_comalloc
+#endif /* USE_DL_PREFIX */
+
+
+/*
+  HAVE_MEMCPY should be defined if you are not otherwise using
+  ANSI STD C, but still have memcpy and memset in your C library
+  and want to use them in calloc and realloc. Otherwise simple
+  macro versions are defined below.
+
+  USE_MEMCPY should be defined as 1 if you actually want to
+  have memset and memcpy called. People report that the macro
+  versions are faster than libc versions on some systems.
+
+  Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
+  (of <= 36 bytes) are manually unrolled in realloc and calloc.
+*/
+
+/* If it's available it's defined in config.h.  */
+/* #define HAVE_MEMCPY */
+
+#ifndef USE_MEMCPY
+#ifdef HAVE_MEMCPY
+#define USE_MEMCPY 1
+#else
+#define USE_MEMCPY 0
+#endif
+#endif
+
+
+#if (__STD_C || defined(HAVE_MEMCPY))
+
+#ifdef WIN32
+/* On Win32 memset and memcpy are already declared in windows.h */
+#else
+#if __STD_C
+void* memset(void*, int, size_t);
+void* memcpy(void*, const void*, size_t);
+#else
+Void_t* memset();
+Void_t* memcpy();
+#endif
+#endif
+#endif
+
+/*
+  MALLOC_FAILURE_ACTION is the action to take before "return 0" when
+  malloc fails to be able to return memory, either because memory is
+  exhausted or because of illegal arguments.
+
+  By default, sets errno if running on STD_C platform, else does nothing.
+*/
+
+#ifndef MALLOC_FAILURE_ACTION
+#if __STD_C
+#define MALLOC_FAILURE_ACTION \
+   errno = ENOMEM;
+
+#else
+#define MALLOC_FAILURE_ACTION
+#endif
+#endif
+
+/*
+  MORECORE-related declarations. By default, rely on sbrk
+*/
+
+
+#ifdef LACKS_UNISTD_H
+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+#if __STD_C
+extern Void_t*     sbrk(ptrdiff_t);
+#else
+extern Void_t*     sbrk();
+#endif
+#endif
+#endif
+
+/*
+  MORECORE is the name of the routine to call to obtain more memory
+  from the system.  See below for general guidance on writing
+  alternative MORECORE functions, as well as a version for WIN32 and a
+  sample version for pre-OSX macos.
+*/
+
+#ifndef MORECORE
+#define MORECORE sbrk
+#endif
+
+/*
+  MORECORE_FAILURE is the value returned upon failure of MORECORE
+  as well as mmap. Since it cannot be an otherwise valid memory address,
+  and must reflect values of standard sys calls, you probably ought not
+  try to redefine it.
+*/
+
+#ifndef MORECORE_FAILURE
+#define MORECORE_FAILURE (-1)
+#endif
+
+/*
+  If MORECORE_CONTIGUOUS is true, take advantage of fact that
+  consecutive calls to MORECORE with positive arguments always return
+  contiguous increasing addresses.  This is true of unix sbrk.  Even
+  if not defined, when regions happen to be contiguous, malloc will
+  permit allocations spanning regions obtained from different
+  calls. But defining this when applicable enables some stronger
+  consistency checks and space efficiencies.
+*/
+
+#ifndef MORECORE_CONTIGUOUS
+#define MORECORE_CONTIGUOUS 1
+#endif
+
+/*
+  Define MORECORE_CANNOT_TRIM if your version of MORECORE
+  cannot release space back to the system when given negative
+  arguments. This is generally necessary only if you are using
+  a hand-crafted MORECORE function that cannot handle negative arguments.
+*/
+
+/* #define MORECORE_CANNOT_TRIM */
+
+
+/*
+  Define HAVE_MMAP as true to optionally make malloc() use mmap() to
+  allocate very large blocks.  These will be returned to the
+  operating system immediately after a free(). Also, if mmap
+  is available, it is used as a backup strategy in cases where
+  MORECORE fails to provide space from system.
+
+  This malloc is best tuned to work with mmap for large requests.
+  If you do not have mmap, operations involving very large chunks (1MB
+  or so) may be slower than you'd like.
+*/
+
+#ifndef HAVE_MMAP
+#define HAVE_MMAP 1
+#endif
+
+#if HAVE_MMAP
+/*
+   Standard unix mmap using /dev/zero clears memory so calloc doesn't
+   need to.
+*/
+
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 1
+#endif
+
+#else /* no mmap */
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 0
+#endif
+#endif
+
+
+/*
+   MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
+   sbrk fails, and mmap is used as a backup (which is done only if
+   HAVE_MMAP).  The value must be a multiple of page size.  This
+   backup strategy generally applies only when systems have "holes" in
+   address space, so sbrk cannot perform contiguous expansion, but
+   there is still space available on system.  On systems for which
+   this is known to be useful (i.e. most linux kernels), this occurs
+   only when programs allocate huge amounts of memory.  Between this,
+   and the fact that mmap regions tend to be limited, the size should
+   be large, to avoid too many mmap calls and thus avoid running out
+   of kernel resources.
+*/
+
+#ifndef MMAP_AS_MORECORE_SIZE
+#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
+#endif
+
+/*
+  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
+  large blocks.  This is currently only possible on Linux with
+  kernel versions newer than 1.3.77.
+*/
+
+#ifndef HAVE_MREMAP
+#if defined(linux) || defined(__linux__) || defined(__linux)
+#define HAVE_MREMAP 1
+#else
+#define HAVE_MREMAP 0
+#endif
+
+#endif /* HAVE_MMAP */
+
+
+/*
+  The system page size. To the extent possible, this malloc manages
+  memory from the system in page-size units.  Note that this value is
+  cached during initialization into a field of malloc_state. So even
+  if malloc_getpagesize is a function, it is only called once.
+
+  The following mechanics for getpagesize were adapted from bsd/gnu
+  getpagesize.h. If none of the system-probes here apply, a value of
+  4096 is used, which should be OK: If they don't apply, then using
+  the actual value probably doesn't impact performance.
+*/
+
+
+#ifndef malloc_getpagesize
+
+#ifndef LACKS_UNISTD_H
+#  include <unistd.h>
+#endif
+
+#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
+#    ifndef _SC_PAGE_SIZE
+#      define _SC_PAGE_SIZE _SC_PAGESIZE
+#    endif
+#  endif
+
+#  ifdef _SC_PAGE_SIZE
+#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
+#  else
+#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
+       extern size_t getpagesize();
+#      define malloc_getpagesize getpagesize()
+#    else
+#      ifdef WIN32 /* use supplied emulation of getpagesize */
+#        define malloc_getpagesize getpagesize()
+#      else
+#        ifndef LACKS_SYS_PARAM_H
+#          include <sys/param.h>
+#        endif
+#        ifdef EXEC_PAGESIZE
+#          define malloc_getpagesize EXEC_PAGESIZE
+#        else
+#          ifdef NBPG
+#            ifndef CLSIZE
+#              define malloc_getpagesize NBPG
+#            else
+#              define malloc_getpagesize (NBPG * CLSIZE)
+#            endif
+#          else
+#            ifdef NBPC
+#              define malloc_getpagesize NBPC
+#            else
+#              ifdef PAGESIZE
+#                define malloc_getpagesize PAGESIZE
+#              else /* just guess */
+#                define malloc_getpagesize (4096)
+#              endif
+#            endif
+#          endif
+#        endif
+#      endif
+#    endif
+#  endif
+#endif
+
+/*
+  This version of malloc supports the standard SVID/XPG mallinfo
+  routine that returns a struct containing usage properties and
+  statistics. It should work on any SVID/XPG compliant system that has
+  a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
+  install such a thing yourself, cut out the preliminary declarations
+  as described above and below and save them in a malloc.h file. But
+  there's no compelling reason to bother to do this.)
+
+  The main declaration needed is the mallinfo struct that is returned
+  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
+  bunch of field that are not even meaningful in this version of
+  malloc.  These fields are are instead filled by mallinfo() with
+  other numbers that might be of interest.
+
+  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+  /usr/include/malloc.h file that includes a declaration of struct
+  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
+  version is declared below.  These must be precisely the same for
+  mallinfo() to work.  The original SVID version of this struct,
+  defined on most systems with mallinfo, declares all fields as
+  ints. But some others define as unsigned long. If your system
+  defines the fields using a type of different width than listed here,
+  you must #include your system version and #define
+  HAVE_USR_INCLUDE_MALLOC_H.
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+/*#ifdef HAVE_USR_INCLUDE_MALLOC_H*/
+#if 0
+#include "/usr/include/malloc.h"
+#else
+
+/* SVID2/XPG mallinfo structure */
+
+struct mallinfo {
+  int arena;    /* non-mmapped space allocated from system */
+  int ordblks;  /* number of free chunks */
+  int smblks;   /* number of fastbin blocks */
+  int hblks;    /* number of mmapped regions */
+  int hblkhd;   /* space in mmapped regions */
+  int usmblks;  /* maximum total allocated space */
+  int fsmblks;  /* space available in freed fastbin blocks */
+  int uordblks; /* total allocated space */
+  int fordblks; /* total free space */
+  int keepcost; /* top-most, releasable (via malloc_trim) space */
+};
+
+/*
+  SVID/XPG defines four standard parameter numbers for mallopt,
+  normally defined in malloc.h.  Only one of these (M_MXFAST) is used
+  in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
+  so setting them has no effect. But this malloc also supports other
+  options in mallopt described below.
+*/
+#endif
+
+
+/* ---------- description of public routines ------------ */
+
+/*
+  malloc(size_t n)
+  Returns a pointer to a newly allocated chunk of at least n bytes, or null
+  if no space is available. Additionally, on failure, errno is
+  set to ENOMEM on ANSI C systems.
+
+  If n is zero, malloc returns a minumum-sized chunk. (The minimum
+  size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
+  systems.)  On most systems, size_t is an unsigned type, so calls
+  with negative arguments are interpreted as requests for huge amounts
+  of space, which will often fail. The maximum supported value of n
+  differs across systems, but is in all cases less than the maximum
+  representable value of a size_t.
+*/
+#if __STD_C
+Void_t*  public_mALLOc(size_t);
+#else
+Void_t*  public_mALLOc();
+#endif
+
+/*
+  free(Void_t* p)
+  Releases the chunk of memory pointed to by p, that had been previously
+  allocated using malloc or a related routine such as realloc.
+  It has no effect if p is null. It can have arbitrary (i.e., bad!)
+  effects if p has already been freed.
+
+  Unless disabled (using mallopt), freeing very large spaces will
+  when possible, automatically trigger operations that give
+  back unused memory to the system, thus reducing program footprint.
+*/
+#if __STD_C
+void     public_fREe(Void_t*);
+#else
+void     public_fREe();
+#endif
+
+/*
+  calloc(size_t n_elements, size_t element_size);
+  Returns a pointer to n_elements * element_size bytes, with all locations
+  set to zero.
+*/
+#if __STD_C
+Void_t*  public_cALLOc(size_t, size_t);
+#else
+Void_t*  public_cALLOc();
+#endif
+
+/*
+  realloc(Void_t* p, size_t n)
+  Returns a pointer to a chunk of size n that contains the same data
+  as does chunk p up to the minimum of (n, p's size) bytes, or null
+  if no space is available.
+
+  The returned pointer may or may not be the same as p. The algorithm
+  prefers extending p when possible, otherwise it employs the
+  equivalent of a malloc-copy-free sequence.
+
+  If p is null, realloc is equivalent to malloc.
+
+  If space is not available, realloc returns null, errno is set (if on
+  ANSI) and p is NOT freed.
+
+  if n is for fewer bytes than already held by p, the newly unused
+  space is lopped off and freed if possible.  Unless the #define
+  REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
+  zero (re)allocates a minimum-sized chunk.
+
+  Large chunks that were internally obtained via mmap will always
+  be reallocated using malloc-copy-free sequences unless
+  the system supports MREMAP (currently only linux).
+
+  The old unix realloc convention of allowing the last-free'd chunk
+  to be used as an argument to realloc is not supported.
+*/
+#if __STD_C
+Void_t*  public_rEALLOc(Void_t*, size_t);
+#else
+Void_t*  public_rEALLOc();
+#endif
+
+/*
+  memalign(size_t alignment, size_t n);
+  Returns a pointer to a newly allocated chunk of n bytes, aligned
+  in accord with the alignment argument.
+
+  The alignment argument should be a power of two. If the argument is
+  not a power of two, the nearest greater power is used.
+  8-byte alignment is guaranteed by normal malloc calls, so don't
+  bother calling memalign with an argument of 8 or less.
+
+  Overreliance on memalign is a sure way to fragment space.
+*/
+#if __STD_C
+Void_t*  public_mEMALIGn(size_t, size_t);
+#else
+Void_t*  public_mEMALIGn();
+#endif
+
+/*
+  valloc(size_t n);
+  Equivalent to memalign(pagesize, n), where pagesize is the page
+  size of the system. If the pagesize is unknown, 4096 is used.
+*/
+#if __STD_C
+Void_t*  public_vALLOc(size_t);
+#else
+Void_t*  public_vALLOc();
+#endif
+
+
+
+/*
+  mallopt(int parameter_number, int parameter_value)
+  Sets tunable parameters The format is to provide a
+  (parameter-number, parameter-value) pair.  mallopt then sets the
+  corresponding parameter to the argument value if it can (i.e., so
+  long as the value is meaningful), and returns 1 if successful else
+  0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
+  normally defined in malloc.h.  Only one of these (M_MXFAST) is used
+  in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
+  so setting them has no effect. But this malloc also supports four
+  other options in mallopt. See below for details.  Briefly, supported
+  parameters are as follows (listed defaults are for "typical"
+  configurations).
+
+  Symbol            param #   default    allowed param values
+  M_MXFAST          1         64         0-80  (0 disables fastbins)
+  M_TRIM_THRESHOLD -1         128*1024   any   (-1U disables trimming)
+  M_TOP_PAD        -2         0          any
+  M_MMAP_THRESHOLD -3         128*1024   any   (or 0 if no MMAP support)
+  M_MMAP_MAX       -4         65536      any   (0 disables use of mmap)
+*/
+#if __STD_C
+int      public_mALLOPt(int, int);
+#else
+int      public_mALLOPt();
+#endif
+
+
+/*
+  mallinfo()
+  Returns (by copy) a struct containing various summary statistics:
+
+  arena:     current total non-mmapped bytes allocated from system
+  ordblks:   the number of free chunks
+  smblks:    the number of fastbin blocks (i.e., small chunks that
+               have been freed but not use resused or consolidated)
+  hblks:     current number of mmapped regions
+  hblkhd:    total bytes held in mmapped regions
+  usmblks:   the maximum total allocated space. This will be greater
+                than current total if trimming has occurred.
+  fsmblks:   total bytes held in fastbin blocks
+  uordblks:  current total allocated space (normal or mmapped)
+  fordblks:  total free space
+  keepcost:  the maximum number of bytes that could ideally be released
+               back to system via malloc_trim. ("ideally" means that
+               it ignores page restrictions etc.)
+
+  Because these fields are ints, but internal bookkeeping may
+  be kept as longs, the reported values may wrap around zero and
+  thus be inaccurate.
+*/
+#if __STD_C
+struct mallinfo public_mALLINFo(void);
+#else
+struct mallinfo public_mALLINFo();
+#endif
+
+/*
+  independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
+
+  independent_calloc is similar to calloc, but instead of returning a
+  single cleared space, it returns an array of pointers to n_elements
+  independent elements that can hold contents of size elem_size, each
+  of which starts out cleared, and can be independently freed,
+  realloc'ed etc. The elements are guaranteed to be adjacently
+  allocated (this is not guaranteed to occur with multiple callocs or
+  mallocs), which may also improve cache locality in some
+  applications.
+
+  The "chunks" argument is optional (i.e., may be null, which is
+  probably the most typical usage). If it is null, the returned array
+  is itself dynamically allocated and should also be freed when it is
+  no longer needed. Otherwise, the chunks array must be of at least
+  n_elements in length. It is filled in with the pointers to the
+  chunks.
+
+  In either case, independent_calloc returns this pointer array, or
+  null if the allocation failed.  If n_elements is zero and "chunks"
+  is null, it returns a chunk representing an array with zero elements
+  (which should be freed if not wanted).
+
+  Each element must be individually freed when it is no longer
+  needed. If you'd like to instead be able to free all at once, you
+  should instead use regular calloc and assign pointers into this
+  space to represent elements.  (In this case though, you cannot
+  independently free elements.)
+
+  independent_calloc simplifies and speeds up implementations of many
+  kinds of pools.  It may also be useful when constructing large data
+  structures that initially have a fixed number of fixed-sized nodes,
+  but the number is not known at compile time, and some of the nodes
+  may later need to be freed. For example:
+
+  struct Node { int item; struct Node* next; };
+
+  struct Node* build_list() {
+    struct Node** pool;
+    int n = read_number_of_nodes_needed();
+    if (n <= 0) return 0;
+    pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
+    if (pool == 0) die();
+    // organize into a linked list...
+    struct Node* first = pool[0];
+    for (i = 0; i < n-1; ++i)
+      pool[i]->next = pool[i+1];
+    free(pool);     // Can now free the array (or not, if it is needed later)
+    return first;
+  }
+*/
+#if __STD_C
+Void_t** public_iCALLOc(size_t, size_t, Void_t**);
+#else
+Void_t** public_iCALLOc();
+#endif
+
+/*
+  independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
+
+  independent_comalloc allocates, all at once, a set of n_elements
+  chunks with sizes indicated in the "sizes" array.    It returns
+  an array of pointers to these elements, each of which can be
+  independently freed, realloc'ed etc. The elements are guaranteed to
+  be adjacently allocated (this is not guaranteed to occur with
+  multiple callocs or mallocs), which may also improve cache locality
+  in some applications.
+
+  The "chunks" argument is optional (i.e., may be null). If it is null
+  the returned array is itself dynamically allocated and should also
+  be freed when it is no longer needed. Otherwise, the chunks array
+  must be of at least n_elements in length. It is filled in with the
+  pointers to the chunks.
+
+  In either case, independent_comalloc returns this pointer array, or
+  null if the allocation failed.  If n_elements is zero and chunks is
+  null, it returns a chunk representing an array with zero elements
+  (which should be freed if not wanted).
+
+  Each element must be individually freed when it is no longer
+  needed. If you'd like to instead be able to free all at once, you
+  should instead use a single regular malloc, and assign pointers at
+  particular offsets in the aggregate space. (In this case though, you
+  cannot independently free elements.)
+
+  independent_comallac differs from independent_calloc in that each
+  element may have a different size, and also that it does not
+  automatically clear elements.
+
+  independent_comalloc can be used to speed up allocation in cases
+  where several structs or objects must always be allocated at the
+  same time.  For example:
+
+  struct Head { ... }
+  struct Foot { ... }
+
+  void send_message(char* msg) {
+    int msglen = strlen(msg);
+    size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
+    void* chunks[3];
+    if (independent_comalloc(3, sizes, chunks) == 0)
+      die();
+    struct Head* head = (struct Head*)(chunks[0]);
+    char*        body = (char*)(chunks[1]);
+    struct Foot* foot = (struct Foot*)(chunks[2]);
+    // ...
+  }
+
+  In general though, independent_comalloc is worth using only for
+  larger values of n_elements. For small values, you probably won't
+  detect enough difference from series of malloc calls to bother.
+
+  Overuse of independent_comalloc can increase overall memory usage,
+  since it cannot reuse existing noncontiguous small chunks that
+  might be available for some of the elements.
+*/
+#if __STD_C
+Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
+#else
+Void_t** public_iCOMALLOc();
+#endif
+
+
+/*
+  pvalloc(size_t n);
+  Equivalent to valloc(minimum-page-that-holds(n)), that is,
+  round up n to nearest pagesize.
+ */
+#if __STD_C
+Void_t*  public_pVALLOc(size_t);
+#else
+Void_t*  public_pVALLOc();
+#endif
+
+/*
+  cfree(Void_t* p);
+  Equivalent to free(p).
+
+  cfree is needed/defined on some systems that pair it with calloc,
+  for odd historical reasons (such as: cfree is used in example
+  code in the first edition of K&R).
+*/
+#if __STD_C
+void     public_cFREe(Void_t*);
+#else
+void     public_cFREe();
+#endif
+
+/*
+  malloc_trim(size_t pad);
+
+  If possible, gives memory back to the system (via negative
+  arguments to sbrk) if there is unused memory at the `high' end of
+  the malloc pool. You can call this after freeing large blocks of
+  memory to potentially reduce the system-level memory requirements
+  of a program. However, it cannot guarantee to reduce memory. Under
+  some allocation patterns, some large free blocks of memory will be
+  locked between two used chunks, so they cannot be given back to
+  the system.
+
+  The `pad' argument to malloc_trim represents the amount of free
+  trailing space to leave untrimmed. If this argument is zero,
+  only the minimum amount of memory to maintain internal data
+  structures will be left (one page or less). Non-zero arguments
+  can be supplied to maintain enough trailing space to service
+  future expected allocations without having to re-obtain memory
+  from the system.
+
+  Malloc_trim returns 1 if it actually released any memory, else 0.
+  On systems that do not support "negative sbrks", it will always
+  rreturn 0.
+*/
+#if __STD_C
+int      public_mTRIm(size_t);
+#else
+int      public_mTRIm();
+#endif
+
+/*
+  malloc_usable_size(Void_t* p);
+
+  Returns the number of bytes you can actually use in
+  an allocated chunk, which may be more than you requested (although
+  often not) due to alignment and minimum size constraints.
+  You can use this many bytes without worrying about
+  overwriting other allocated objects. This is not a particularly great
+  programming practice. malloc_usable_size can be more useful in
+  debugging and assertions, for example:
+
+  p = malloc(n);
+  assert(malloc_usable_size(p) >= 256);
+
+*/
+#if __STD_C
+size_t   public_mUSABLe(Void_t*);
+#else
+size_t   public_mUSABLe();
+#endif
+
+/*
+  malloc_stats();
+  Prints on stderr the amount of space obtained from the system (both
+  via sbrk and mmap), the maximum amount (which may be more than
+  current if malloc_trim and/or munmap got called), and the current
+  number of bytes allocated via malloc (or realloc, etc) but not yet
+  freed. Note that this is the number of bytes allocated, not the
+  number requested. It will be larger than the number requested
+  because of alignment and bookkeeping overhead. Because it includes
+  alignment wastage as being in use, this figure may be greater than
+  zero even when no user-level chunks are allocated.
+
+  The reported current and maximum system memory can be inaccurate if
+  a program makes other calls to system memory allocation functions
+  (normally sbrk) outside of malloc.
+
+  malloc_stats prints only the most commonly interesting statistics.
+  More information can be obtained by calling mallinfo.
+
+*/
+#if __STD_C
+void     public_mSTATs();
+#else
+void     public_mSTATs();
+#endif
+
+/* mallopt tuning options */
+
+/*
+  M_MXFAST is the maximum request size used for "fastbins", special bins
+  that hold returned chunks without consolidating their spaces. This
+  enables future requests for chunks of the same size to be handled
+  very quickly, but can increase fragmentation, and thus increase the
+  overall memory footprint of a program.
+
+  This malloc manages fastbins very conservatively yet still
+  efficiently, so fragmentation is rarely a problem for values less
+  than or equal to the default.  The maximum supported value of MXFAST
+  is 80. You wouldn't want it any higher than this anyway.  Fastbins
+  are designed especially for use with many small structs, objects or
+  strings -- the default handles structs/objects/arrays with sizes up
+  to 8 4byte fields, or small strings representing words, tokens,
+  etc. Using fastbins for larger objects normally worsens
+  fragmentation without improving speed.
+
+  M_MXFAST is set in REQUEST size units. It is internally used in
+  chunksize units, which adds padding and alignment.  You can reduce
+  M_MXFAST to 0 to disable all use of fastbins.  This causes the malloc
+  algorithm to be a closer approximation of fifo-best-fit in all cases,
+  not just for larger requests, but will generally cause it to be
+  slower.
+*/
+
+
+/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
+#ifndef M_MXFAST
+#define M_MXFAST            1
+#endif
+
+#ifndef DEFAULT_MXFAST
+#define DEFAULT_MXFAST     64
+#endif
+
+
+/*
+  M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
+  to keep before releasing via malloc_trim in free().
+
+  Automatic trimming is mainly useful in long-lived programs.
+  Because trimming via sbrk can be slow on some systems, and can
+  sometimes be wasteful (in cases where programs immediately
+  afterward allocate more large chunks) the value should be high
+  enough so that your overall system performance would improve by
+  releasing this much memory.
+
+  The trim threshold and the mmap control parameters (see below)
+  can be traded off with one another. Trimming and mmapping are
+  two different ways of releasing unused memory back to the
+  system. Between these two, it is often possible to keep
+  system-level demands of a long-lived program down to a bare
+  minimum. For example, in one test suite of sessions measuring
+  the XF86 X server on Linux, using a trim threshold of 128K and a
+  mmap threshold of 192K led to near-minimal long term resource
+  consumption.
+
+  If you are using this malloc in a long-lived program, it should
+  pay to experiment with these values.  As a rough guide, you
+  might set to a value close to the average size of a process
+  (program) running on your system.  Releasing this much memory
+  would allow such a process to run in memory.  Generally, it's
+  worth it to tune for trimming rather tham memory mapping when a
+  program undergoes phases where several large chunks are
+  allocated and released in ways that can reuse each other's
+  storage, perhaps mixed with phases where there are no such
+  chunks at all.  And in well-behaved long-lived programs,
+  controlling release of large blocks via trimming versus mapping
+  is usually faster.
+
+  However, in most programs, these parameters serve mainly as
+  protection against the system-level effects of carrying around
+  massive amounts of unneeded memory. Since frequent calls to
+  sbrk, mmap, and munmap otherwise degrade performance, the default
+  parameters are set to relatively high values that serve only as
+  safeguards.
+
+  The trim value It must be greater than page size to have any useful
+  effect.  To disable trimming completely, you can set to
+  (unsigned long)(-1)
+
+  Trim settings interact with fastbin (MXFAST) settings: Unless
+  TRIM_FASTBINS is defined, automatic trimming never takes place upon
+  freeing a chunk with size less than or equal to MXFAST. Trimming is
+  instead delayed until subsequent freeing of larger chunks. However,
+  you can still force an attempted trim by calling malloc_trim.
+
+  Also, trimming is not generally possible in cases where
+  the main arena is obtained via mmap.
+
+  Note that the trick some people use of mallocing a huge space and
+  then freeing it at program startup, in an attempt to reserve system
+  memory, doesn't have the intended effect under automatic trimming,
+  since that memory will immediately be returned to the system.
+*/
+
+#define M_TRIM_THRESHOLD       -1
+
+#ifndef DEFAULT_TRIM_THRESHOLD
+#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
+#endif
+
+/*
+  M_TOP_PAD is the amount of extra `padding' space to allocate or
+  retain whenever sbrk is called. It is used in two ways internally:
+
+  * When sbrk is called to extend the top of the arena to satisfy
+  a new malloc request, this much padding is added to the sbrk
+  request.
+
+  * When malloc_trim is called automatically from free(),
+  it is used as the `pad' argument.
+
+  In both cases, the actual amount of padding is rounded
+  so that the end of the arena is always a system page boundary.
+
+  The main reason for using padding is to avoid calling sbrk so
+  often. Having even a small pad greatly reduces the likelihood
+  that nearly every malloc request during program start-up (or
+  after trimming) will invoke sbrk, which needlessly wastes
+  time.
+
+  Automatic rounding-up to page-size units is normally sufficient
+  to avoid measurable overhead, so the default is 0.  However, in
+  systems where sbrk is relatively slow, it can pay to increase
+  this value, at the expense of carrying around more memory than
+  the program needs.
+*/
+
+#define M_TOP_PAD              -2
+
+#ifndef DEFAULT_TOP_PAD
+#define DEFAULT_TOP_PAD        (0)
+#endif
+
+/*
+  M_MMAP_THRESHOLD is the request size threshold for using mmap()
+  to service a request. Requests of at least this size that cannot
+  be allocated using already-existing space will be serviced via mmap.
+  (If enough normal freed space already exists it is used instead.)
+
+  Using mmap segregates relatively large chunks of memory so that
+  they can be individually obtained and released from the host
+  system. A request serviced through mmap is never reused by any
+  other request (at least not directly; the system may just so
+  happen to remap successive requests to the same locations).
+
+  Segregating space in this way has the benefits that:
+
+   1. Mmapped space can ALWAYS be individually released back
+      to the system, which helps keep the system level memory
+      demands of a long-lived program low.
+   2. Mapped memory can never become `locked' between
+      other chunks, as can happen with normally allocated chunks, which
+      means that even trimming via malloc_trim would not release them.
+   3. On some systems with "holes" in address spaces, mmap can obtain
+      memory that sbrk cannot.
+
+  However, it has the disadvantages that:
+
+   1. The space cannot be reclaimed, consolidated, and then
+      used to service later requests, as happens with normal chunks.
+   2. It can lead to more wastage because of mmap page alignment
+      requirements
+   3. It causes malloc performance to be more dependent on host
+      system memory management support routines which may vary in
+      implementation quality and may impose arbitrary
+      limitations. Generally, servicing a request via normal
+      malloc steps is faster than going through a system's mmap.
+
+  The advantages of mmap nearly always outweigh disadvantages for
+  "large" chunks, but the value of "large" varies across systems.  The
+  default is an empirically derived value that works well in most
+  systems.
+*/
+
+#define M_MMAP_THRESHOLD      -3
+
+#ifndef DEFAULT_MMAP_THRESHOLD
+#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
+#endif
+
+/*
+  M_MMAP_MAX is the maximum number of requests to simultaneously
+  service using mmap. This parameter exists because
+. Some systems have a limited number of internal tables for
+  use by mmap, and using more than a few of them may degrade
+  performance.
+
+  The default is set to a value that serves only as a safeguard.
+  Setting to 0 disables use of mmap for servicing large requests.  If
+  HAVE_MMAP is not set, the default value is 0, and attempts to set it
+  to non-zero values in mallopt will fail.
+*/
+
+#define M_MMAP_MAX             -4
+
+#ifndef DEFAULT_MMAP_MAX
+#if HAVE_MMAP
+#define DEFAULT_MMAP_MAX       (65536)
+#else
+#define DEFAULT_MMAP_MAX       (0)
+#endif
+#endif
+
+#ifdef __cplusplus
+};  /* end of extern "C" */
+#endif
+
+/*
+  ========================================================================
+  To make a fully customizable malloc.h header file, cut everything
+  above this line, put into file malloc.h, edit to suit, and #include it
+  on the next line, as well as in programs that use this malloc.
+  ========================================================================
+*/
+
+/* #include "malloc.h" */
+
+/* --------------------- public wrappers ---------------------- */
+
+#ifdef USE_PUBLIC_MALLOC_WRAPPERS
+
+/* Declare all routines as internal */
+#if __STD_C
+static Void_t*  mALLOc(size_t);
+static void     fREe(Void_t*);
+static Void_t*  rEALLOc(Void_t*, size_t);
+static Void_t*  mEMALIGn(size_t, size_t);
+static Void_t*  vALLOc(size_t);
+static Void_t*  pVALLOc(size_t);
+static Void_t*  cALLOc(size_t, size_t);
+static Void_t** iCALLOc(size_t, size_t, Void_t**);
+static Void_t** iCOMALLOc(size_t, size_t*, Void_t**);
+static void     cFREe(Void_t*);
+static int      mTRIm(size_t);
+static size_t   mUSABLe(Void_t*);
+static void     mSTATs();
+static int      mALLOPt(int, int);
+static struct mallinfo mALLINFo(void);
+#else
+static Void_t*  mALLOc();
+static void     fREe();
+static Void_t*  rEALLOc();
+static Void_t*  mEMALIGn();
+static Void_t*  vALLOc();
+static Void_t*  pVALLOc();
+static Void_t*  cALLOc();
+static Void_t** iCALLOc();
+static Void_t** iCOMALLOc();
+static void     cFREe();
+static int      mTRIm();
+static size_t   mUSABLe();
+static void     mSTATs();
+static int      mALLOPt();
+static struct mallinfo mALLINFo();
+#endif
+
+/*
+  MALLOC_PREACTION and MALLOC_POSTACTION should be
+  defined to return 0 on success, and nonzero on failure.
+  The return value of MALLOC_POSTACTION is currently ignored
+  in wrapper functions since there is no reasonable default
+  action to take on failure.
+*/
+
+
+#ifdef USE_MALLOC_LOCK
+
+#ifdef WIN32
+
+static int mALLOC_MUTEx;
+#define MALLOC_PREACTION   slwait(&mALLOC_MUTEx)
+#define MALLOC_POSTACTION  slrelease(&mALLOC_MUTEx)
+
+#else
+
+#if 0
+#include <pthread.h>
+
+static pthread_mutex_t mALLOC_MUTEx = PTHREAD_MUTEX_INITIALIZER;
+
+#define MALLOC_PREACTION   pthread_mutex_lock(&mALLOC_MUTEx)
+#define MALLOC_POSTACTION  pthread_mutex_unlock(&mALLOC_MUTEx)
+
+#else
+
+#ifdef KDE_MALLOC_X86
+#include "x86.h"
+#elif defined(KDE_MALLOC_AVR32)
+
+#include <sched.h>
+#include <time.h>
+
+static __inline__ int q_atomic_swp(volatile unsigned int *ptr,
+                                    unsigned int newval)
+{
+    register int ret;
+    asm volatile("xchg %0,%1,%2"
+                 : "=&r"(ret)
+                 : "r"(ptr), "r"(newval)
+                 : "memory", "cc");
+    return ret;
+}
+
+typedef struct {
+  volatile unsigned int lock;
+  int pad0_;
+} mutex_t;
+
+#define MUTEX_INITIALIZER          { 0, 0 }
+
+static __inline__ int lock(mutex_t *m) {
+  int cnt = 0;
+  struct timespec tm;
+
+  for(;;) {
+      if (q_atomic_swp(&m->lock, 1) == 0)
+          return 0;
+#ifdef _POSIX_PRIORITY_SCHEDULING
+    if(cnt < 50) {
+      sched_yield();
+      cnt++;
+    } else
+#endif
+        {
+      tm.tv_sec = 0;
+      tm.tv_nsec = 2000001;
+      nanosleep(&tm, NULL);
+      cnt = 0;
+    }
+  }
+}
+
+static __inline__ int unlock(mutex_t *m) {
+    m->lock = 0;
+    return 0;
+}
+
+#else
+#error Unknown spinlock implementation
+#endif
+
+static mutex_t spinlock = MUTEX_INITIALIZER;
+
+#define MALLOC_PREACTION   lock( &spinlock )
+#define MALLOC_POSTACTION  unlock( &spinlock )
+
+#endif
+
+#endif /* USE_MALLOC_LOCK */
+
+#else
+
+/* Substitute anything you like for these */
+
+#define MALLOC_PREACTION   (0)
+#define MALLOC_POSTACTION  (0)
+
+#endif
+
+#if 0
+Void_t* public_mALLOc(size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = mALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+void public_fREe(Void_t* m) {
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  fREe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+}
+
+Void_t* public_rEALLOc(Void_t* m, size_t bytes) {
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = rEALLOc(m, bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t* public_mEMALIGn(size_t alignment, size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = mEMALIGn(alignment, bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t* public_vALLOc(size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = vALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t* public_pVALLOc(size_t bytes) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = pVALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t* public_cALLOc(size_t n, size_t elem_size) {
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = cALLOc(n, elem_size);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+
+Void_t** public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks) {
+  Void_t** m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = iCALLOc(n, elem_size, chunks);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+Void_t** public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks) {
+  Void_t** m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = iCOMALLOc(n, sizes, chunks);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+void public_cFREe(Void_t* m) {
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  cFREe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+}
+
+int public_mTRIm(size_t s) {
+  int result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mTRIm(s);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+}
+
+size_t public_mUSABLe(Void_t* m) {
+  size_t result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mUSABLe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+}
+
+void public_mSTATs() {
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  mSTATs();
+  if (MALLOC_POSTACTION != 0) {
+  }
+}
+
+struct mallinfo public_mALLINFo() {
+  struct mallinfo m;
+  if (MALLOC_PREACTION != 0) {
+    struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+    return nm;
+  }
+  m = mALLINFo();
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+}
+
+int public_mALLOPt(int p, int v) {
+  int result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mALLOPt(p, v);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+}
+#endif
+
+#endif
+
+
+
+/* ------------- Optional versions of memcopy ---------------- */
+
+
+#if USE_MEMCPY
+
+/*
+  Note: memcpy is ONLY invoked with non-overlapping regions,
+  so the (usually slower) memmove is not needed.
+*/
+
+#define MALLOC_COPY(dest, src, nbytes)  memcpy(dest, src, nbytes)
+#define MALLOC_ZERO(dest, nbytes)       memset(dest, 0,   nbytes)
+
+#else /* !USE_MEMCPY */
+
+/* Use Duff's device for good zeroing/copying performance. */
+
+#define MALLOC_ZERO(charp, nbytes)                                            \
+do {                                                                          \
+  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
+  unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T);                     \
+  long mcn;                                                                   \
+  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
+  switch (mctmp) {                                                            \
+    case 0: for(;;) { *mzp++ = 0;                                             \
+    case 7:           *mzp++ = 0;                                             \
+    case 6:           *mzp++ = 0;                                             \
+    case 5:           *mzp++ = 0;                                             \
+    case 4:           *mzp++ = 0;                                             \
+    case 3:           *mzp++ = 0;                                             \
+    case 2:           *mzp++ = 0;                                             \
+    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
+  }                                                                           \
+} while(0)
+
+#define MALLOC_COPY(dest,src,nbytes)                                          \
+do {                                                                          \
+  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
+  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
+  unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T);                     \
+  long mcn;                                                                   \
+  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
+  switch (mctmp) {                                                            \
+    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
+    case 7:           *mcdst++ = *mcsrc++;                                    \
+    case 6:           *mcdst++ = *mcsrc++;                                    \
+    case 5:           *mcdst++ = *mcsrc++;                                    \
+    case 4:           *mcdst++ = *mcsrc++;                                    \
+    case 3:           *mcdst++ = *mcsrc++;                                    \
+    case 2:           *mcdst++ = *mcsrc++;                                    \
+    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
+  }                                                                           \
+} while(0)
+
+#endif
+
+/* ------------------ MMAP support ------------------  */
+
+
+#if HAVE_MMAP
+
+#include <fcntl.h>
+#ifndef LACKS_SYS_MMAN_H
+#include <sys/mman.h>
+#endif
+
+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
+#define MAP_ANONYMOUS MAP_ANON
+#endif
+
+/*
+   Nearly all versions of mmap support MAP_ANONYMOUS,
+   so the following is unlikely to be needed, but is
+   supplied just in case.
+*/
+
+#ifndef MAP_ANONYMOUS
+
+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
+
+#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
+  mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
+   mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
+
+#else
+
+#define MMAP(addr, size, prot, flags) \
+ (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
+
+#endif
+
+
+#endif /* HAVE_MMAP */
+
+
+/*
+  -----------------------  Chunk representations -----------------------
+*/
+
+
+/*
+  This struct declaration is misleading (but accurate and necessary).
+  It declares a "view" into memory allowing access to necessary
+  fields at known offsets from a given base. See explanation below.
+*/
+
+struct malloc_chunk {
+
+  INTERNAL_SIZE_T      prev_size;  /* Size of previous chunk (if free).  */
+  INTERNAL_SIZE_T      size;       /* Size in bytes, including overhead. */
+
+  struct malloc_chunk* fd;         /* double links -- used only if free. */
+  struct malloc_chunk* bk;
+};
+
+
+typedef struct malloc_chunk* mchunkptr;
+
+/*
+   malloc_chunk details:
+
+    (The following includes lightly edited explanations by Colin Plumb.)
+
+    Chunks of memory are maintained using a `boundary tag' method as
+    described in e.g., Knuth or Standish.  (See the paper by Paul
+    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
+    survey of such techniques.)  Sizes of free chunks are stored both
+    in the front of each chunk and at the end.  This makes
+    consolidating fragmented chunks into bigger chunks very fast.  The
+    size fields also hold bits representing whether chunks are free or
+    in use.
+
+    An allocated chunk looks like this:
+
+
+    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of previous chunk, if allocated            | |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of chunk, in bytes                         |P|
+      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             User data starts here...                          .
+            .                                                               .
+            .             (malloc_usable_space() bytes)                     .
+            .                                                               |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of chunk                                     |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+
+    Where "chunk" is the front of the chunk for the purpose of most of
+    the malloc code, but "mem" is the pointer that is returned to the
+    user.  "Nextchunk" is the beginning of the next contiguous chunk.
+
+    Chunks always begin on even word boundaries, so the mem portion
+    (which is returned to the user) is also on an even word boundary, and
+    thus at least double-word aligned.
+
+    Free chunks are stored in circular doubly-linked lists, and look like this:
+
+    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of previous chunk                            |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+    `head:' |             Size of chunk, in bytes                         |P|
+      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Forward pointer to next chunk in list             |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Back pointer to previous chunk in list            |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Unused space (may be 0 bytes long)                .
+            .                                                               .
+            .                                                               |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+    `foot:' |             Size of chunk, in bytes                           |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
+    chunk size (which is always a multiple of two words), is an in-use
+    bit for the *previous* chunk.  If that bit is *clear*, then the
+    word before the current chunk size contains the previous chunk
+    size, and can be used to find the front of the previous chunk.
+    The very first chunk allocated always has this bit set,
+    preventing access to non-existent (or non-owned) memory. If
+    prev_inuse is set for any given chunk, then you CANNOT determine
+    the size of the previous chunk, and might even get a memory
+    addressing fault when trying to do so.
+
+    Note that the `foot' of the current chunk is actually represented
+    as the prev_size of the NEXT chunk. This makes it easier to
+    deal with alignments etc but can be very confusing when trying
+    to extend or adapt this code.
+
+    The two exceptions to all this are
+
+     1. The special chunk `top' doesn't bother using the
+        trailing size field since there is no next contiguous chunk
+        that would have to index off it. After initialization, `top'
+        is forced to always exist.  If it would become less than
+        MINSIZE bytes long, it is replenished.
+
+     2. Chunks allocated via mmap, which have the second-lowest-order
+        bit (IS_MMAPPED) set in their size fields.  Because they are
+        allocated one-by-one, each must contain its own trailing size field.
+
+*/
+
+/*
+  ---------- Size and alignment checks and conversions ----------
+*/
+
+/* conversion from malloc headers to user pointers, and back */
+
+#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
+
+/* The smallest possible chunk */
+#define MIN_CHUNK_SIZE        (sizeof(struct malloc_chunk))
+
+/* The smallest size we can malloc is an aligned minimal chunk */
+
+#define MINSIZE  \
+  (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
+
+/* Check if m has acceptable alignment */
+
+#define aligned_OK(m)  (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
+
+
+/*
+   Check if a request is so large that it would wrap around zero when
+   padded and aligned. To simplify some other code, the bound is made
+   low enough so that adding MINSIZE will also not wrap around zero.
+*/
+
+#define REQUEST_OUT_OF_RANGE(req)                                 \
+  ((unsigned long)(req) >=                                        \
+   (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
+
+/* pad request bytes into a usable size -- internal version */
+
+#define request2size(req)                                         \
+  (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE)  ?             \
+   MINSIZE :                                                      \
+   ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
+
+/*  Same, except also perform argument check */
+
+#define checked_request2size(req, sz)                             \
+  if (REQUEST_OUT_OF_RANGE(req)) {                                \
+    MALLOC_FAILURE_ACTION;                                        \
+    return 0;                                                     \
+  }                                                               \
+  (sz) = request2size(req);
+
+/*
+  --------------- Physical chunk operations ---------------
+*/
+
+
+/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
+#define PREV_INUSE 0x1
+
+/* extract inuse bit of previous chunk */
+#define prev_inuse(p)       ((p)->size & PREV_INUSE)
+
+
+/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
+#define IS_MMAPPED 0x2
+
+/* check for mmap()'ed chunk */
+#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
+
+/*
+  Bits to mask off when extracting size
+
+  Note: IS_MMAPPED is intentionally not masked off from size field in
+  macros for which mmapped chunks should never be seen. This should
+  cause helpful core dumps to occur if it is tried by accident by
+  people extending or adapting this malloc.
+*/
+#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
+
+/* Get size, ignoring use bits */
+#define chunksize(p)         ((p)->size & ~(SIZE_BITS))
+
+
+/* Ptr to next physical malloc_chunk. */
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
+
+/* Ptr to previous physical malloc_chunk */
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
+
+/* Treat space at ptr + offset as a chunk */
+#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
+
+/* extract p's inuse bit */
+#define inuse(p)\
+((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
+
+/* set/clear chunk as being inuse without otherwise disturbing */
+#define set_inuse(p)\
+((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
+
+#define clear_inuse(p)\
+((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
+
+
+/* check/set/clear inuse bits in known places */
+#define inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
+
+#define set_inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
+
+#define clear_inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
+
+
+/* Set size at head, without disturbing its use bit */
+#define set_head_size(p, s)  ((p)->size = (((p)->size & PREV_INUSE) | (s)))
+
+/* Set size/use field */
+#define set_head(p, s)       ((p)->size = (s))
+
+/* Set size at footer (only when chunk is not in use) */
+#define set_foot(p, s)       (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
+
+
+/*
+  -------------------- Internal data structures --------------------
+
+   All internal state is held in an instance of malloc_state defined
+   below. There are no other static variables, except in two optional
+   cases:
+   * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
+   * If HAVE_MMAP is true, but mmap doesn't support
+     MAP_ANONYMOUS, a dummy file descriptor for mmap.
+
+   Beware of lots of tricks that minimize the total bookkeeping space
+   requirements. The result is a little over 1K bytes (for 4byte
+   pointers and size_t.)
+*/
+
+/*
+  Bins
+
+    An array of bin headers for free chunks. Each bin is doubly
+    linked.  The bins are approximately proportionally (log) spaced.
+    There are a lot of these bins (128). This may look excessive, but
+    works very well in practice.  Most bins hold sizes that are
+    unusual as malloc request sizes, but are more usual for fragments
+    and consolidated sets of chunks, which is what these bins hold, so
+    they can be found quickly.  All procedures maintain the invariant
+    that no consolidated chunk physically borders another one, so each
+    chunk in a list is known to be preceded and followed by either
+    inuse chunks or the ends of memory.
+
+    Chunks in bins are kept in size order, with ties going to the
+    approximately least recently used chunk. Ordering isn't needed
+    for the small bins, which all contain the same-sized chunks, but
+    facilitates best-fit allocation for larger chunks. These lists
+    are just sequential. Keeping them in order almost never requires
+    enough traversal to warrant using fancier ordered data
+    structures.
+
+    Chunks of the same size are linked with the most
+    recently freed at the front, and allocations are taken from the
+    back.  This results in LRU (FIFO) allocation order, which tends
+    to give each chunk an equal opportunity to be consolidated with
+    adjacent freed chunks, resulting in larger free chunks and less
+    fragmentation.
+
+    To simplify use in double-linked lists, each bin header acts
+    as a malloc_chunk. This avoids special-casing for headers.
+    But to conserve space and improve locality, we allocate
+    only the fd/bk pointers of bins, and then use repositioning tricks
+    to treat these as the fields of a malloc_chunk*.
+*/
+
+typedef struct malloc_chunk* mbinptr;
+
+/* addressing -- note that bin_at(0) does not exist */
+#define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
+
+/* analog of ++bin */
+#define next_bin(b)  ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
+
+/* Reminders about list directionality within bins */
+#define first(b)     ((b)->fd)
+#define last(b)      ((b)->bk)
+
+/* Take a chunk off a bin list */
+#define unlink(P, BK, FD) {                                            \
+  FD = P->fd;                                                          \
+  BK = P->bk;                                                          \
+  FD->bk = BK;                                                         \
+  BK->fd = FD;                                                         \
+}
+
+/*
+  Indexing
+
+    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
+    8 bytes apart. Larger bins are approximately logarithmically spaced:
+
+    64 bins of size       8
+    32 bins of size      64
+    16 bins of size     512
+     8 bins of size    4096
+     4 bins of size   32768
+     2 bins of size  262144
+     1 bin  of size what's left
+
+    There is actually a little bit of slop in the numbers in bin_index
+    for the sake of speed. This makes no difference elsewhere.
+
+    The bins top out around 1MB because we expect to service large
+    requests via mmap.
+*/
+
+#define NBINS             128
+#define NSMALLBINS         64
+#define SMALLBIN_WIDTH      8
+#define MIN_LARGE_SIZE    512
+
+#define in_smallbin_range(sz)  \
+  ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
+
+#define smallbin_index(sz)     (((unsigned)(sz)) >> 3)
+
+#define largebin_index(sz)                                                   \
+(((((unsigned long)(sz)) >>  6) <= 32)?  56 + (((unsigned long)(sz)) >>  6): \
+ ((((unsigned long)(sz)) >>  9) <= 20)?  91 + (((unsigned long)(sz)) >>  9): \
+ ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
+ ((((unsigned long)(sz)) >> 15) <=  4)? 119 + (((unsigned long)(sz)) >> 15): \
+ ((((unsigned long)(sz)) >> 18) <=  2)? 124 + (((unsigned long)(sz)) >> 18): \
+                                        126)
+
+#define bin_index(sz) \
+ ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
+
+
+/*
+  Unsorted chunks
+
+    All remainders from chunk splits, as well as all returned chunks,
+    are first placed in the "unsorted" bin. They are then placed
+    in regular bins after malloc gives them ONE chance to be used before
+    binning. So, basically, the unsorted_chunks list acts as a queue,
+    with chunks being placed on it in free (and malloc_consolidate),
+    and taken off (to be either used or placed in bins) in malloc.
+*/
+
+/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
+#define unsorted_chunks(M)          (bin_at(M, 1))
+
+/*
+  Top
+
+    The top-most available chunk (i.e., the one bordering the end of
+    available memory) is treated specially. It is never included in
+    any bin, is used only if no other chunk is available, and is
+    released back to the system if it is very large (see
+    M_TRIM_THRESHOLD).  Because top initially
+    points to its own bin with initial zero size, thus forcing
+    extension on the first malloc request, we avoid having any special
+    code in malloc to check whether it even exists yet. But we still
+    need to do so when getting memory from system, so we make
+    initial_top treat the bin as a legal but unusable chunk during the
+    interval between initialization and the first call to
+    sYSMALLOc. (This is somewhat delicate, since it relies on
+    the 2 preceding words to be zero during this interval as well.)
+*/
+
+/* Conveniently, the unsorted bin can be used as dummy top on first call */
+#define initial_top(M)              (unsorted_chunks(M))
+
+/*
+  Binmap
+
+    To help compensate for the large number of bins, a one-level index
+    structure is used for bin-by-bin searching.  `binmap' is a
+    bitvector recording whether bins are definitely empty so they can
+    be skipped over during during traversals.  The bits are NOT always
+    cleared as soon as bins are empty, but instead only
+    when they are noticed to be empty during traversal in malloc.
+*/
+
+/* Conservatively use 32 bits per map word, even if on 64bit system */
+#define BINMAPSHIFT      5
+#define BITSPERMAP       (1U << BINMAPSHIFT)
+#define BINMAPSIZE       (NBINS / BITSPERMAP)
+
+#define idx2block(i)     ((i) >> BINMAPSHIFT)
+#define idx2bit(i)       ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
+
+#define mark_bin(m,i)    ((m)->binmap[idx2block(i)] |=  idx2bit(i))
+#define unmark_bin(m,i)  ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
+#define get_binmap(m,i)  ((m)->binmap[idx2block(i)] &   idx2bit(i))
+
+/*
+  Fastbins
+
+    An array of lists holding recently freed small chunks.  Fastbins
+    are not doubly linked.  It is faster to single-link them, and
+    since chunks are never removed from the middles of these lists,
+    double linking is not necessary. Also, unlike regular bins, they
+    are not even processed in FIFO order (they use faster LIFO) since
+    ordering doesn't much matter in the transient contexts in which
+    fastbins are normally used.
+
+    Chunks in fastbins keep their inuse bit set, so they cannot
+    be consolidated with other free chunks. malloc_consolidate
+    releases all chunks in fastbins and consolidates them with
+    other free chunks.
+*/
+
+typedef struct malloc_chunk* mfastbinptr;
+
+/* offset 2 to use otherwise unindexable first 2 bins */
+#define fastbin_index(sz)        ((((unsigned int)(sz)) >> 3) - 2)
+
+/* The maximum fastbin request size we support */
+#define MAX_FAST_SIZE     80
+
+#define NFASTBINS  (fastbin_index(request2size(MAX_FAST_SIZE))+1)
+
+/*
+  FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
+  that triggers automatic consolidation of possibly-surrounding
+  fastbin chunks. This is a heuristic, so the exact value should not
+  matter too much. It is defined at half the default trim threshold as a
+  compromise heuristic to only attempt consolidation if it is likely
+  to lead to trimming. However, it is not dynamically tunable, since
+  consolidation reduces fragmentation surrounding loarge chunks even
+  if trimming is not used.
+*/
+
+#define FASTBIN_CONSOLIDATION_THRESHOLD  (65536UL)
+
+/*
+  Since the lowest 2 bits in max_fast don't matter in size comparisons,
+  they are used as flags.
+*/
+
+/*
+  FASTCHUNKS_BIT held in max_fast indicates that there are probably
+  some fastbin chunks. It is set true on entering a chunk into any
+  fastbin, and cleared only in malloc_consolidate.
+
+  The truth value is inverted so that have_fastchunks will be true
+  upon startup (since statics are zero-filled), simplifying
+  initialization checks.
+*/
+
+#define FASTCHUNKS_BIT        (1U)
+
+#define have_fastchunks(M)     (((M)->max_fast &  FASTCHUNKS_BIT) == 0)
+#define clear_fastchunks(M)    ((M)->max_fast |=  FASTCHUNKS_BIT)
+#define set_fastchunks(M)      ((M)->max_fast &= ~FASTCHUNKS_BIT)
+
+/*
+  NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
+  regions.  Otherwise, contiguity is exploited in merging together,
+  when possible, results from consecutive MORECORE calls.
+
+  The initial value comes from MORECORE_CONTIGUOUS, but is
+  changed dynamically if mmap is ever used as an sbrk substitute.
+*/
+
+#define NONCONTIGUOUS_BIT     (2U)
+
+#define contiguous(M)          (((M)->max_fast &  NONCONTIGUOUS_BIT) == 0)
+#define noncontiguous(M)       (((M)->max_fast &  NONCONTIGUOUS_BIT) != 0)
+#define set_noncontiguous(M)   ((M)->max_fast |=  NONCONTIGUOUS_BIT)
+#define set_contiguous(M)      ((M)->max_fast &= ~NONCONTIGUOUS_BIT)
+
+/*
+   Set value of max_fast.
+   Use impossibly small value if 0.
+   Precondition: there are no existing fastbin chunks.
+   Setting the value clears fastchunk bit but preserves noncontiguous bit.
+*/
+
+#define set_max_fast(M, s) \
+  (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \
+  FASTCHUNKS_BIT | \
+  ((M)->max_fast &  NONCONTIGUOUS_BIT)
+
+
+/*
+   ----------- Internal state representation and initialization -----------
+*/
+
+struct malloc_state {
+
+  /* The maximum chunk size to be eligible for fastbin */
+  INTERNAL_SIZE_T  max_fast;   /* low 2 bits used as flags */
+
+  /* Fastbins */
+  mfastbinptr      fastbins[NFASTBINS];
+
+  /* Base of the topmost chunk -- not otherwise kept in a bin */
+  mchunkptr        top;
+
+  /* The remainder from the most recent split of a small request */
+  mchunkptr        last_remainder;
+
+  /* Normal bins packed as described above */
+  mchunkptr        bins[NBINS * 2];
+
+  /* Bitmap of bins */
+  unsigned int     binmap[BINMAPSIZE];
+
+  /* Tunable parameters */
+  unsigned long    trim_threshold;
+  INTERNAL_SIZE_T  top_pad;
+  INTERNAL_SIZE_T  mmap_threshold;
+
+  /* Memory map support */
+  int              n_mmaps;
+  int              n_mmaps_max;
+  int              max_n_mmaps;
+
+  /* Cache malloc_getpagesize */
+  unsigned int     pagesize;
+
+  /* Statistics */
+  INTERNAL_SIZE_T  mmapped_mem;
+  INTERNAL_SIZE_T  sbrked_mem;
+  INTERNAL_SIZE_T  max_sbrked_mem;
+  INTERNAL_SIZE_T  max_mmapped_mem;
+  INTERNAL_SIZE_T  max_total_mem;
+};
+
+typedef struct malloc_state *mstate;
+
+/*
+   There is exactly one instance of this struct in this malloc.
+   If you are adapting this malloc in a way that does NOT use a static
+   malloc_state, you MUST explicitly zero-fill it before using. This
+   malloc relies on the property that malloc_state is initialized to
+   all zeroes (as is true of C statics).
+*/
+
+static struct malloc_state av_;  /* never directly referenced */
+
+/*
+   All uses of av_ are via get_malloc_state().
+   At most one "call" to get_malloc_state is made per invocation of
+   the public versions of malloc and free, but other routines
+   that in turn invoke malloc and/or free may call more then once.
+   Also, it is called in check* routines if DEBUG is set.
+*/
+
+#define get_malloc_state() (&(av_))
+
+/*
+  Initialize a malloc_state struct.
+
+  This is called only from within malloc_consolidate, which needs
+  be called in the same contexts anyway.  It is never called directly
+  outside of malloc_consolidate because some optimizing compilers try
+  to inline it at all call points, which turns out not to be an
+  optimization at all. (Inlining it in malloc_consolidate is fine though.)
+*/
+
+#if __STD_C
+static void malloc_init_state(mstate av)
+#else
+static void malloc_init_state(av) mstate av;
+#endif
+{
+  int     i;
+  mbinptr bin;
+
+  /* Establish circular links for normal bins */
+  for (i = 1; i < NBINS; ++i) {
+    bin = bin_at(av,i);
+    bin->fd = bin->bk = bin;
+  }
+
+  av->top_pad        = DEFAULT_TOP_PAD;
+  av->n_mmaps_max    = DEFAULT_MMAP_MAX;
+  av->mmap_threshold = DEFAULT_MMAP_THRESHOLD;
+  av->trim_threshold = DEFAULT_TRIM_THRESHOLD;
+
+#if !MORECORE_CONTIGUOUS
+  set_noncontiguous(av);
+#endif
+
+  set_max_fast(av, DEFAULT_MXFAST);
+
+  av->top            = initial_top(av);
+  av->pagesize       = malloc_getpagesize;
+}
+
+/*
+   Other internal utilities operating on mstates
+*/
+
+#if __STD_C
+static Void_t*  sYSMALLOc(INTERNAL_SIZE_T, mstate);
+static int      sYSTRIm(size_t, mstate);
+static void     malloc_consolidate(mstate);
+static Void_t** iALLOc(size_t, size_t*, int, Void_t**);
+#else
+static Void_t*  sYSMALLOc();
+static int      sYSTRIm();
+static void     malloc_consolidate();
+static Void_t** iALLOc();
+#endif
+
+/*
+  Debugging support
+
+  These routines make a number of assertions about the states
+  of data structures that should be true at all times. If any
+  are not true, it's very likely that a user program has somehow
+  trashed memory. (It's also possible that there is a coding error
+  in malloc. In which case, please report it!)
+*/
+
+#ifndef DEBUG
+
+#define check_chunk(P)
+#define check_free_chunk(P)
+#define check_inuse_chunk(P)
+#define check_remalloced_chunk(P,N)
+#define check_malloced_chunk(P,N)
+#define check_malloc_state()
+
+#else
+#define check_chunk(P)              do_check_chunk(P)
+#define check_free_chunk(P)         do_check_free_chunk(P)
+#define check_inuse_chunk(P)        do_check_inuse_chunk(P)
+#define check_remalloced_chunk(P,N) do_check_remalloced_chunk(P,N)
+#define check_malloced_chunk(P,N)   do_check_malloced_chunk(P,N)
+#define check_malloc_state()        do_check_malloc_state()
+
+/*
+  Properties of all chunks
+*/
+
+INLINE
+#if __STD_C
+static void do_check_chunk(mchunkptr p)
+#else
+static void do_check_chunk(p) mchunkptr p;
+#endif
+{
+  mstate av = get_malloc_state();
+  unsigned long sz = chunksize(p);
+  /* min and max possible addresses assuming contiguous allocation */
+  char* max_address = (char*)(av->top) + chunksize(av->top);
+  char* min_address = max_address - av->sbrked_mem;
+
+  if (!chunk_is_mmapped(p)) {
+
+    /* Has legal address ... */
+    if (p != av->top) {
+      if (contiguous(av)) {
+        assert(((char*)p) >= min_address);
+        assert(((char*)p + sz) <= ((char*)(av->top)));
+      }
+    }
+    else {
+      /* top size is always at least MINSIZE */
+      assert((unsigned long)(sz) >= MINSIZE);
+      /* top predecessor always marked inuse */
+      assert(prev_inuse(p));
+    }
+
+  }
+  else {
+#if HAVE_MMAP
+    /* address is outside main heap  */
+    if (contiguous(av) && av->top != initial_top(av)) {
+      assert(((char*)p) < min_address || ((char*)p) > max_address);
+    }
+    /* chunk is page-aligned */
+    assert(((p->prev_size + sz) & (av->pagesize-1)) == 0);
+    /* mem is aligned */
+    assert(aligned_OK(chunk2mem(p)));
+#else
+    /* force an appropriate assert violation if debug set */
+    assert(!chunk_is_mmapped(p));
+#endif
+  }
+}
+
+/*
+  Properties of free chunks
+*/
+
+INLINE
+#if __STD_C
+static void do_check_free_chunk(mchunkptr p)
+#else
+static void do_check_free_chunk(p) mchunkptr p;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+  mchunkptr next = chunk_at_offset(p, sz);
+
+  do_check_chunk(p);
+
+  /* Chunk must claim to be free ... */
+  assert(!inuse(p));
+  assert (!chunk_is_mmapped(p));
+
+  /* Unless a special marker, must have OK fields */
+  if ((unsigned long)(sz) >= MINSIZE)
+  {
+    assert((sz & MALLOC_ALIGN_MASK) == 0);
+    assert(aligned_OK(chunk2mem(p)));
+    /* ... matching footer field */
+    assert(next->prev_size == sz);
+    /* ... and is fully consolidated */
+    assert(prev_inuse(p));
+    assert (next == av->top || inuse(next));
+
+    /* ... and has minimally sane links */
+    assert(p->fd->bk == p);
+    assert(p->bk->fd == p);
+  }
+  else /* markers are always of size SIZE_SZ */
+    assert(sz == SIZE_SZ);
+}
+
+/*
+  Properties of inuse chunks
+*/
+
+INLINE
+#if __STD_C
+static void do_check_inuse_chunk(mchunkptr p)
+#else
+static void do_check_inuse_chunk(p) mchunkptr p;
+#endif
+{
+  mstate av = get_malloc_state();
+  mchunkptr next;
+  do_check_chunk(p);
+
+  if (chunk_is_mmapped(p))
+    return; /* mmapped chunks have no next/prev */
+
+  /* Check whether it claims to be in use ... */
+  assert(inuse(p));
+
+  next = next_chunk(p);
+
+  /* ... and is surrounded by OK chunks.
+    Since more things can be checked with free chunks than inuse ones,
+    if an inuse chunk borders them and debug is on, it's worth doing them.
+  */
+  if (!prev_inuse(p))  {
+    /* Note that we cannot even look at prev unless it is not inuse */
+    mchunkptr prv = prev_chunk(p);
+    assert(next_chunk(prv) == p);
+    do_check_free_chunk(prv);
+  }
+
+  if (next == av->top) {
+    assert(prev_inuse(next));
+    assert(chunksize(next) >= MINSIZE);
+  }
+  else if (!inuse(next))
+    do_check_free_chunk(next);
+}
+
+/*
+  Properties of chunks recycled from fastbins
+*/
+
+INLINE
+#if __STD_C
+static void do_check_remalloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
+#else
+static void do_check_remalloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
+#endif
+{
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+
+  do_check_inuse_chunk(p);
+
+  /* Legal size ... */
+  assert((sz & MALLOC_ALIGN_MASK) == 0);
+  assert((unsigned long)(sz) >= MINSIZE);
+  /* ... and alignment */
+  assert(aligned_OK(chunk2mem(p)));
+  /* chunk is less than MINSIZE more than request */
+  assert((long)(sz) - (long)(s) >= 0);
+  assert((long)(sz) - (long)(s + MINSIZE) < 0);
+}
+
+/*
+  Properties of nonrecycled chunks at the point they are malloced
+*/
+
+INLINE
+#if __STD_C
+static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
+#else
+static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
+#endif
+{
+  /* same as recycled case ... */
+  do_check_remalloced_chunk(p, s);
+
+  /*
+    ... plus,  must obey implementation invariant that prev_inuse is
+    always true of any allocated chunk; i.e., that each allocated
+    chunk borders either a previously allocated and still in-use
+    chunk, or the base of its memory arena. This is ensured
+    by making all allocations from the the `lowest' part of any found
+    chunk.  This does not necessarily hold however for chunks
+    recycled via fastbins.
+  */
+
+  assert(prev_inuse(p));
+}
+
+
+/*
+  Properties of malloc_state.
+
+  This may be useful for debugging malloc, as well as detecting user
+  programmer errors that somehow write into malloc_state.
+
+  If you are extending or experimenting with this malloc, you can
+  probably figure out how to hack this routine to print out or
+  display chunk addresses, sizes, bins, and other instrumentation.
+*/
+
+static void do_check_malloc_state()
+{
+  mstate av = get_malloc_state();
+  int i;
+  mchunkptr p;
+  mchunkptr q;
+  mbinptr b;
+  unsigned int binbit;
+  int empty;
+  unsigned int idx;
+  INTERNAL_SIZE_T size;
+  unsigned long total = 0;
+  int max_fast_bin;
+
+  /* internal size_t must be no wider than pointer type */
+  assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
+
+  /* alignment is a power of 2 */
+  assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
+
+  /* cannot run remaining checks until fully initialized */
+  if (av->top == 0 || av->top == initial_top(av))
+    return;
+
+  /* pagesize is a power of 2 */
+  assert((av->pagesize & (av->pagesize-1)) == 0);
+
+  /* properties of fastbins */
+
+  /* max_fast is in allowed range */
+  assert((av->max_fast & ~1) <= request2size(MAX_FAST_SIZE));
+
+  max_fast_bin = fastbin_index(av->max_fast);
+
+  for (i = 0; i < NFASTBINS; ++i) {
+    p = av->fastbins[i];
+
+    /* all bins past max_fast are empty */
+    if (i > max_fast_bin)
+      assert(p == 0);
+
+    while (p != 0) {
+      /* each chunk claims to be inuse */
+      do_check_inuse_chunk(p);
+      total += chunksize(p);
+      /* chunk belongs in this bin */
+      assert(fastbin_index(chunksize(p)) == i);
+      p = p->fd;
+    }
+  }
+
+  if (total != 0)
+    assert(have_fastchunks(av));
+  else if (!have_fastchunks(av))
+    assert(total == 0);
+
+  /* check normal bins */
+  for (i = 1; i < NBINS; ++i) {
+    b = bin_at(av,i);
+
+    /* binmap is accurate (except for bin 1 == unsorted_chunks) */
+    if (i >= 2) {
+      binbit = get_binmap(av,i);
+      empty = last(b) == b;
+      if (!binbit)
+        assert(empty);
+      else if (!empty)
+        assert(binbit);
+    }
+
+    for (p = last(b); p != b; p = p->bk) {
+      /* each chunk claims to be free */
+      do_check_free_chunk(p);
+      size = chunksize(p);
+      total += size;
+      if (i >= 2) {
+        /* chunk belongs in bin */
+        idx = bin_index(size);
+        assert(idx == i);
+        /* lists are sorted */
+        assert(p->bk == b ||
+               (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
+      }
+      /* chunk is followed by a legal chain of inuse chunks */
+      for (q = next_chunk(p);
+           (q != av->top && inuse(q) &&
+             (unsigned long)(chunksize(q)) >= MINSIZE);
+           q = next_chunk(q))
+        do_check_inuse_chunk(q);
+    }
+  }
+
+  /* top chunk is OK */
+  check_chunk(av->top);
+
+  /* sanity checks for statistics */
+
+  assert(total <= (unsigned long)(av->max_total_mem));
+  assert(av->n_mmaps >= 0);
+  assert(av->n_mmaps <= av->n_mmaps_max);
+  assert(av->n_mmaps <= av->max_n_mmaps);
+
+  assert((unsigned long)(av->sbrked_mem) <=
+         (unsigned long)(av->max_sbrked_mem));
+
+  assert((unsigned long)(av->mmapped_mem) <=
+         (unsigned long)(av->max_mmapped_mem));
+
+  assert((unsigned long)(av->max_total_mem) >=
+         (unsigned long)(av->mmapped_mem) + (unsigned long)(av->sbrked_mem));
+}
+#endif
+
+
+/* ----------- Routines dealing with system allocation -------------- */
+
+/*
+  sYSTRIm is an inverse of sorts to sYSMALLOc.  It gives memory back
+  to the system (via negative arguments to sbrk) if there is unused
+  memory at the `high' end of the malloc pool. It is called
+  automatically by free() when top space exceeds the trim
+  threshold. It is also called by the public malloc_trim routine.  It
+  returns 1 if it actually released any memory, else 0.
+*/
+
+INLINE
+#if __STD_C
+static int sYSTRIm(size_t pad, mstate av)
+#else
+static int sYSTRIm(pad, av) size_t pad; mstate av;
+#endif
+{
+  long  top_size;        /* Amount of top-most memory */
+  long  extra;           /* Amount to release */
+  long  released;        /* Amount actually released */
+  char* current_brk;     /* address returned by pre-check sbrk call */
+  char* new_brk;         /* address returned by post-check sbrk call */
+  size_t pagesz;
+
+  pagesz = av->pagesize;
+  top_size = chunksize(av->top);
+  
+  /* Release in pagesize units, keeping at least one page */
+  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
+  
+  if (extra > 0) {
+    
+    /*
+      Only proceed if end of memory is where we last set it.
+      This avoids problems if there were foreign sbrk calls.
+    */
+    current_brk = (char*)(MORECORE(0));
+    if (current_brk == (char*)(av->top) + top_size) {
+      
+      /*
+        Attempt to release memory. We ignore MORECORE return value,
+        and instead call again to find out where new end of memory is.
+        This avoids problems if first call releases less than we asked,
+        of if failure somehow altered brk value. (We could still
+        encounter problems if it altered brk in some very bad way,
+        but the only thing we can do is adjust anyway, which will cause
+        some downstream failure.)
+      */
+      
+      MORECORE(-extra);
+      new_brk = (char*)(MORECORE(0));
+      
+      if (new_brk != (char*)MORECORE_FAILURE) {
+        released = (long)(current_brk - new_brk);
+        
+        if (released != 0) {
+          /* Success. Adjust top. */
+          av->sbrked_mem -= released;
+          set_head(av->top, (top_size - released) | PREV_INUSE);
+          check_malloc_state();
+          return 1;
+        }
+      }
+    }
+  }
+  return 0;
+}
+
+/*
+  ------------------------- malloc_consolidate -------------------------
+
+  malloc_consolidate is a specialized version of free() that tears
+  down chunks held in fastbins.  Free itself cannot be used for this
+  purpose since, among other things, it might place chunks back onto
+  fastbins.  So, instead, we need to use a minor variant of the same
+  code.
+  
+  Also, because this routine needs to be called the first time through
+  malloc anyway, it turns out to be the perfect place to trigger
+  initialization code.
+*/
+
+INLINE
+#if __STD_C
+static void malloc_consolidate(mstate av)
+#else
+static void malloc_consolidate(av) mstate av;
+#endif
+{
+  mfastbinptr*    fb;                 /* current fastbin being consolidated */
+  mfastbinptr*    maxfb;              /* last fastbin (for loop control) */
+  mchunkptr       p;                  /* current chunk being consolidated */
+  mchunkptr       nextp;              /* next chunk to consolidate */
+  mchunkptr       unsorted_bin;       /* bin header */
+  mchunkptr       first_unsorted;     /* chunk to link to */
+
+  /* These have same use as in free() */
+  mchunkptr       nextchunk;
+  INTERNAL_SIZE_T size;
+  INTERNAL_SIZE_T nextsize;
+  INTERNAL_SIZE_T prevsize;
+  int             nextinuse;
+  mchunkptr       bck;
+  mchunkptr       fwd;
+
+  /*
+    If max_fast is 0, we know that av hasn't
+    yet been initialized, in which case do so below
+  */
+
+  if (av->max_fast != 0) {
+    clear_fastchunks(av);
+
+    unsorted_bin = unsorted_chunks(av);
+
+    /*
+      Remove each chunk from fast bin and consolidate it, placing it
+      then in unsorted bin. Among other reasons for doing this,
+      placing in unsorted bin avoids needing to calculate actual bins
+      until malloc is sure that chunks aren't immediately going to be
+      reused anyway.
+    */
+    
+    maxfb = &(av->fastbins[fastbin_index(av->max_fast)]);
+    fb = &(av->fastbins[0]);
+    do {
+      if ( (p = *fb) != 0) {
+        *fb = 0;
+        
+        do {
+          check_inuse_chunk(p);
+          nextp = p->fd;
+          
+          /* Slightly streamlined version of consolidation code in free() */
+          size = p->size & ~PREV_INUSE;
+          nextchunk = chunk_at_offset(p, size);
+          nextsize = chunksize(nextchunk);
+          
+          if (!prev_inuse(p)) {
+            prevsize = p->prev_size;
+            size += prevsize;
+            p = chunk_at_offset(p, -((long) prevsize));
+            unlink(p, bck, fwd);
+          }
+          
+          if (nextchunk != av->top) {
+            nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
+            set_head(nextchunk, nextsize);
+            
+            if (!nextinuse) {
+              size += nextsize;
+              unlink(nextchunk, bck, fwd);
+            }
+            
+            first_unsorted = unsorted_bin->fd;
+            unsorted_bin->fd = p;
+            first_unsorted->bk = p;
+            
+            set_head(p, size | PREV_INUSE);
+            p->bk = unsorted_bin;
+            p->fd = first_unsorted;
+            set_foot(p, size);
+          }
+          
+          else {
+            size += nextsize;
+            set_head(p, size | PREV_INUSE);
+            av->top = p;
+          }
+          
+        } while ( (p = nextp) != 0);
+        
+      }
+    } while (fb++ != maxfb);
+  }
+  else {
+    malloc_init_state(av);
+    check_malloc_state();
+  }
+}
+
+/*
+  ------------------------------ free ------------------------------
+*/
+
+INLINE
+#if __STD_C
+void fREe(Void_t* mem)
+#else
+void fREe(mem) Void_t* mem;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  mchunkptr       p;           /* chunk corresponding to mem */
+  INTERNAL_SIZE_T size;        /* its size */
+  mfastbinptr*    fb;          /* associated fastbin */
+  mchunkptr       nextchunk;   /* next contiguous chunk */
+  INTERNAL_SIZE_T nextsize;    /* its size */
+  int             nextinuse;   /* true if nextchunk is used */
+  INTERNAL_SIZE_T prevsize;    /* size of previous contiguous chunk */
+  mchunkptr       bck;         /* misc temp for linking */
+  mchunkptr       fwd;         /* misc temp for linking */
+
+
+  /* free(0) has no effect */
+  if (mem != 0) {
+    p = mem2chunk(mem);
+    size = chunksize(p);
+
+    check_inuse_chunk(p);
+
+    /*
+      If eligible, place chunk on a fastbin so it can be found
+      and used quickly in malloc.
+    */
+
+    if ((unsigned long)(size) <= (unsigned long)(av->max_fast)
+
+#if TRIM_FASTBINS
+        /* 
+           If TRIM_FASTBINS set, don't place chunks
+           bordering top into fastbins
+        */
+        && (chunk_at_offset(p, size) != av->top)
+#endif
+        ) {
+
+      set_fastchunks(av);
+      fb = &(av->fastbins[fastbin_index(size)]);
+      p->fd = *fb;
+      *fb = p;
+    }
+
+    /*
+       Consolidate other non-mmapped chunks as they arrive.
+    */
+
+    else if (!chunk_is_mmapped(p)) {
+      nextchunk = chunk_at_offset(p, size);
+      nextsize = chunksize(nextchunk);
+
+      /* consolidate backward */
+      if (!prev_inuse(p)) {
+        prevsize = p->prev_size;
+        size += prevsize;
+        p = chunk_at_offset(p, -((long) prevsize));
+        unlink(p, bck, fwd);
+      }
+
+      if (nextchunk != av->top) {
+        /* get and clear inuse bit */
+        nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
+        set_head(nextchunk, nextsize);
+
+        /* consolidate forward */
+        if (!nextinuse) {
+          unlink(nextchunk, bck, fwd);
+          size += nextsize;
+        }
+
+        /*
+          Place the chunk in unsorted chunk list. Chunks are
+          not placed into regular bins until after they have
+          been given one chance to be used in malloc.
+        */
+
+        bck = unsorted_chunks(av);
+        fwd = bck->fd;
+        p->bk = bck;
+        p->fd = fwd;
+        bck->fd = p;
+        fwd->bk = p;
+
+        set_head(p, size | PREV_INUSE);
+        set_foot(p, size);
+        
+        check_free_chunk(p);
+      }
+
+      /*
+         If the chunk borders the current high end of memory,
+         consolidate into top
+      */
+
+      else {
+        size += nextsize;
+        set_head(p, size | PREV_INUSE);
+        av->top = p;
+        check_chunk(p);
+      }
+
+      /*
+        If freeing a large space, consolidate possibly-surrounding
+        chunks. Then, if the total unused topmost memory exceeds trim
+        threshold, ask malloc_trim to reduce top.
+
+        Unless max_fast is 0, we don't know if there are fastbins
+        bordering top, so we cannot tell for sure whether threshold
+        has been reached unless fastbins are consolidated.  But we
+        don't want to consolidate on each free.  As a compromise,
+        consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
+        is reached.
+      */
+
+      if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { 
+        if (have_fastchunks(av)) 
+          malloc_consolidate(av);
+
+#ifndef MORECORE_CANNOT_TRIM        
+        if ((unsigned long)(chunksize(av->top)) >= 
+            (unsigned long)(av->trim_threshold)) 
+          sYSTRIm(av->top_pad, av);
+#endif
+      }
+
+    }
+    /*
+      If the chunk was allocated via mmap, release via munmap()
+      Note that if HAVE_MMAP is false but chunk_is_mmapped is
+      true, then user must have overwritten memory. There's nothing
+      we can do to catch this error unless DEBUG is set, in which case
+      check_inuse_chunk (above) will have triggered error.
+    */
+
+    else {
+#if HAVE_MMAP
+      int ret;
+      INTERNAL_SIZE_T offset = p->prev_size;
+      av->n_mmaps--;
+      av->mmapped_mem -= (size + offset);
+      ret = munmap((char*)p - offset, size + offset);
+      /* munmap returns non-zero on failure */
+      assert(ret == 0);
+#endif
+    }
+  }
+}
+
+/*
+  sysmalloc handles malloc cases requiring more memory from the system.
+  On entry, it is assumed that av->top does not have enough
+  space to service request for nb bytes, thus requiring that av->top
+  be extended or replaced.
+*/
+
+INLINE
+#if __STD_C
+static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
+#else
+static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
+#endif
+{
+  mchunkptr       old_top;        /* incoming value of av->top */
+  INTERNAL_SIZE_T old_size;       /* its size */
+  char*           old_end;        /* its end address */
+
+  long            size;           /* arg to first MORECORE or mmap call */
+  char*           brk;            /* return value from MORECORE */
+
+  long            correction;     /* arg to 2nd MORECORE call */
+  char*           snd_brk;        /* 2nd return val */
+
+  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
+  INTERNAL_SIZE_T end_misalign;   /* partial page left at end of new space */
+  char*           aligned_brk;    /* aligned offset into brk */
+
+  mchunkptr       p;              /* the allocated/returned chunk */
+  mchunkptr       remainder;      /* remainder from allocation */
+  unsigned long   remainder_size; /* its size */
+
+  unsigned long   sum;            /* for updating stats */
+
+  size_t          pagemask  = av->pagesize - 1;
+
+
+#if HAVE_MMAP
+
+  /*
+    If have mmap, and the request size meets the mmap threshold, and
+    the system supports mmap, and there are few enough currently
+    allocated mmapped regions, try to directly map this request
+    rather than expanding top.
+  */
+
+  if ((unsigned long)(nb) >= (unsigned long)(av->mmap_threshold) &&
+      (av->n_mmaps < av->n_mmaps_max)) {
+
+    char* mm;             /* return value from mmap call*/
+
+    /*
+      Round up size to nearest page.  For mmapped chunks, the overhead
+      is one SIZE_SZ unit larger than for normal chunks, because there
+      is no following chunk whose prev_size field could be used.
+    */
+    size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
+
+    /* Don't try if size wraps around 0 */
+    if ((unsigned long)(size) > (unsigned long)(nb)) {
+
+      mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
+
+      if (mm != (char*)(MORECORE_FAILURE)) {
+
+        /*
+          The offset to the start of the mmapped region is stored
+          in the prev_size field of the chunk. This allows us to adjust
+          returned start address to meet alignment requirements here
+          and in memalign(), and still be able to compute proper
+          address argument for later munmap in free() and realloc().
+        */
+
+        front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
+        if (front_misalign > 0) {
+          correction = MALLOC_ALIGNMENT - front_misalign;
+          p = (mchunkptr)(mm + correction);
+          p->prev_size = correction;
+          set_head(p, (size - correction) |IS_MMAPPED);
+        }
+        else {
+          p = (mchunkptr)mm;
+          p->prev_size = 0;
+          set_head(p, size|IS_MMAPPED);
+        }
+
+        /* update statistics */
+
+        if (++av->n_mmaps > av->max_n_mmaps)
+          av->max_n_mmaps = av->n_mmaps;
+
+        sum = av->mmapped_mem += size;
+        if (sum > (unsigned long)(av->max_mmapped_mem))
+          av->max_mmapped_mem = sum;
+        sum += av->sbrked_mem;
+        if (sum > (unsigned long)(av->max_total_mem))
+          av->max_total_mem = sum;
+
+        check_chunk(p);
+
+        return chunk2mem(p);
+      }
+    }
+  }
+#endif
+
+  /* Record incoming configuration of top */
+
+  old_top  = av->top;
+  old_size = chunksize(old_top);
+  old_end  = (char*)(chunk_at_offset(old_top, old_size));
+
+  brk = snd_brk = (char*)(MORECORE_FAILURE);
+
+  /*
+     If not the first time through, we require old_size to be
+     at least MINSIZE and to have prev_inuse set.
+  */
+
+  assert((old_top == initial_top(av) && old_size == 0) ||
+         ((unsigned long) (old_size) >= MINSIZE &&
+          prev_inuse(old_top)));
+
+  /* Precondition: not enough current space to satisfy nb request */
+  assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
+
+  /* Precondition: all fastbins are consolidated */
+  assert(!have_fastchunks(av));
+
+
+  /* Request enough space for nb + pad + overhead */
+
+  size = nb + av->top_pad + MINSIZE;
+
+  /*
+    If contiguous, we can subtract out existing space that we hope to
+    combine with new space. We add it back later only if
+    we don't actually get contiguous space.
+  */
+
+  if (contiguous(av))
+    size -= old_size;
+
+  /*
+    Round to a multiple of page size.
+    If MORECORE is not contiguous, this ensures that we only call it
+    with whole-page arguments.  And if MORECORE is contiguous and
+    this is not first time through, this preserves page-alignment of
+    previous calls. Otherwise, we correct to page-align below.
+  */
+
+  size = (size + pagemask) & ~pagemask;
+
+  /*
+    Don't try to call MORECORE if argument is so big as to appear
+    negative. Note that since mmap takes size_t arg, it may succeed
+    below even if we cannot call MORECORE.
+  */
+
+  if (size > 0)
+    brk = (char*)(MORECORE(size));
+
+  /*
+    If have mmap, try using it as a backup when MORECORE fails or
+    cannot be used. This is worth doing on systems that have "holes" in
+    address space, so sbrk cannot extend to give contiguous space, but
+    space is available elsewhere.  Note that we ignore mmap max count
+    and threshold limits, since the space will not be used as a
+    segregated mmap region.
+  */
+
+#if HAVE_MMAP
+  if (brk == (char*)(MORECORE_FAILURE)) {
+
+    /* Cannot merge with old top, so add its size back in */
+    if (contiguous(av))
+      size = (size + old_size + pagemask) & ~pagemask;
+
+    /* If we are relying on mmap as backup, then use larger units */
+    if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
+      size = MMAP_AS_MORECORE_SIZE;
+
+    /* Don't try if size wraps around 0 */
+    if ((unsigned long)(size) > (unsigned long)(nb)) {
+
+      brk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
+
+      if (brk != (char*)(MORECORE_FAILURE)) {
+
+        /* We do not need, and cannot use, another sbrk call to find end */
+        snd_brk = brk + size;
+
+        /*
+           Record that we no longer have a contiguous sbrk region.
+           After the first time mmap is used as backup, we do not
+           ever rely on contiguous space since this could incorrectly
+           bridge regions.
+        */
+        set_noncontiguous(av);
+      }
+    }
+  }
+#endif
+
+  if (brk != (char*)(MORECORE_FAILURE)) {
+    av->sbrked_mem += size;
+
+    /*
+      If MORECORE extends previous space, we can likewise extend top size.
+    */
+
+    if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE)) {
+      set_head(old_top, (size + old_size) | PREV_INUSE);
+    }
+
+    /*
+      Otherwise, make adjustments:
+
+      * If the first time through or noncontiguous, we need to call sbrk
+        just to find out where the end of memory lies.
+
+      * We need to ensure that all returned chunks from malloc will meet
+        MALLOC_ALIGNMENT
+
+      * If there was an intervening foreign sbrk, we need to adjust sbrk
+        request size to account for fact that we will not be able to
+        combine new space with existing space in old_top.
+
+      * Almost all systems internally allocate whole pages at a time, in
+        which case we might as well use the whole last page of request.
+        So we allocate enough more memory to hit a page boundary now,
+        which in turn causes future contiguous calls to page-align.
+    */
+
+    else {
+      front_misalign = 0;
+      end_misalign = 0;
+      correction = 0;
+      aligned_brk = brk;
+
+      /* handle contiguous cases */
+      if (contiguous(av)) {
+
+        /* Guarantee alignment of first new chunk made from this space */
+
+        front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
+        if (front_misalign > 0) {
+
+          /*
+            Skip over some bytes to arrive at an aligned position.
+            We don't need to specially mark these wasted front bytes.
+            They will never be accessed anyway because
+            prev_inuse of av->top (and any chunk created from its start)
+            is always true after initialization.
+          */
+
+          correction = MALLOC_ALIGNMENT - front_misalign;
+          aligned_brk += correction;
+        }
+
+        /*
+          If this isn't adjacent to existing space, then we will not
+          be able to merge with old_top space, so must add to 2nd request.
+        */
+
+        correction += old_size;
+
+        /* Extend the end address to hit a page boundary */
+        end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
+        correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
+
+        assert(correction >= 0);
+        snd_brk = (char*)(MORECORE(correction));
+
+        /*
+          If can't allocate correction, try to at least find out current
+          brk.  It might be enough to proceed without failing.
+ 
+          Note that if second sbrk did NOT fail, we assume that space
+          is contiguous with first sbrk. This is a safe assumption unless
+          program is multithreaded but doesn't use locks and a foreign sbrk
+          occurred between our first and second calls.
+        */
+
+        if (snd_brk == (char*)(MORECORE_FAILURE)) {
+          correction = 0;
+          snd_brk = (char*)(MORECORE(0));
+        }
+      }
+
+      /* handle non-contiguous cases */
+      else {
+        /* MORECORE/mmap must correctly align */
+        assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
+
+        /* Find out current end of memory */
+        if (snd_brk == (char*)(MORECORE_FAILURE)) {
+          snd_brk = (char*)(MORECORE(0));
+        }
+      }
+
+      /* Adjust top based on results of second sbrk */
+      if (snd_brk != (char*)(MORECORE_FAILURE)) {
+        av->top = (mchunkptr)aligned_brk;
+        set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
+        av->sbrked_mem += correction;
+
+        /*
+          If not the first time through, we either have a
+          gap due to foreign sbrk or a non-contiguous region.  Insert a
+          double fencepost at old_top to prevent consolidation with space
+          we don't own. These fenceposts are artificial chunks that are
+          marked as inuse and are in any case too small to use.  We need
+          two to make sizes and alignments work out.
+        */
+
+        if (old_size != 0) {
+          /*
+             Shrink old_top to insert fenceposts, keeping size a
+             multiple of MALLOC_ALIGNMENT. We know there is at least
+             enough space in old_top to do this.
+          */
+          old_size = (old_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
+          set_head(old_top, old_size | PREV_INUSE);
+
+          /*
+            Note that the following assignments completely overwrite
+            old_top when old_size was previously MINSIZE.  This is
+            intentional. We need the fencepost, even if old_top otherwise gets
+            lost.
+          */
+          chunk_at_offset(old_top, old_size          )->size =
+            SIZE_SZ|PREV_INUSE;
+
+          chunk_at_offset(old_top, old_size + SIZE_SZ)->size =
+            SIZE_SZ|PREV_INUSE;
+
+          /* If possible, release the rest. */
+          if (old_size >= MINSIZE) {
+            fREe(chunk2mem(old_top));
+          }
+
+        }
+      }
+    }
+
+    /* Update statistics */
+    sum = av->sbrked_mem;
+    if (sum > (unsigned long)(av->max_sbrked_mem))
+      av->max_sbrked_mem = sum;
+
+    sum += av->mmapped_mem;
+    if (sum > (unsigned long)(av->max_total_mem))
+      av->max_total_mem = sum;
+
+    check_malloc_state();
+
+    /* finally, do the allocation */
+    p = av->top;
+    size = chunksize(p);
+
+    /* check that one of the above allocation paths succeeded */
+    if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
+      remainder_size = size - nb;
+      remainder = chunk_at_offset(p, nb);
+      av->top = remainder;
+      set_head(p, nb | PREV_INUSE);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      check_malloced_chunk(p, nb);
+      return chunk2mem(p);
+    }
+  }
+
+  /* catch all failure paths */
+  MALLOC_FAILURE_ACTION;
+  return 0;
+}
+
+
+/*
+  ------------------------------ malloc ------------------------------
+*/
+
+INLINE
+#if __STD_C
+Void_t* mALLOc(size_t bytes)
+#else
+  Void_t* mALLOc(bytes) size_t bytes;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  INTERNAL_SIZE_T nb;               /* normalized request size */
+  unsigned int    idx;              /* associated bin index */
+  mbinptr         bin;              /* associated bin */
+  mfastbinptr*    fb;               /* associated fastbin */
+
+  mchunkptr       victim;           /* inspected/selected chunk */
+  INTERNAL_SIZE_T size;             /* its size */
+  int             victim_index;     /* its bin index */
+
+  mchunkptr       remainder;        /* remainder from a split */
+  unsigned long   remainder_size;   /* its size */
+
+  unsigned int    block;            /* bit map traverser */
+  unsigned int    bit;              /* bit map traverser */
+  unsigned int    map;              /* current word of binmap */
+
+  mchunkptr       fwd;              /* misc temp for linking */
+  mchunkptr       bck;              /* misc temp for linking */
+
+  /*
+    Convert request size to internal form by adding SIZE_SZ bytes
+    overhead plus possibly more to obtain necessary alignment and/or
+    to obtain a size of at least MINSIZE, the smallest allocatable
+    size. Also, checked_request2size traps (returning 0) request sizes
+    that are so large that they wrap around zero when padded and
+    aligned.
+  */
+
+  checked_request2size(bytes, nb);
+
+  /*
+    If the size qualifies as a fastbin, first check corresponding bin.
+    This code is safe to execute even if av is not yet initialized, so we
+    can try it without checking, which saves some time on this fast path.
+  */
+
+  if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) {
+    fb = &(av->fastbins[(fastbin_index(nb))]);
+    if ( (victim = *fb) != 0) {
+      *fb = victim->fd;
+      check_remalloced_chunk(victim, nb);
+      return chunk2mem(victim);
+    }
+  }
+
+  /*
+    If a small request, check regular bin.  Since these "smallbins"
+    hold one size each, no searching within bins is necessary.
+    (For a large request, we need to wait until unsorted chunks are
+    processed to find best fit. But for small ones, fits are exact
+    anyway, so we can check now, which is faster.)
+  */
+
+  if (in_smallbin_range(nb)) {
+    idx = smallbin_index(nb);
+    bin = bin_at(av,idx);
+
+    if ( (victim = last(bin)) != bin) {
+      if (victim == 0) /* initialization check */
+        malloc_consolidate(av);
+      else {
+        bck = victim->bk;
+        set_inuse_bit_at_offset(victim, nb);
+        bin->bk = bck;
+        bck->fd = bin;
+
+        check_malloced_chunk(victim, nb);
+        return chunk2mem(victim);
+      }
+    }
+  }
+
+  /*
+     If this is a large request, consolidate fastbins before continuing.
+     While it might look excessive to kill all fastbins before
+     even seeing if there is space available, this avoids
+     fragmentation problems normally associated with fastbins.
+     Also, in practice, programs tend to have runs of either small or
+     large requests, but less often mixtures, so consolidation is not
+     invoked all that often in most programs. And the programs that
+     it is called frequently in otherwise tend to fragment.
+  */
+
+  else {
+    idx = largebin_index(nb);
+    if (have_fastchunks(av))
+      malloc_consolidate(av);
+  }
+
+  /*
+    Process recently freed or remaindered chunks, taking one only if
+    it is exact fit, or, if this a small request, the chunk is remainder from
+    the most recent non-exact fit.  Place other traversed chunks in
+    bins.  Note that this step is the only place in any routine where
+    chunks are placed in bins.
+
+    The outer loop here is needed because we might not realize until
+    near the end of malloc that we should have consolidated, so must
+    do so and retry. This happens at most once, and only when we would
+    otherwise need to expand memory to service a "small" request.
+  */
+
+  for(;;) {
+
+    while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
+      bck = victim->bk;
+      size = chunksize(victim);
+
+      /*
+         If a small request, try to use last remainder if it is the
+         only chunk in unsorted bin.  This helps promote locality for
+         runs of consecutive small requests. This is the only
+         exception to best-fit, and applies only when there is
+         no exact fit for a small chunk.
+      */
+
+      if (in_smallbin_range(nb) &&
+          bck == unsorted_chunks(av) &&
+          victim == av->last_remainder &&
+          (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
+
+        /* split and reattach remainder */
+        remainder_size = size - nb;
+        remainder = chunk_at_offset(victim, nb);
+        unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
+        av->last_remainder = remainder;
+        remainder->bk = remainder->fd = unsorted_chunks(av);
+
+        set_head(victim, nb | PREV_INUSE);
+        set_head(remainder, remainder_size | PREV_INUSE);
+        set_foot(remainder, remainder_size);
+
+        check_malloced_chunk(victim, nb);
+        return chunk2mem(victim);
+      }
+
+      /* remove from unsorted list */
+      unsorted_chunks(av)->bk = bck;
+      bck->fd = unsorted_chunks(av);
+
+      /* Take now instead of binning if exact fit */
+
+      if (size == nb) {
+        set_inuse_bit_at_offset(victim, size);
+        check_malloced_chunk(victim, nb);
+        return chunk2mem(victim);
+      }
+
+      /* place chunk in bin */
+
+      if (in_smallbin_range(size)) {
+        victim_index = smallbin_index(size);
+        bck = bin_at(av, victim_index);
+        fwd = bck->fd;
+      }
+      else {
+        victim_index = largebin_index(size);
+        bck = bin_at(av, victim_index);
+        fwd = bck->fd;
+
+        /* maintain large bins in sorted order */
+        if (fwd != bck) {
+          size |= PREV_INUSE; /* Or with inuse bit to speed comparisons */
+          /* if smaller than smallest, bypass loop below */
+          if ((unsigned long)(size) <= (unsigned long)(bck->bk->size)) {
+            fwd = bck;
+            bck = bck->bk;
+          }
+          else {
+            while ((unsigned long)(size) < (unsigned long)(fwd->size))
+              fwd = fwd->fd;
+            bck = fwd->bk;
+          }
+        }
+      }
+
+      mark_bin(av, victim_index);
+      victim->bk = bck;
+      victim->fd = fwd;
+      fwd->bk = victim;
+      bck->fd = victim;
+    }
+
+    /*
+      If a large request, scan through the chunks of current bin in
+      sorted order to find smallest that fits.  This is the only step
+      where an unbounded number of chunks might be scanned without doing
+      anything useful with them. However the lists tend to be short.
+    */
+
+    if (!in_smallbin_range(nb)) {
+      bin = bin_at(av, idx);
+
+      /* skip scan if empty or largest chunk is too small */
+      if ((victim = last(bin)) != bin &&
+          (unsigned long)(first(bin)->size) >= (unsigned long)(nb)) {
+
+        while (((unsigned long)(size = chunksize(victim)) <
+                (unsigned long)(nb)))
+          victim = victim->bk;
+
+        remainder_size = size - nb;
+        unlink(victim, bck, fwd);
+
+        /* Exhaust */
+        if (remainder_size < MINSIZE)  {
+          set_inuse_bit_at_offset(victim, size);
+          check_malloced_chunk(victim, nb);
+          return chunk2mem(victim);
+        }
+        /* Split */
+        else {
+          remainder = chunk_at_offset(victim, nb);
+          unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
+          remainder->bk = remainder->fd = unsorted_chunks(av);
+          set_head(victim, nb | PREV_INUSE);
+          set_head(remainder, remainder_size | PREV_INUSE);
+          set_foot(remainder, remainder_size);
+          check_malloced_chunk(victim, nb);
+          return chunk2mem(victim);
+        }
+      }
+    }
+
+    /*
+      Search for a chunk by scanning bins, starting with next largest
+      bin. This search is strictly by best-fit; i.e., the smallest
+      (with ties going to approximately the least recently used) chunk
+      that fits is selected.
+
+      The bitmap avoids needing to check that most blocks are nonempty.
+      The particular case of skipping all bins during warm-up phases
+      when no chunks have been returned yet is faster than it might look.
+    */
+
+    ++idx;
+    bin = bin_at(av,idx);
+    block = idx2block(idx);
+    map = av->binmap[block];
+    bit = idx2bit(idx);
+
+    for (;;) {
+
+      /* Skip rest of block if there are no more set bits in this block.  */
+      if (bit > map || bit == 0) {
+        do {
+          if (++block >= BINMAPSIZE)  /* out of bins */
+            goto use_top;
+        } while ( (map = av->binmap[block]) == 0);
+
+        bin = bin_at(av, (block << BINMAPSHIFT));
+        bit = 1;
+      }
+
+      /* Advance to bin with set bit. There must be one. */
+      while ((bit & map) == 0) {
+        bin = next_bin(bin);
+        bit <<= 1;
+        assert(bit != 0);
+      }
+
+      /* Inspect the bin. It is likely to be non-empty */
+      victim = last(bin);
+
+      /*  If a false alarm (empty bin), clear the bit. */
+      if (victim == bin) {
+        av->binmap[block] = map &= ~bit; /* Write through */
+        bin = next_bin(bin);
+        bit <<= 1;
+      }
+
+      else {
+        size = chunksize(victim);
+
+        /*  We know the first chunk in this bin is big enough to use. */
+        assert((unsigned long)(size) >= (unsigned long)(nb));
+
+        remainder_size = size - nb;
+
+        /* unlink */
+        bck = victim->bk;
+        bin->bk = bck;
+        bck->fd = bin;
+
+        /* Exhaust */
+        if (remainder_size < MINSIZE) {
+          set_inuse_bit_at_offset(victim, size);
+          check_malloced_chunk(victim, nb);
+          return chunk2mem(victim);
+        }
+
+        /* Split */
+        else {
+          remainder = chunk_at_offset(victim, nb);
+
+          unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
+          remainder->bk = remainder->fd = unsorted_chunks(av);
+          /* advertise as last remainder */
+          if (in_smallbin_range(nb))
+            av->last_remainder = remainder;
+
+          set_head(victim, nb | PREV_INUSE);
+          set_head(remainder, remainder_size | PREV_INUSE);
+          set_foot(remainder, remainder_size);
+          check_malloced_chunk(victim, nb);
+          return chunk2mem(victim);
+        }
+      }
+    }
+
+  use_top:
+    /*
+      If large enough, split off the chunk bordering the end of memory
+      (held in av->top). Note that this is in accord with the best-fit
+      search rule.  In effect, av->top is treated as larger (and thus
+      less well fitting) than any other available chunk since it can
+      be extended to be as large as necessary (up to system
+      limitations).
+
+      We require that av->top always exists (i.e., has size >=
+      MINSIZE) after initialization, so if it would otherwise be
+      exhuasted by current request, it is replenished. (The main
+      reason for ensuring it exists is that we may need MINSIZE space
+      to put in fenceposts in sysmalloc.)
+    */
+
+    victim = av->top;
+    size = chunksize(victim);
+
+    if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
+      remainder_size = size - nb;
+      remainder = chunk_at_offset(victim, nb);
+      av->top = remainder;
+      set_head(victim, nb | PREV_INUSE);
+      set_head(remainder, remainder_size | PREV_INUSE);
+
+      check_malloced_chunk(victim, nb);
+      return chunk2mem(victim);
+    }
+
+    /*
+      If there is space available in fastbins, consolidate and retry,
+      to possibly avoid expanding memory. This can occur only if nb is
+      in smallbin range so we didn't consolidate upon entry.
+    */
+
+    else if (have_fastchunks(av)) {
+      assert(in_smallbin_range(nb));
+      malloc_consolidate(av);
+      idx = smallbin_index(nb); /* restore original bin index */
+    }
+
+    /*
+       Otherwise, relay to handle system-dependent cases
+    */
+    else
+      return sYSMALLOc(nb, av);
+  }
+}
+
+/*
+  ------------------------------ realloc ------------------------------
+*/
+
+
+INLINE
+#if __STD_C
+Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
+#else
+Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
+#endif
+{
+  mstate av = get_malloc_state();
+
+  INTERNAL_SIZE_T  nb;              /* padded request size */
+
+  mchunkptr        oldp;            /* chunk corresponding to oldmem */
+  INTERNAL_SIZE_T  oldsize;         /* its size */
+
+  mchunkptr        newp;            /* chunk to return */
+  INTERNAL_SIZE_T  newsize;         /* its size */
+  Void_t*          newmem;          /* corresponding user mem */
+
+  mchunkptr        next;            /* next contiguous chunk after oldp */
+
+  mchunkptr        remainder;       /* extra space at end of newp */
+  unsigned long    remainder_size;  /* its size */
+
+  mchunkptr        bck;             /* misc temp for linking */
+  mchunkptr        fwd;             /* misc temp for linking */
+
+  unsigned long    copysize;        /* bytes to copy */
+  unsigned int     ncopies;         /* INTERNAL_SIZE_T words to copy */
+  INTERNAL_SIZE_T* s;               /* copy source */
+  INTERNAL_SIZE_T* d;               /* copy destination */
+
+
+#ifdef REALLOC_ZERO_BYTES_FREES
+  if (bytes == 0) {
+    fREe(oldmem);
+    return 0;
+  }
+#endif
+
+  /* realloc of null is supposed to be same as malloc */
+  if (oldmem == 0) return mALLOc(bytes);
+
+  checked_request2size(bytes, nb);
+
+  oldp    = mem2chunk(oldmem);
+  oldsize = chunksize(oldp);
+
+  check_inuse_chunk(oldp);
+
+  if (!chunk_is_mmapped(oldp)) {
+
+    if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
+      /* already big enough; split below */
+      newp = oldp;
+      newsize = oldsize;
+    }
+
+    else {
+      next = chunk_at_offset(oldp, oldsize);
+
+      /* Try to expand forward into top */
+      if (next == av->top &&
+          (unsigned long)(newsize = oldsize + chunksize(next)) >=
+          (unsigned long)(nb + MINSIZE)) {
+        set_head_size(oldp, nb);
+        av->top = chunk_at_offset(oldp, nb);
+        set_head(av->top, (newsize - nb) | PREV_INUSE);
+        return chunk2mem(oldp);
+      }
+
+      /* Try to expand forward into next chunk;  split off remainder below */
+      else if (next != av->top &&
+               !inuse(next) &&
+               (unsigned long)(newsize = oldsize + chunksize(next)) >=
+               (unsigned long)(nb)) {
+        newp = oldp;
+        unlink(next, bck, fwd);
+      }
+
+      /* allocate, copy, free */
+      else {
+        newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
+        if (newmem == 0)
+          return 0; /* propagate failure */
+
+        newp = mem2chunk(newmem);
+        newsize = chunksize(newp);
+
+        /*
+          Avoid copy if newp is next chunk after oldp.
+        */
+        if (newp == next) {
+          newsize += oldsize;
+          newp = oldp;
+        }
+        else {
+          /*
+            Unroll copy of <= 36 bytes (72 if 8byte sizes)
+            We know that contents have an odd number of
+            INTERNAL_SIZE_T-sized words; minimally 3.
+          */
+
+          copysize = oldsize - SIZE_SZ;
+          s = (INTERNAL_SIZE_T*)(oldmem);
+          d = (INTERNAL_SIZE_T*)(newmem);
+          ncopies = copysize / sizeof(INTERNAL_SIZE_T);
+          assert(ncopies >= 3);
+
+          if (ncopies > 9)
+            MALLOC_COPY(d, s, copysize);
+
+          else {
+            *(d+0) = *(s+0);
+            *(d+1) = *(s+1);
+            *(d+2) = *(s+2);
+            if (ncopies > 4) {
+              *(d+3) = *(s+3);
+              *(d+4) = *(s+4);
+              if (ncopies > 6) {
+                *(d+5) = *(s+5);
+                *(d+6) = *(s+6);
+                if (ncopies > 8) {
+                  *(d+7) = *(s+7);
+                  *(d+8) = *(s+8);
+                }
+              }
+            }
+          }
+
+          fREe(oldmem);
+          check_inuse_chunk(newp);
+          return chunk2mem(newp);
+        }
+      }
+    }
+
+    /* If possible, free extra space in old or extended chunk */
+
+    assert((unsigned long)(newsize) >= (unsigned long)(nb));
+
+    remainder_size = newsize - nb;
+
+    if (remainder_size < MINSIZE) { /* not enough extra to split off */
+      set_head_size(newp, newsize);
+      set_inuse_bit_at_offset(newp, newsize);
+    }
+    else { /* split remainder */
+      remainder = chunk_at_offset(newp, nb);
+      set_head_size(newp, nb);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      /* Mark remainder as inuse so free() won't complain */
+      set_inuse_bit_at_offset(remainder, remainder_size);
+      fREe(chunk2mem(remainder));
+    }
+
+    check_inuse_chunk(newp);
+    return chunk2mem(newp);
+  }
+
+  /*
+    Handle mmap cases
+  */
+
+  else {
+#if HAVE_MMAP
+
+#if HAVE_MREMAP
+    INTERNAL_SIZE_T offset = oldp->prev_size;
+    size_t pagemask = av->pagesize - 1;
+    char *cp;
+    unsigned long sum;
+
+    /* Note the extra SIZE_SZ overhead */
+    newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
+
+    /* don't need to remap if still within same page */
+    if (oldsize == newsize - offset)
+      return oldmem;
+
+    cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
+
+    if (cp != (char*)MORECORE_FAILURE) {
+
+      newp = (mchunkptr)(cp + offset);
+      set_head(newp, (newsize - offset)|IS_MMAPPED);
+
+      assert(aligned_OK(chunk2mem(newp)));
+      assert((newp->prev_size == offset));
+
+      /* update statistics */
+      sum = av->mmapped_mem += newsize - oldsize;
+      if (sum > (unsigned long)(av->max_mmapped_mem))
+        av->max_mmapped_mem = sum;
+      sum += av->sbrked_mem;
+      if (sum > (unsigned long)(av->max_total_mem))
+        av->max_total_mem = sum;
+
+      return chunk2mem(newp);
+    }
+#endif
+
+    /* Note the extra SIZE_SZ overhead. */
+    if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
+      newmem = oldmem; /* do nothing */
+    else {
+      /* Must alloc, copy, free. */
+      newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
+      if (newmem != 0) {
+        MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
+        fREe(oldmem);
+      }
+    }
+    return newmem;
+
+#else
+    /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
+    check_malloc_state();
+    MALLOC_FAILURE_ACTION;
+    return 0;
+#endif
+  }
+}
+
+/*
+  ------------------------------ memalign ------------------------------
+*/
+
+INLINE
+#if __STD_C
+Void_t* mEMALIGn(size_t alignment, size_t bytes)
+#else
+Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
+#endif
+{
+  INTERNAL_SIZE_T nb;             /* padded  request size */
+  char*           m;              /* memory returned by malloc call */
+  mchunkptr       p;              /* corresponding chunk */
+  char*           brk;            /* alignment point within p */
+  mchunkptr       newp;           /* chunk to return */
+  INTERNAL_SIZE_T newsize;        /* its size */
+  INTERNAL_SIZE_T leadsize;       /* leading space before alignment point */
+  mchunkptr       remainder;      /* spare room at end to split off */
+  unsigned long   remainder_size; /* its size */
+  INTERNAL_SIZE_T size;
+
+  /* If need less alignment than we give anyway, just relay to malloc */
+
+  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
+
+  /* Otherwise, ensure that it is at least a minimum chunk size */
+
+  if (alignment <  MINSIZE) alignment = MINSIZE;
+
+  /* Make sure alignment is power of 2 (in case MINSIZE is not).  */
+  if ((alignment & (alignment - 1)) != 0) {
+    size_t a = MALLOC_ALIGNMENT * 2;
+    while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
+    alignment = a;
+  }
+
+  checked_request2size(bytes, nb);
+
+  /*
+    Strategy: find a spot within that chunk that meets the alignment
+    request, and then possibly free the leading and trailing space.
+  */
+
+
+  /* Call malloc with worst case padding to hit alignment. */
+
+  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
+
+  if (m == 0) return 0; /* propagate failure */
+
+  p = mem2chunk(m);
+
+  if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
+
+    /*
+      Find an aligned spot inside chunk.  Since we need to give back
+      leading space in a chunk of at least MINSIZE, if the first
+      calculation places us at a spot with less than MINSIZE leader,
+      we can move to the next aligned spot -- we've allocated enough
+      total room so that this is always possible.
+    */
+
+    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
+                           -((signed long) alignment));
+    if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
+      brk += alignment;
+
+    newp = (mchunkptr)brk;
+    leadsize = brk - (char*)(p);
+    newsize = chunksize(p) - leadsize;
+
+    /* For mmapped chunks, just adjust offset */
+    if (chunk_is_mmapped(p)) {
+      newp->prev_size = p->prev_size + leadsize;
+      set_head(newp, newsize|IS_MMAPPED);
+      return chunk2mem(newp);
+    }
+
+    /* Otherwise, give back leader, use the rest */
+    set_head(newp, newsize | PREV_INUSE);
+    set_inuse_bit_at_offset(newp, newsize);
+    set_head_size(p, leadsize);
+    fREe(chunk2mem(p));
+    p = newp;
+
+    assert (newsize >= nb &&
+            (((unsigned long)(chunk2mem(p))) % alignment) == 0);
+  }
+
+  /* Also give back spare room at the end */
+  if (!chunk_is_mmapped(p)) {
+    size = chunksize(p);
+    if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
+      remainder_size = size - nb;
+      remainder = chunk_at_offset(p, nb);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      set_head_size(p, nb);
+      fREe(chunk2mem(remainder));
+    }
+  }
+
+  check_inuse_chunk(p);
+  return chunk2mem(p);
+}
+
+/*
+  ------------------------------ calloc ------------------------------
+*/
+
+INLINE
+#if __STD_C
+Void_t* cALLOc(size_t n_elements, size_t elem_size)
+#else
+Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
+#endif
+{
+  mchunkptr p;
+  unsigned long clearsize;
+  unsigned long nclears;
+  INTERNAL_SIZE_T* d;
+
+  Void_t* mem = mALLOc(n_elements * elem_size);
+
+  if (mem != 0) {
+    p = mem2chunk(mem);
+
+    if (!chunk_is_mmapped(p))
+    {
+      /*
+        Unroll clear of <= 36 bytes (72 if 8byte sizes)
+        We know that contents have an odd number of
+        INTERNAL_SIZE_T-sized words; minimally 3.
+      */
+
+      d = (INTERNAL_SIZE_T*)mem;
+      clearsize = chunksize(p) - SIZE_SZ;
+      nclears = clearsize / sizeof(INTERNAL_SIZE_T);
+      assert(nclears >= 3);
+
+      if (nclears > 9)
+        MALLOC_ZERO(d, clearsize);
+
+      else {
+        *(d+0) = 0;
+        *(d+1) = 0;
+        *(d+2) = 0;
+        if (nclears > 4) {
+          *(d+3) = 0;
+          *(d+4) = 0;
+          if (nclears > 6) {
+            *(d+5) = 0;
+            *(d+6) = 0;
+            if (nclears > 8) {
+              *(d+7) = 0;
+              *(d+8) = 0;
+            }
+          }
+        }
+      }
+    }
+#if ! MMAP_CLEARS
+    else
+    {
+      d = (INTERNAL_SIZE_T*)mem;
+      clearsize = chunksize(p) - 2 * SIZE_SZ;
+      MALLOC_ZERO(d, clearsize);
+    }
+#endif
+  }
+  return mem;
+}
+
+/*
+  ------------------------------ cfree ------------------------------
+*/
+
+INLINE
+#if __STD_C
+void cFREe(Void_t *mem)
+#else
+void cFREe(mem) Void_t *mem;
+#endif
+{
+  fREe(mem);
+}
+
+/*
+  ------------------------------ ialloc ------------------------------
+  ialloc provides common support for independent_X routines, handling all of
+  the combinations that can result.
+
+  The opts arg has:
+    bit 0 set if all elements are same size (using sizes[0])
+    bit 1 set if elements should be zeroed
+*/
+
+
+INLINE
+#if __STD_C
+static Void_t** iALLOc(size_t n_elements,
+                       size_t* sizes,
+                       int opts,
+                       Void_t* chunks[])
+#else
+static Void_t** iALLOc(n_elements, sizes, opts, chunks) size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
+#endif
+{
+  mstate av = get_malloc_state();
+  INTERNAL_SIZE_T element_size;   /* chunksize of each element, if all same */
+  INTERNAL_SIZE_T contents_size;  /* total size of elements */
+  INTERNAL_SIZE_T array_size;     /* request size of pointer array */
+  Void_t*         mem;            /* malloced aggregate space */
+  mchunkptr       p;              /* corresponding chunk */
+  INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
+  Void_t**        marray;         /* either "chunks" or malloced ptr array */
+  mchunkptr       array_chunk;    /* chunk for malloced ptr array */
+  int             mmx;            /* to disable mmap */
+  INTERNAL_SIZE_T size;
+  size_t          i;
+
+  /* Ensure initialization/consolidation */
+  if (have_fastchunks(av)) malloc_consolidate(av);
+
+  /* compute array length, if needed */
+  if (chunks != 0) {
+    if (n_elements == 0)
+      return chunks; /* nothing to do */
+    marray = chunks;
+    array_size = 0;
+  }
+  else {
+    /* if empty req, must still return chunk representing empty array */
+    if (n_elements == 0)
+      return (Void_t**) mALLOc(0);
+    marray = 0;
+    array_size = request2size(n_elements * (sizeof(Void_t*)));
+  }
+
+  /* compute total element size */
+  if (opts & 0x1) { /* all-same-size */
+    element_size = request2size(*sizes);
+    contents_size = n_elements * element_size;
+  }
+  else { /* add up all the sizes */
+    element_size = 0;
+    contents_size = 0;
+    for (i = 0; i != n_elements; ++i)
+      contents_size += request2size(sizes[i]);
+  }
+
+  /* subtract out alignment bytes from total to minimize overallocation */
+  size = contents_size + array_size - MALLOC_ALIGN_MASK;
+
+  /*
+     Allocate the aggregate chunk.
+     But first disable mmap so malloc won't use it, since
+     we would not be able to later free/realloc space internal
+     to a segregated mmap region.
+ */
+  mmx = av->n_mmaps_max;   /* disable mmap */
+  av->n_mmaps_max = 0;
+  mem = mALLOc(size);
+  av->n_mmaps_max = mmx;   /* reset mmap */
+  if (mem == 0)
+    return 0;
+
+  p = mem2chunk(mem);
+  assert(!chunk_is_mmapped(p));
+  remainder_size = chunksize(p);
+
+  if (opts & 0x2) {       /* optionally clear the elements */
+    MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
+  }
+
+  /* If not provided, allocate the pointer array as final part of chunk */
+  if (marray == 0) {
+    array_chunk = chunk_at_offset(p, contents_size);
+    marray = (Void_t**) (chunk2mem(array_chunk));
+    set_head(array_chunk, (remainder_size - contents_size) | PREV_INUSE);
+    remainder_size = contents_size;
+  }
+
+  /* split out elements */
+  for (i = 0; ; ++i) {
+    marray[i] = chunk2mem(p);
+    if (i != n_elements-1) {
+      if (element_size != 0)
+        size = element_size;
+      else
+        size = request2size(sizes[i]);
+      remainder_size -= size;
+      set_head(p, size | PREV_INUSE);
+      p = chunk_at_offset(p, size);
+    }
+    else { /* the final element absorbs any overallocation slop */
+      set_head(p, remainder_size | PREV_INUSE);
+      break;
+    }
+  }
+
+#ifdef DEBUG
+  if (marray != chunks) {
+    /* final element must have exactly exhausted chunk */
+    if (element_size != 0)
+      assert(remainder_size == element_size);
+    else
+      assert(remainder_size == request2size(sizes[i]));
+    check_inuse_chunk(mem2chunk(marray));
+  }
+
+  for (i = 0; i != n_elements; ++i)
+    check_inuse_chunk(mem2chunk(marray[i]));
+#endif
+
+  return marray;
+}
+
+
+/*
+  ------------------------- independent_calloc -------------------------
+*/
+
+INLINE
+#if __STD_C
+Void_t** iCALLOc(size_t n_elements, size_t elem_size, Void_t* chunks[])
+#else
+Void_t** iCALLOc(n_elements, elem_size, chunks) size_t n_elements; size_t elem_size; Void_t* chunks[];
+#endif
+{
+  size_t sz = elem_size; /* serves as 1-element array */
+  /* opts arg of 3 means all elements are same size, and should be cleared */
+  return iALLOc(n_elements, &sz, 3, chunks);
+}
+
+/*
+  ------------------------- independent_comalloc -------------------------
+*/
+
+INLINE
+#if __STD_C
+Void_t** iCOMALLOc(size_t n_elements, size_t sizes[], Void_t* chunks[])
+#else
+Void_t** iCOMALLOc(n_elements, sizes, chunks) size_t n_elements; size_t sizes[]; Void_t* chunks[];
+#endif
+{
+  return iALLOc(n_elements, sizes, 0, chunks);
+}
+
+
+/*
+  ------------------------------ valloc ------------------------------
+*/
+
+INLINE
+#if __STD_C
+Void_t* vALLOc(size_t bytes)
+#else
+Void_t* vALLOc(bytes) size_t bytes;
+#endif
+{
+  /* Ensure initialization/consolidation */
+  mstate av = get_malloc_state();
+  if (have_fastchunks(av)) malloc_consolidate(av);
+  return mEMALIGn(av->pagesize, bytes);
+}
+
+/*
+  ------------------------------ pvalloc ------------------------------
+*/
+
+
+#if __STD_C
+Void_t* pVALLOc(size_t bytes)
+#else
+Void_t* pVALLOc(bytes) size_t bytes;
+#endif
+{
+  mstate av = get_malloc_state();
+  size_t pagesz;
+
+  /* Ensure initialization/consolidation */
+  if (have_fastchunks(av)) malloc_consolidate(av);
+  pagesz = av->pagesize;
+  return mEMALIGn(pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
+}
+
+
+/*
+  ------------------------------ malloc_trim ------------------------------
+*/
+
+INLINE
+#if __STD_C
+int mTRIm(size_t pad)
+#else
+int mTRIm(pad) size_t pad;
+#endif
+{
+  mstate av = get_malloc_state();
+  /* Ensure initialization/consolidation */
+  malloc_consolidate(av);
+
+#ifndef MORECORE_CANNOT_TRIM
+  return sYSTRIm(pad, av);
+#else
+  return 0;
+#endif
+}
+
+
+/*
+  ------------------------- malloc_usable_size -------------------------
+*/
+
+INLINE
+#if __STD_C
+size_t mUSABLe(Void_t* mem)
+#else
+size_t mUSABLe(mem) Void_t* mem;
+#endif
+{
+  mchunkptr p;
+  if (mem != 0) {
+    p = mem2chunk(mem);
+    if (chunk_is_mmapped(p))
+      return chunksize(p) - 2*SIZE_SZ;
+    else if (inuse(p))
+      return chunksize(p) - SIZE_SZ;
+  }
+  return 0;
+}
+
+/*
+  ------------------------------ mallinfo ------------------------------
+*/
+
+struct mallinfo mALLINFo()
+{
+  mstate av = get_malloc_state();
+  struct mallinfo mi;
+  unsigned int i;
+  mbinptr b;
+  mchunkptr p;
+  INTERNAL_SIZE_T avail;
+  INTERNAL_SIZE_T fastavail;
+  int nblocks;
+  int nfastblocks;
+
+  /* Ensure initialization */
+  if (av->top == 0)  malloc_consolidate(av);
+
+  check_malloc_state();
+
+  /* Account for top */
+  avail = chunksize(av->top);
+  nblocks = 1;  /* top always exists */
+
+  /* traverse fastbins */
+  nfastblocks = 0;
+  fastavail = 0;
+
+  for (i = 0; i < NFASTBINS; ++i) {
+    for (p = av->fastbins[i]; p != 0; p = p->fd) {
+      ++nfastblocks;
+      fastavail += chunksize(p);
+    }
+  }
+
+  avail += fastavail;
+
+  /* traverse regular bins */
+  for (i = 1; i < NBINS; ++i) {
+    b = bin_at(av, i);
+    for (p = last(b); p != b; p = p->bk) {
+      ++nblocks;
+      avail += chunksize(p);
+    }
+  }
+
+  mi.smblks = nfastblocks;
+  mi.ordblks = nblocks;
+  mi.fordblks = avail;
+  mi.uordblks = av->sbrked_mem - avail;
+  mi.arena = av->sbrked_mem;
+  mi.hblks = av->n_mmaps;
+  mi.hblkhd = av->mmapped_mem;
+  mi.fsmblks = fastavail;
+  mi.keepcost = chunksize(av->top);
+  mi.usmblks = av->max_total_mem;
+  return mi;
+}
+
+/*
+  ------------------------------ malloc_stats ------------------------------
+*/
+
+void mSTATs()
+{
+  struct mallinfo mi = mALLINFo();
+
+#ifdef WIN32
+  {
+    unsigned long free, reserved, committed;
+    vminfo (&free, &reserved, &committed);
+    fprintf(stderr, "free bytes       = %10lu\n",
+            free);
+    fprintf(stderr, "reserved bytes   = %10lu\n",
+            reserved);
+    fprintf(stderr, "committed bytes  = %10lu\n",
+            committed);
+  }
+#endif
+
+
+  fprintf(stderr, "max system bytes = %10lu\n",
+          (unsigned long)(mi.usmblks));
+  fprintf(stderr, "system bytes     = %10lu\n",
+          (unsigned long)(mi.arena + mi.hblkhd));
+  fprintf(stderr, "in use bytes     = %10lu\n",
+          (unsigned long)(mi.uordblks + mi.hblkhd));
+
+
+#ifdef WIN32
+  {
+    unsigned long kernel, user;
+    if (cpuinfo (TRUE, &kernel, &user)) {
+      fprintf(stderr, "kernel ms        = %10lu\n",
+              kernel);
+      fprintf(stderr, "user ms          = %10lu\n",
+              user);
+    }
+  }
+#endif
+}
+
+
+/*
+  ------------------------------ mallopt ------------------------------
+*/
+
+INLINE
+#if __STD_C
+int mALLOPt(int param_number, int value)
+#else
+int mALLOPt(param_number, value) int param_number; int value;
+#endif
+{
+  mstate av = get_malloc_state();
+  /* Ensure initialization/consolidation */
+  malloc_consolidate(av);
+
+  switch(param_number) {
+  case M_MXFAST:
+    if (value >= 0 && value <= MAX_FAST_SIZE) {
+      set_max_fast(av, value);
+      return 1;
+    }
+    else
+      return 0;
+
+  case M_TRIM_THRESHOLD:
+    av->trim_threshold = value;
+    return 1;
+
+  case M_TOP_PAD:
+    av->top_pad = value;
+    return 1;
+
+  case M_MMAP_THRESHOLD:
+    av->mmap_threshold = value;
+    return 1;
+
+  case M_MMAP_MAX:
+#if !HAVE_MMAP
+    if (value != 0)
+      return 0;
+#endif
+    av->n_mmaps_max = value;
+    return 1;
+
+  default:
+    return 0;
+  }
+}
+
+
+/*
+  -------------------- Alternative MORECORE functions --------------------
+*/
+
+
+/*
+  General Requirements for MORECORE.
+
+  The MORECORE function must have the following properties:
+
+  If MORECORE_CONTIGUOUS is false:
+
+    * MORECORE must allocate in multiples of pagesize. It will
+      only be called with arguments that are multiples of pagesize.
+
+    * MORECORE(0) must return an address that is at least
+      MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
+
+  else (i.e. If MORECORE_CONTIGUOUS is true):
+
+    * Consecutive calls to MORECORE with positive arguments
+      return increasing addresses, indicating that space has been
+      contiguously extended.
+
+    * MORECORE need not allocate in multiples of pagesize.
+      Calls to MORECORE need not have args of multiples of pagesize.
+
+    * MORECORE need not page-align.
+
+  In either case:
+
+    * MORECORE may allocate more memory than requested. (Or even less,
+      but this will generally result in a malloc failure.)
+
+    * MORECORE must not allocate memory when given argument zero, but
+      instead return one past the end address of memory from previous
+      nonzero call. This malloc does NOT call MORECORE(0)
+      until at least one call with positive arguments is made, so
+      the initial value returned is not important.
+
+    * Even though consecutive calls to MORECORE need not return contiguous
+      addresses, it must be OK for malloc'ed chunks to span multiple
+      regions in those cases where they do happen to be contiguous.
+
+    * MORECORE need not handle negative arguments -- it may instead
+      just return MORECORE_FAILURE when given negative arguments.
+      Negative arguments are always multiples of pagesize. MORECORE
+      must not misinterpret negative args as large positive unsigned
+      args. You can suppress all such calls from even occurring by defining
+      MORECORE_CANNOT_TRIM,
+
+  There is some variation across systems about the type of the
+  argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
+  actually be size_t, because sbrk supports negative args, so it is
+  normally the signed type of the same width as size_t (sometimes
+  declared as "intptr_t", and sometimes "ptrdiff_t").  It doesn't much
+  matter though. Internally, we use "long" as arguments, which should
+  work across all reasonable possibilities.
+
+  Additionally, if MORECORE ever returns failure for a positive
+  request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
+  system allocator. This is a useful backup strategy for systems with
+  holes in address spaces -- in this case sbrk cannot contiguously
+  expand the heap, but mmap may be able to map noncontiguous space.
+
+  If you'd like mmap to ALWAYS be used, you can define MORECORE to be
+  a function that always returns MORECORE_FAILURE.
+
+  If you are using this malloc with something other than sbrk (or its
+  emulation) to supply memory regions, you probably want to set
+  MORECORE_CONTIGUOUS as false.  As an example, here is a custom
+  allocator kindly contributed for pre-OSX macOS.  It uses virtually
+  but not necessarily physically contiguous non-paged memory (locked
+  in, present and won't get swapped out).  You can use it by
+  uncommenting this section, adding some #includes, and setting up the
+  appropriate defines above:
+
+      #define MORECORE osMoreCore
+      #define MORECORE_CONTIGUOUS 0
+
+  There is also a shutdown routine that should somehow be called for
+  cleanup upon program exit.
+
+  #define MAX_POOL_ENTRIES 100
+  #define MINIMUM_MORECORE_SIZE  (64 * 1024)
+  static int next_os_pool;
+  void *our_os_pools[MAX_POOL_ENTRIES];
+
+  void *osMoreCore(int size)
+  {
+    void *ptr = 0;
+    static void *sbrk_top = 0;
+
+    if (size > 0)
+    {
+      if (size < MINIMUM_MORECORE_SIZE)
+         size = MINIMUM_MORECORE_SIZE;
+      if (CurrentExecutionLevel() == kTaskLevel)
+         ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
+      if (ptr == 0)
+      {
+        return (void *) MORECORE_FAILURE;
+      }
+      // save ptrs so they can be freed during cleanup
+      our_os_pools[next_os_pool] = ptr;
+      next_os_pool++;
+      ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
+      sbrk_top = (char *) ptr + size;
+      return ptr;
+    }
+    else if (size < 0)
+    {
+      // we don't currently support shrink behavior
+      return (void *) MORECORE_FAILURE;
+    }
+    else
+    {
+      return sbrk_top;
+    }
+  }
+
+  // cleanup any allocated memory pools
+  // called as last thing before shutting down driver
+
+  void osCleanupMem(void)
+  {
+    void **ptr;
+
+    for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
+      if (*ptr)
+      {
+         PoolDeallocate(*ptr);
+         *ptr = 0;
+      }
+  }
+
+*/
+
+
+/*
+  --------------------------------------------------------------
+
+  Emulation of sbrk for win32.
+  Donated by J. Walter <Walter@GeNeSys-e.de>.
+  For additional information about this code, and malloc on Win32, see
+     http://www.genesys-e.de/jwalter/
+*/
+
+
+#ifdef WIN32
+
+#ifdef _DEBUG
+/* #define TRACE */
+#endif
+
+/* Support for USE_MALLOC_LOCK */
+#ifdef USE_MALLOC_LOCK
+
+/* Wait for spin lock */
+static int slwait (int *sl) {
+    while (InterlockedCompareExchange ((void **) sl, (void *) 1, (void *) 0) != 0)
+	    Sleep (0);
+    return 0;
+}
+
+/* Release spin lock */
+static int slrelease (int *sl) {
+    InterlockedExchange (sl, 0);
+    return 0;
+}
+
+#ifdef NEEDED
+/* Spin lock for emulation code */
+static int g_sl;
+#endif
+
+#endif /* USE_MALLOC_LOCK */
+
+/* getpagesize for windows */
+static long getpagesize (void) {
+    static long g_pagesize = 0;
+    if (! g_pagesize) {
+        SYSTEM_INFO system_info;
+        GetSystemInfo (&system_info);
+        g_pagesize = system_info.dwPageSize;
+    }
+    return g_pagesize;
+}
+static long getregionsize (void) {
+    static long g_regionsize = 0;
+    if (! g_regionsize) {
+        SYSTEM_INFO system_info;
+        GetSystemInfo (&system_info);
+        g_regionsize = system_info.dwAllocationGranularity;
+    }
+    return g_regionsize;
+}
+
+/* A region list entry */
+typedef struct _region_list_entry {
+    void *top_allocated;
+    void *top_committed;
+    void *top_reserved;
+    long reserve_size;
+    struct _region_list_entry *previous;
+} region_list_entry;
+
+/* Allocate and link a region entry in the region list */
+static int region_list_append (region_list_entry **last, void *base_reserved, long reserve_size) {
+    region_list_entry *next = HeapAlloc (GetProcessHeap (), 0, sizeof (region_list_entry));
+    if (! next)
+        return FALSE;
+    next->top_allocated = (char *) base_reserved;
+    next->top_committed = (char *) base_reserved;
+    next->top_reserved = (char *) base_reserved + reserve_size;
+    next->reserve_size = reserve_size;
+    next->previous = *last;
+    *last = next;
+    return TRUE;
+}
+/* Free and unlink the last region entry from the region list */
+static int region_list_remove (region_list_entry **last) {
+    region_list_entry *previous = (*last)->previous;
+    if (! HeapFree (GetProcessHeap (), sizeof (region_list_entry), *last))
+        return FALSE;
+    *last = previous;
+    return TRUE;
+}
+
+#define CEIL(size,to)	(((size)+(to)-1)&~((to)-1))
+#define FLOOR(size,to)	((size)&~((to)-1))
+
+#define SBRK_SCALE  0
+/* #define SBRK_SCALE  1 */
+/* #define SBRK_SCALE  2 */
+/* #define SBRK_SCALE  4  */
+
+/* sbrk for windows */
+static void *sbrk (long size) {
+    static long g_pagesize, g_my_pagesize;
+    static long g_regionsize, g_my_regionsize;
+    static region_list_entry *g_last;
+    void *result = (void *) MORECORE_FAILURE;
+#ifdef TRACE
+    printf ("sbrk %d\n", size);
+#endif
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Wait for spin lock */
+    slwait (&g_sl);
+#endif
+    /* First time initialization */
+    if (! g_pagesize) {
+        g_pagesize = getpagesize ();
+        g_my_pagesize = g_pagesize << SBRK_SCALE;
+    }
+    if (! g_regionsize) {
+        g_regionsize = getregionsize ();
+        g_my_regionsize = g_regionsize << SBRK_SCALE;
+    }
+    if (! g_last) {
+        if (! region_list_append (&g_last, 0, 0))
+           goto sbrk_exit;
+    }
+    /* Assert invariants */
+    assert (g_last);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated &&
+            g_last->top_allocated <= g_last->top_committed);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed &&
+            g_last->top_committed <= g_last->top_reserved &&
+            (unsigned) g_last->top_committed % g_pagesize == 0);
+    assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
+    assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
+    /* Allocation requested? */
+    if (size >= 0) {
+        /* Allocation size is the requested size */
+        long allocate_size = size;
+        /* Compute the size to commit */
+        long to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
+        /* Do we reach the commit limit? */
+        if (to_commit > 0) {
+            /* Round size to commit */
+            long commit_size = CEIL (to_commit, g_my_pagesize);
+            /* Compute the size to reserve */
+            long to_reserve = (char *) g_last->top_committed + commit_size - (char *) g_last->top_reserved;
+            /* Do we reach the reserve limit? */
+            if (to_reserve > 0) {
+                /* Compute the remaining size to commit in the current region */
+                long remaining_commit_size = (char *) g_last->top_reserved - (char *) g_last->top_committed;
+                if (remaining_commit_size > 0) {
+                    /* Assert preconditions */
+                    assert ((unsigned) g_last->top_committed % g_pagesize == 0);
+                    assert (0 < remaining_commit_size && remaining_commit_size % g_pagesize == 0); {
+                        /* Commit this */
+                        void *base_committed = VirtualAlloc (g_last->top_committed, remaining_commit_size,
+							                                 MEM_COMMIT, PAGE_READWRITE);
+                        /* Check returned pointer for consistency */
+                        if (base_committed != g_last->top_committed)
+                            goto sbrk_exit;
+                        /* Assert postconditions */
+                        assert ((unsigned) base_committed % g_pagesize == 0);
+#ifdef TRACE
+                        printf ("Commit %p %d\n", base_committed, remaining_commit_size);
+#endif
+                        /* Adjust the regions commit top */
+                        g_last->top_committed = (char *) base_committed + remaining_commit_size;
+                    }
+                } {
+                    /* Now we are going to search and reserve. */
+                    int contiguous = -1;
+                    int found = FALSE;
+                    MEMORY_BASIC_INFORMATION memory_info;
+                    void *base_reserved;
+                    long reserve_size;
+                    do {
+                        /* Assume contiguous memory */
+                        contiguous = TRUE;
+                        /* Round size to reserve */
+                        reserve_size = CEIL (to_reserve, g_my_regionsize);
+                        /* Start with the current region's top */
+                        memory_info.BaseAddress = g_last->top_reserved;
+                        /* Assert preconditions */
+                        assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
+                        assert (0 < reserve_size && reserve_size % g_regionsize == 0);
+                        while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) {
+                            /* Assert postconditions */
+                            assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
+#ifdef TRACE
+                            printf ("Query %p %d %s\n", memory_info.BaseAddress, memory_info.RegionSize,
+                                    memory_info.State == MEM_FREE ? "FREE":
+                                    (memory_info.State == MEM_RESERVE ? "RESERVED":
+                                     (memory_info.State == MEM_COMMIT ? "COMMITTED": "?")));
+#endif
+                            /* Region is free, well aligned and big enough: we are done */
+                            if (memory_info.State == MEM_FREE &&
+                                (unsigned) memory_info.BaseAddress % g_regionsize == 0 &&
+                                memory_info.RegionSize >= (unsigned) reserve_size) {
+                                found = TRUE;
+                                break;
+                            }
+                            /* From now on we can't get contiguous memory! */
+                            contiguous = FALSE;
+                            /* Recompute size to reserve */
+                            reserve_size = CEIL (allocate_size, g_my_regionsize);
+                            memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize;
+                            /* Assert preconditions */
+                            assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
+                            assert (0 < reserve_size && reserve_size % g_regionsize == 0);
+                        }
+                        /* Search failed? */
+                        if (! found)
+                            goto sbrk_exit;
+                        /* Assert preconditions */
+                        assert ((unsigned) memory_info.BaseAddress % g_regionsize == 0);
+                        assert (0 < reserve_size && reserve_size % g_regionsize == 0);
+                        /* Try to reserve this */
+                        base_reserved = VirtualAlloc (memory_info.BaseAddress, reserve_size,
+					                                  MEM_RESERVE, PAGE_NOACCESS);
+                        if (! base_reserved) {
+                            int rc = GetLastError ();
+                            if (rc != ERROR_INVALID_ADDRESS)
+                                goto sbrk_exit;
+                        }
+                        /* A null pointer signals (hopefully) a race condition with another thread. */
+                        /* In this case, we try again. */
+                    } while (! base_reserved);
+                    /* Check returned pointer for consistency */
+                    if (memory_info.BaseAddress && base_reserved != memory_info.BaseAddress)
+                        goto sbrk_exit;
+                    /* Assert postconditions */
+                    assert ((unsigned) base_reserved % g_regionsize == 0);
+#ifdef TRACE
+                    printf ("Reserve %p %d\n", base_reserved, reserve_size);
+#endif
+                    /* Did we get contiguous memory? */
+                    if (contiguous) {
+                        long start_size = (char *) g_last->top_committed - (char *) g_last->top_allocated;
+                        /* Adjust allocation size */
+                        allocate_size -= start_size;
+                        /* Adjust the regions allocation top */
+                        g_last->top_allocated = g_last->top_committed;
+                        /* Recompute the size to commit */
+                        to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
+                        /* Round size to commit */
+                        commit_size = CEIL (to_commit, g_my_pagesize);
+                    }
+                    /* Append the new region to the list */
+                    if (! region_list_append (&g_last, base_reserved, reserve_size))
+                        goto sbrk_exit;
+                    /* Didn't we get contiguous memory? */
+                    if (! contiguous) {
+                        /* Recompute the size to commit */
+                        to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
+                        /* Round size to commit */
+                        commit_size = CEIL (to_commit, g_my_pagesize);
+                    }
+                }
+            }
+            /* Assert preconditions */
+            assert ((unsigned) g_last->top_committed % g_pagesize == 0);
+            assert (0 < commit_size && commit_size % g_pagesize == 0); {
+                /* Commit this */
+                void *base_committed = VirtualAlloc (g_last->top_committed, commit_size,
+							                     MEM_COMMIT, PAGE_READWRITE);
+                /* Check returned pointer for consistency */
+                if (base_committed != g_last->top_committed)
+                    goto sbrk_exit;
+                /* Assert postconditions */
+                assert ((unsigned) base_committed % g_pagesize == 0);
+#ifdef TRACE
+                printf ("Commit %p %d\n", base_committed, commit_size);
+#endif
+                /* Adjust the regions commit top */
+                g_last->top_committed = (char *) base_committed + commit_size;
+            }
+        }
+        /* Adjust the regions allocation top */
+        g_last->top_allocated = (char *) g_last->top_allocated + allocate_size;
+        result = (char *) g_last->top_allocated - size;
+    /* Deallocation requested? */
+    } else if (size < 0) {
+        long deallocate_size = - size;
+        /* As long as we have a region to release */
+        while ((char *) g_last->top_allocated - deallocate_size < (char *) g_last->top_reserved - g_last->reserve_size) {
+            /* Get the size to release */
+            long release_size = g_last->reserve_size;
+            /* Get the base address */
+            void *base_reserved = (char *) g_last->top_reserved - release_size;
+            /* Assert preconditions */
+            assert ((unsigned) base_reserved % g_regionsize == 0);
+            assert (0 < release_size && release_size % g_regionsize == 0); {
+                /* Release this */
+                int rc = VirtualFree (base_reserved, 0,
+                                      MEM_RELEASE);
+                /* Check returned code for consistency */
+                if (! rc)
+                    goto sbrk_exit;
+#ifdef TRACE
+                printf ("Release %p %d\n", base_reserved, release_size);
+#endif
+            }
+            /* Adjust deallocation size */
+            deallocate_size -= (char *) g_last->top_allocated - (char *) base_reserved;
+            /* Remove the old region from the list */
+            if (! region_list_remove (&g_last))
+                goto sbrk_exit;
+        } {
+            /* Compute the size to decommit */
+            long to_decommit = (char *) g_last->top_committed - ((char *) g_last->top_allocated - deallocate_size);
+            if (to_decommit >= g_my_pagesize) {
+                /* Compute the size to decommit */
+                long decommit_size = FLOOR (to_decommit, g_my_pagesize);
+                /*  Compute the base address */
+                void *base_committed = (char *) g_last->top_committed - decommit_size;
+                /* Assert preconditions */
+                assert ((unsigned) base_committed % g_pagesize == 0);
+                assert (0 < decommit_size && decommit_size % g_pagesize == 0); {
+                    /* Decommit this */
+                    int rc = VirtualFree ((char *) base_committed, decommit_size,
+                                          MEM_DECOMMIT);
+                    /* Check returned code for consistency */
+                    if (! rc)
+                        goto sbrk_exit;
+#ifdef TRACE
+                    printf ("Decommit %p %d\n", base_committed, decommit_size);
+#endif
+                }
+                /* Adjust deallocation size and regions commit and allocate top */
+                deallocate_size -= (char *) g_last->top_allocated - (char *) base_committed;
+                g_last->top_committed = base_committed;
+                g_last->top_allocated = base_committed;
+            }
+        }
+        /* Adjust regions allocate top */
+        g_last->top_allocated = (char *) g_last->top_allocated - deallocate_size;
+        /* Check for underflow */
+        if ((char *) g_last->top_reserved - g_last->reserve_size > (char *) g_last->top_allocated ||
+            g_last->top_allocated > g_last->top_committed) {
+            /* Adjust regions allocate top */
+            g_last->top_allocated = (char *) g_last->top_reserved - g_last->reserve_size;
+            goto sbrk_exit;
+        }
+        result = g_last->top_allocated;
+    }
+    /* Assert invariants */
+    assert (g_last);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated &&
+            g_last->top_allocated <= g_last->top_committed);
+    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed &&
+            g_last->top_committed <= g_last->top_reserved &&
+            (unsigned) g_last->top_committed % g_pagesize == 0);
+    assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
+    assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
+
+sbrk_exit:
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Release spin lock */
+    slrelease (&g_sl);
+#endif
+    return result;
+}
+
+/* mmap for windows */
+static void *mmap (void *ptr, long size, long prot, long type, long handle, long arg) {
+    static long g_pagesize;
+    static long g_regionsize;
+#ifdef TRACE
+    printf ("mmap %d\n", size);
+#endif
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Wait for spin lock */
+    slwait (&g_sl);
+#endif
+    /* First time initialization */
+    if (! g_pagesize)
+        g_pagesize = getpagesize ();
+    if (! g_regionsize)
+        g_regionsize = getregionsize ();
+    /* Assert preconditions */
+    assert ((unsigned) ptr % g_regionsize == 0);
+    assert (size % g_pagesize == 0);
+    /* Allocate this */
+    ptr = VirtualAlloc (ptr, size,
+					    MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN, PAGE_READWRITE);
+    if (! ptr) {
+        ptr = (void *) MORECORE_FAILURE;
+        goto mmap_exit;
+    }
+    /* Assert postconditions */
+    assert ((unsigned) ptr % g_regionsize == 0);
+#ifdef TRACE
+    printf ("Commit %p %d\n", ptr, size);
+#endif
+mmap_exit:
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Release spin lock */
+    slrelease (&g_sl);
+#endif
+    return ptr;
+}
+
+/* munmap for windows */
+static long munmap (void *ptr, long size) {
+    static long g_pagesize;
+    static long g_regionsize;
+    int rc = MUNMAP_FAILURE;
+#ifdef TRACE
+    printf ("munmap %p %d\n", ptr, size);
+#endif
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Wait for spin lock */
+    slwait (&g_sl);
+#endif
+    /* First time initialization */
+    if (! g_pagesize)
+        g_pagesize = getpagesize ();
+    if (! g_regionsize)
+        g_regionsize = getregionsize ();
+    /* Assert preconditions */
+    assert ((unsigned) ptr % g_regionsize == 0);
+    assert (size % g_pagesize == 0);
+    /* Free this */
+    if (! VirtualFree (ptr, 0,
+                       MEM_RELEASE))
+        goto munmap_exit;
+    rc = 0;
+#ifdef TRACE
+    printf ("Release %p %d\n", ptr, size);
+#endif
+munmap_exit:
+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
+    /* Release spin lock */
+    slrelease (&g_sl);
+#endif
+    return rc;
+}
+
+static void vminfo (unsigned long *free, unsigned long *reserved, unsigned long *committed) {
+    MEMORY_BASIC_INFORMATION memory_info;
+    memory_info.BaseAddress = 0;
+    *free = *reserved = *committed = 0;
+    while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) {
+        switch (memory_info.State) {
+        case MEM_FREE:
+            *free += memory_info.RegionSize;
+            break;
+        case MEM_RESERVE:
+            *reserved += memory_info.RegionSize;
+            break;
+        case MEM_COMMIT:
+            *committed += memory_info.RegionSize;
+            break;
+        }
+        memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize;
+    }
+}
+
+static int cpuinfo (int whole, unsigned long *kernel, unsigned long *user) {
+    if (whole) {
+        __int64 creation64, exit64, kernel64, user64;
+        int rc = GetProcessTimes (GetCurrentProcess (),
+                                  (FILETIME *) &creation64,
+                                  (FILETIME *) &exit64,
+                                  (FILETIME *) &kernel64,
+                                  (FILETIME *) &user64);
+        if (! rc) {
+            *kernel = 0;
+            *user = 0;
+            return FALSE;
+        }
+        *kernel = (unsigned long) (kernel64 / 10000);
+        *user = (unsigned long) (user64 / 10000);
+        return TRUE;
+    } else {
+        __int64 creation64, exit64, kernel64, user64;
+        int rc = GetThreadTimes (GetCurrentThread (),
+                                 (FILETIME *) &creation64,
+                                 (FILETIME *) &exit64,
+                                 (FILETIME *) &kernel64,
+                                 (FILETIME *) &user64);
+        if (! rc) {
+            *kernel = 0;
+            *user = 0;
+            return FALSE;
+        }
+        *kernel = (unsigned long) (kernel64 / 10000);
+        *user = (unsigned long) (user64 / 10000);
+        return TRUE;
+    }
+}
+
+#endif /* WIN32 */
+
+/* ------------------------------------------------------------
+History:
+
+    V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
+      * Introduce independent_comalloc and independent_calloc.
+        Thanks to Michael Pachos for motivation and help.
+      * Make optional .h file available
+      * Allow > 2GB requests on 32bit systems.
+      * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
+        Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
+        and Anonymous.
+      * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
+        helping test this.)
+      * memalign: check alignment arg
+      * realloc: don't try to shift chunks backwards, since this
+        leads to  more fragmentation in some programs and doesn't
+        seem to help in any others.
+      * Collect all cases in malloc requiring system memory into sYSMALLOc
+      * Use mmap as backup to sbrk
+      * Place all internal state in malloc_state
+      * Introduce fastbins (although similar to 2.5.1)
+      * Many minor tunings and cosmetic improvements
+      * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
+      * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
+        Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
+      * Include errno.h to support default failure action.
+
+    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
+      * return null for negative arguments
+      * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
+         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
+          (e.g. WIN32 platforms)
+         * Cleanup header file inclusion for WIN32 platforms
+         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
+         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
+           memory allocation routines
+         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
+         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
+           usage of 'assert' in non-WIN32 code
+         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
+           avoid infinite loop
+      * Always call 'fREe()' rather than 'free()'
+
+    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
+      * Fixed ordering problem with boundary-stamping
+
+    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
+      * Added pvalloc, as recommended by H.J. Liu
+      * Added 64bit pointer support mainly from Wolfram Gloger
+      * Added anonymously donated WIN32 sbrk emulation
+      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
+      * malloc_extend_top: fix mask error that caused wastage after
+        foreign sbrks
+      * Add linux mremap support code from HJ Liu
+
+    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
+      * Integrated most documentation with the code.
+      * Add support for mmap, with help from
+        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+      * Use last_remainder in more cases.
+      * Pack bins using idea from  colin@nyx10.cs.du.edu
+      * Use ordered bins instead of best-fit threshold
+      * Eliminate block-local decls to simplify tracing and debugging.
+      * Support another case of realloc via move into top
+      * Fix error occurring when initial sbrk_base not word-aligned.
+      * Rely on page size for units instead of SBRK_UNIT to
+        avoid surprises about sbrk alignment conventions.
+      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
+        (raymond@es.ele.tue.nl) for the suggestion.
+      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
+      * More precautions for cases where other routines call sbrk,
+        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+      * Added macros etc., allowing use in linux libc from
+        H.J. Lu (hjl@gnu.ai.mit.edu)
+      * Inverted this history list
+
+    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
+      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
+      * Removed all preallocation code since under current scheme
+        the work required to undo bad preallocations exceeds
+        the work saved in good cases for most test programs.
+      * No longer use return list or unconsolidated bins since
+        no scheme using them consistently outperforms those that don't
+        given above changes.
+      * Use best fit for very large chunks to prevent some worst-cases.
+      * Added some support for debugging
+
+    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
+      * Removed footers when chunks are in use. Thanks to
+        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
+
+    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
+      * Added malloc_trim, with help from Wolfram Gloger
+        (wmglo@Dent.MED.Uni-Muenchen.DE).
+
+    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
+
+    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
+      * realloc: try to expand in both directions
+      * malloc: swap order of clean-bin strategy;
+      * realloc: only conditionally expand backwards
+      * Try not to scavenge used bins
+      * Use bin counts as a guide to preallocation
+      * Occasionally bin return list chunks in first scan
+      * Add a few optimizations from colin@nyx10.cs.du.edu
+
+    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
+      * faster bin computation & slightly different binning
+      * merged all consolidations to one part of malloc proper
+         (eliminating old malloc_find_space & malloc_clean_bin)
+      * Scan 2 returns chunks (not just 1)
+      * Propagate failure in realloc if malloc returns 0
+      * Add stuff to allow compilation on non-ANSI compilers
+          from kpv@research.att.com
+
+    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
+      * removed potential for odd address access in prev_chunk
+      * removed dependency on getpagesize.h
+      * misc cosmetics and a bit more internal documentation
+      * anticosmetics: mangled names in macros to evade debugger strangeness
+      * tested on sparc, hp-700, dec-mips, rs6000
+          with gcc & native cc (hp, dec only) allowing
+          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
+
+    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
+      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
+         structure of old version,  but most details differ.)
+
+*/
+
+#ifdef USE_PUBLIC_MALLOC_WRAPPERS
+
+#ifndef KDE_MALLOC_FULL
+
+#ifdef KDE_MALLOC_GLIBC
+#include "glibc.h"
+#else
+/* cannot use dlsym(RTLD_NEXT,...) here, it calls malloc()*/
+#error Unknown libc
+#endif
+
+/* 0 - uninitialized
+   1 - this malloc
+   2 - standard libc malloc*/
+extern char* getenv(const char*);
+static int malloc_type = 0;
+static void init_malloc_type(void)
+    {
+    const char* const env = getenv( "KDE_MALLOC" );
+    if( env == NULL )
+        malloc_type = 1;
+    else if( env[ 0 ] == '0' || env[ 0 ] == 'n' || env[ 0 ] == 'N' )
+        malloc_type = 2;
+    else
+        malloc_type = 1;
+    }
+
+#endif
+
+Void_t* public_mALLOc(size_t bytes) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = mALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_malloc( bytes );
+  init_malloc_type();
+  return public_mALLOc( bytes );
+#endif
+}
+
+void public_fREe(Void_t* m) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  fREe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+#ifndef KDE_MALLOC_FULL
+  return;
+    }
+  if( malloc_type == 2 )
+      {
+      libc_free( m );
+      return;
+      }
+  init_malloc_type();
+  public_fREe( m );
+#endif
+}
+
+Void_t* public_rEALLOc(Void_t* m, size_t bytes) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = rEALLOc(m, bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_realloc( m, bytes );
+  init_malloc_type();
+  return public_rEALLOc( m, bytes );
+#endif
+}
+
+Void_t* public_mEMALIGn(size_t alignment, size_t bytes) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = mEMALIGn(alignment, bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_memalign( alignment, bytes );
+  init_malloc_type();
+  return public_mEMALIGn( alignment, bytes );
+#endif
+}
+
+Void_t* public_vALLOc(size_t bytes) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = vALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_valloc( bytes );
+  init_malloc_type();
+  return public_vALLOc( bytes );
+#endif
+}
+
+Void_t* public_pVALLOc(size_t bytes) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = pVALLOc(bytes);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_pvalloc( bytes );
+  init_malloc_type();
+  return public_pVALLOc( bytes );
+#endif
+}
+
+Void_t* public_cALLOc(size_t n, size_t elem_size) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  Void_t* m;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  m = cALLOc(n, elem_size);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_calloc( n, elem_size );
+  init_malloc_type();
+  return public_cALLOc( n, elem_size );
+#endif
+}
+
+void public_cFREe(Void_t* m) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  if (MALLOC_PREACTION != 0) {
+    return;
+  }
+  cFREe(m);
+  if (MALLOC_POSTACTION != 0) {
+  }
+#ifndef KDE_MALLOC_FULL
+  return;
+    }
+  if( malloc_type == 2 )
+      {
+      libc_cfree( m );
+      return;
+      }
+  init_malloc_type();
+  public_cFREe( m );
+#endif
+}
+
+struct mallinfo public_mALLINFo() {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  struct mallinfo m;
+  if (MALLOC_PREACTION != 0) {
+    struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+    return nm;
+  }
+  m = mALLINFo();
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return m;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_mallinfo();
+  init_malloc_type();
+  return public_mALLINFo();
+#endif
+}
+
+int public_mALLOPt(int p, int v) {
+#ifndef KDE_MALLOC_FULL
+  if( malloc_type == 1 )
+    {
+#endif
+  int result;
+  if (MALLOC_PREACTION != 0) {
+    return 0;
+  }
+  result = mALLOPt(p, v);
+  if (MALLOC_POSTACTION != 0) {
+  }
+  return result;
+#ifndef KDE_MALLOC_FULL
+    }
+  if( malloc_type == 2 )
+      return libc_mallopt( p, v );
+  init_malloc_type();
+  return public_mALLOPt( p, v );
+#endif
+}
+#endif
+
+int
+posix_memalign (void **memptr, size_t alignment, size_t size)
+{
+  void *mem;
+
+  /* Test whether the SIZE argument is valid.  It must be a power of
+     two multiple of sizeof (void *).  */
+  if (size % sizeof (void *) != 0 || (size & (size - 1)) != 0)
+    return EINVAL;
+
+  mem = memalign (alignment, size);
+
+  if (mem != NULL) {
+    *memptr = mem;
+    return 0;
+  }
+
+  return ENOMEM;
+}
+
+#else
+/* Some linkers (Solaris 2.6) don't like empty archives, but for
+   easier Makefile's we want to link against libklmalloc.la every time,
+   so simply make it non-empty.  */
+void kde_malloc_dummy_function ()
+{
+  return;
+}
+#endif
diff -Nupr a/src/corelib/arch/avr32/qatomic.cpp b/src/corelib/arch/avr32/qatomic.cpp
--- a/src/corelib/arch/avr32/qatomic.cpp	1970-01-01 01:00:00.000000000 +0100
+++ b/src/corelib/arch/avr32/qatomic.cpp	2006-07-26 11:02:43.000000000 +0200
@@ -0,0 +1,24 @@
+/****************************************************************************
+**
+** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.
+**
+** This file is part of the QtCore module of the Qt Toolkit.
+**
+** Licensees holding valid Qt Preview licenses may use this file in
+** accordance with the Qt Preview License Agreement provided with the
+** Software.
+**
+** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
+** information about Qt Commercial License Agreements.
+**
+** Contact info@trolltech.com if any conditions of this licensing are
+** not clear to you.
+**
+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+**
+****************************************************************************/
+
+#include "QtCore/qatomic_avr32.h"
+
+Q_CORE_EXPORT long q_atomic_lock = 0;
diff -Nupr a/src/corelib/arch/qatomic_arch.h b/src/corelib/arch/qatomic_arch.h
--- a/src/corelib/arch/qatomic_arch.h	2006-06-30 09:49:44.000000000 +0200
+++ b/src/corelib/arch/qatomic_arch.h	2006-07-27 12:42:58.000000000 +0200
@@ -47,6 +47,8 @@ QT_BEGIN_HEADER
 #  include "QtCore/qatomic_alpha.h"
 #elif defined(QT_ARCH_ARM)
 #  include "QtCore/qatomic_arm.h"
+#elif defined(QT_ARCH_AVR32)
+#  include "QtCore/qatomic_avr32.h"
 #elif defined(QT_ARCH_BOUNDSCHECKER)
 #  include "QtCore/qatomic_boundschecker.h"
 #elif defined(QT_ARCH_GENERIC)
diff -Nupr a/src/corelib/arch/qatomic_avr32.h b/src/corelib/arch/qatomic_avr32.h
--- a/src/corelib/arch/qatomic_avr32.h	1970-01-01 01:00:00.000000000 +0100
+++ b/src/corelib/arch/qatomic_avr32.h	2006-07-28 10:30:08.000000000 +0200
@@ -0,0 +1,132 @@
+/****************************************************************************
+**
+** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.
+**
+** This file is part of the QtCore module of the Qt Toolkit.
+**
+** Licensees holding valid Qt Preview licenses may use this file in
+** accordance with the Qt Preview License Agreement provided with the
+** Software.
+**
+** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
+** information about Qt Commercial License Agreements.
+**
+** Contact info@trolltech.com if any conditions of this licensing are
+** not clear to you.
+**
+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+**
+****************************************************************************/
+
+#ifndef AVR32_QATOMIC_H
+#define AVR32_QATOMIC_H
+
+#include <QtCore/qglobal.h>
+
+QT_BEGIN_HEADER
+
+extern Q_CORE_EXPORT long q_atomic_lock;
+
+inline long q_atomic_swp(volatile long *ptr, long newval)
+{
+    register int ret;
+    asm volatile("xchg %0,%1,%2"
+                 : "=&r"(ret)
+                 : "r"(ptr), "r"(newval)
+                 : "memory", "cc");
+    return ret;
+}
+
+inline int q_atomic_test_and_set_int(volatile int *ptr, int expected, int newval)
+{
+    int ret = 0;
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0);
+    if (*ptr == expected) {
+	*ptr = newval;
+	ret = 1;
+    }
+    q_atomic_swp(&q_atomic_lock, 0);
+    return ret;
+}
+
+inline int q_atomic_test_and_set_acquire_int(volatile int *ptr, int expected, int newval)
+{
+    return q_atomic_test_and_set_int(ptr, expected, newval);
+}
+
+inline int q_atomic_test_and_set_release_int(volatile int *ptr, int expected, int newval)
+{
+    return q_atomic_test_and_set_int(ptr, expected, newval);
+}
+
+inline int q_atomic_test_and_set_ptr(volatile void *ptr, void *expected, void *newval)
+{
+    int ret = 0;
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
+    if (*reinterpret_cast<void * volatile *>(ptr) == expected) {
+	*reinterpret_cast<void * volatile *>(ptr) = newval;
+	ret = 1;
+    }
+    q_atomic_swp(&q_atomic_lock, 0);
+    return ret;
+}
+
+inline int q_atomic_increment(volatile int *ptr)
+{
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
+    int originalValue = *ptr;
+    *ptr = originalValue + 1;
+    q_atomic_swp(&q_atomic_lock, 0);
+    return originalValue != -1;
+}
+
+inline int q_atomic_decrement(volatile int *ptr)
+{
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
+    int originalValue = *ptr;
+    *ptr = originalValue - 1;
+    q_atomic_swp(&q_atomic_lock, 0);
+    return originalValue != 1;
+}
+
+inline int q_atomic_set_int(volatile int *ptr, int newval)
+{
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
+    int originalValue = *ptr;
+    *ptr = newval;
+    q_atomic_swp(&q_atomic_lock, 0);
+    return originalValue;
+}
+
+inline void *q_atomic_set_ptr(volatile void *ptr, void *newval)
+{
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
+    void *originalValue = *reinterpret_cast<void * volatile *>(ptr);
+    *reinterpret_cast<void * volatile *>(ptr) = newval;
+    q_atomic_swp(&q_atomic_lock, 0);
+    return originalValue;
+}
+
+inline int q_atomic_fetch_and_add_int(volatile int *ptr, int value)
+{
+    while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
+    int originalValue = *ptr;
+    *ptr += value;
+    q_atomic_swp(&q_atomic_lock, 0);
+    return originalValue;
+}
+
+inline int q_atomic_fetch_and_add_acquire_int(volatile int *ptr, int value)
+{
+    return q_atomic_fetch_and_add_int(ptr, value);
+}
+
+inline int q_atomic_fetch_and_add_release_int(volatile int *ptr, int value)
+{
+    return q_atomic_fetch_and_add_int(ptr, value);
+}
+
+QT_END_HEADER
+
+#endif // AVR32_QATOMIC_H
diff -Nupr a/src/corelib/io/qfilesystemwatcher_inotify.cpp b/src/corelib/io/qfilesystemwatcher_inotify.cpp
--- a/src/corelib/io/qfilesystemwatcher_inotify.cpp	2006-06-30 09:49:45.000000000 +0200
+++ b/src/corelib/io/qfilesystemwatcher_inotify.cpp	2006-07-27 13:24:27.000000000 +0200
@@ -87,6 +87,10 @@
 # define __NR_inotify_init      316
 # define __NR_inotify_add_watch 317
 # define __NR_inotify_rm_watch  318
+#elif defined (__avr32__)
+# define __NR_inotify_init      240
+# define __NR_inotify_add_watch 241
+# define __NR_inotify_rm_watch  242
 #elif defined (__SH4__)
 # define __NR_inotify_init      290
 # define __NR_inotify_add_watch 291
diff -uprN a/mkspecs/qws/linux-avr32-g++/qmake.conf b/mkspecs/qws/linux-avr32-g++/qmake.conf
--- a/mkspecs/qws/linux-avr32-g++/qmake.conf	1970-01-01 01:00:00.000000000 +0100
+++ b/mkspecs/qws/linux-avr32-g++/qmake.conf	2006-08-01 08:47:12.000000000 +0200
@@ -0,0 +1,85 @@
+#
+# qmake configuration for linux-g++ using the avr32-linux-g++ crosscompiler
+#
+
+MAKEFILE_GENERATOR	= UNIX
+TEMPLATE		= app
+CONFIG			+= qt warn_on release link_prl
+QT                      += core gui network
+QMAKE_INCREMENTAL_STYLE = sublib
+
+QMAKE_CC		= avr32-linux-gcc
+QMAKE_LEX		= flex
+QMAKE_LEXFLAGS		=
+QMAKE_YACC		= yacc
+QMAKE_YACCFLAGS		= -d
+QMAKE_CFLAGS		= -pipe
+QMAKE_CFLAGS_WARN_ON	= -Wall -W
+QMAKE_CFLAGS_WARN_OFF	=
+QMAKE_CFLAGS_RELEASE	= -O2
+QMAKE_CFLAGS_DEBUG	= -g -O2
+QMAKE_CFLAGS_SHLIB	= -fPIC
+QMAKE_CFLAGS_YACC	= -Wno-unused -Wno-parentheses
+QMAKE_CFLAGS_THREAD	= -D_REENTRANT
+QMAKE_CFLAGS_HIDESYMS   = -fvisibility=hidden
+
+QMAKE_CXX		= avr32-linux-g++
+QMAKE_CXXFLAGS		= $$QMAKE_CFLAGS -fno-exceptions
+QMAKE_CXXFLAGS_WARN_ON	= $$QMAKE_CFLAGS_WARN_ON
+QMAKE_CXXFLAGS_WARN_OFF	= $$QMAKE_CFLAGS_WARN_OFF
+QMAKE_CXXFLAGS_RELEASE	= $$QMAKE_CFLAGS_RELEASE
+QMAKE_CXXFLAGS_DEBUG	= $$QMAKE_CFLAGS_DEBUG
+QMAKE_CXXFLAGS_SHLIB	= $$QMAKE_CFLAGS_SHLIB
+QMAKE_CXXFLAGS_YACC	= $$QMAKE_CFLAGS_YACC
+QMAKE_CXXFLAGS_THREAD	= $$QMAKE_CFLAGS_THREAD
+QMAKE_CXXFLAGS_HIDESYMS = $$QMAKE_CFLAGS_HIDESYMS -fvisibility-inlines-hidden
+
+QMAKE_INCDIR		=
+QMAKE_LIBDIR		=
+QMAKE_INCDIR_X11	=
+QMAKE_LIBDIR_X11	=
+QMAKE_INCDIR_QT		= $$[QT_INSTALL_HEADERS]
+QMAKE_LIBDIR_QT		= $$[QT_INSTALL_LIBS]
+QMAKE_INCDIR_OPENGL	=
+QMAKE_LIBDIR_OPENGL	=
+QMAKE_INCDIR_QTOPIA	= $(QPEDIR)/include
+QMAKE_LIBDIR_QTOPIA	= $(QPEDIR)/lib
+
+QMAKE_LINK		= avr32-linux-g++
+QMAKE_LINK_SHLIB	= avr32-linux-g++
+QMAKE_LFLAGS		=
+QMAKE_LFLAGS_RELEASE	=
+QMAKE_LFLAGS_DEBUG	=
+QMAKE_LFLAGS_SHLIB      = -shared
+QMAKE_LFLAGS_PLUGIN     = $$QMAKE_LFLAGS_SHLIB
+QMAKE_LFLAGS_SONAME     = -Wl,-soname,
+QMAKE_LFLAGS_THREAD     =
+QMAKE_RPATH             = -Wl,-rpath,
+
+QMAKE_LIBS		=
+QMAKE_LIBS_DYNLOAD      = -ldl
+QMAKE_LIBS_X11		=
+QMAKE_LIBS_X11SM	=
+QMAKE_LIBS_QT		= -lqte
+QMAKE_LIBS_QT_THREAD    = -lqte-mt
+QMAKE_LIBS_QT_OPENGL	= -lqgl
+QMAKE_LIBS_QTOPIA	= -lqpe -lqtopia
+QMAKE_LIBS_THREAD       = -lpthread
+
+QMAKE_MOC		= $$[QT_INSTALL_BINS]/moc
+QMAKE_UIC		= $$[QT_INSTALL_BINS]/uic
+
+QMAKE_AR		= avr32-linux-ar cqs
+QMAKE_RANLIB		= avr32-linux-ranlib
+
+QMAKE_TAR		= tar -cf
+QMAKE_GZIP		= gzip -9f
+
+QMAKE_COPY		= cp -f
+QMAKE_MOVE		= mv -f
+QMAKE_DEL_FILE		= rm -f
+QMAKE_DEL_DIR		= rmdir
+QMAKE_STRIP             = avr32-linux-strip
+QMAKE_CHK_DIR_EXISTS	= test -d
+QMAKE_MKDIR		= mkdir -p
+load(qt_config)
diff -uprN a/mkspecs/qws/linux-avr32-g++/qplatformdefs.h b/mkspecs/qws/linux-avr32-g++/qplatformdefs.h
--- a/mkspecs/qws/linux-avr32-g++/qplatformdefs.h	1970-01-01 01:00:00.000000000 +0100
+++ b/mkspecs/qws/linux-avr32-g++/qplatformdefs.h	2006-07-26 09:16:52.000000000 +0200
@@ -0,0 +1,22 @@
+/****************************************************************************
+**
+** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.
+**
+** This file is part of the qmake spec of the Qt Toolkit.
+**
+** Licensees holding valid Qt Preview licenses may use this file in
+** accordance with the Qt Preview License Agreement provided with the
+** Software.
+**
+** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
+** information about Qt Commercial License Agreements.
+**
+** Contact info@trolltech.com if any conditions of this licensing are
+** not clear to you.
+**
+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+**
+****************************************************************************/
+
+#include "../../linux-g++/qplatformdefs.h"
--- a/include/QtCore/headers.pri	2007-08-02 15:03:31.000000000 +0200
+++ b/include/QtCore/headers.pri	2007-08-02 15:03:44.000000000 +0200
@@ -1,2 +1,2 @@
-SYNCQT.HEADER_FILES = ../corelib/io/qdatastream.h ../corelib/io/qdebug.h ../corelib/io/qtextstream.h ../corelib/io/qtemporaryfile.h ../corelib/io/qfsfileengine.h ../corelib/io/qiodevice.h ../corelib/io/qprocess.h ../corelib/io/qresource.h ../corelib/io/qdiriterator.h ../corelib/io/qbuffer.h ../corelib/io/qfilesystemwatcher.h ../corelib/io/qdir.h ../corelib/io/qurl.h ../corelib/io/qabstractfileengine.h ../corelib/io/qfileinfo.h ../corelib/io/qsettings.h ../corelib/io/qfile.h ../corelib/arch/qatomic_arch.h ../corelib/arch/qatomic_i386.h ../corelib/arch/qatomic_sparc.h ../corelib/arch/qatomic_x86_64.h ../corelib/arch/qatomic_ia64.h ../corelib/arch/qatomic_parisc.h ../corelib/arch/qatomic_mips.h ../corelib/arch/qatomic_s390.h ../corelib/arch/qatomic_arm.h ../corelib/arch/qatomic_powerpc.h ../corelib/arch/qatomic_alpha.h ../corelib/arch/qatomic_boundschecker.h ../corelib/arch/qatomic_generic.h ../corelib/tools/qcache.h ../corelib/tools/qline.h ../corelib/tools/qlist.h ../corelib/tools/qpair.h ../corelib/tools/qpoint.h ../corelib/tools/qrect.h ../corelib/tools/qsize.h ../corelib/tools/qstringlist.h ../corelib/tools/qstringmatcher.h ../corelib/tools/qlinkedlist.h ../corelib/tools/qbitarray.h ../corelib/tools/qvector.h ../corelib/tools/qbytearraymatcher.h ../corelib/tools/qqueue.h ../corelib/tools/qbytearray.h ../corelib/tools/qalgorithms.h ../corelib/tools/qvarlengtharray.h ../corelib/tools/qshareddata.h ../corelib/tools/qcryptographichash.h ../corelib/tools/qiterator.h ../corelib/tools/qlocale.h ../corelib/tools/qstack.h ../corelib/tools/qmap.h ../corelib/tools/qset.h ../corelib/tools/qdatetime.h ../corelib/tools/qstring.h ../corelib/tools/qcontainerfwd.h ../corelib/tools/qregexp.h ../corelib/tools/qchar.h ../corelib/tools/qhash.h ../corelib/tools/qtimeline.h ../corelib/codecs/qtextcodecplugin.h ../corelib/codecs/qtextcodec.h ../corelib/global/qconfig-large.h ../corelib/global/qconfig-dist.h ../corelib/global/qconfig-small.h ../corelib/global/qlibraryinfo.h ../corelib/global/qendian.h ../corelib/global/qfeatures.h ../corelib/global/qglobal.h ../corelib/global/qconfig-minimal.h ../corelib/global/qnamespace.h ../corelib/global/qnumeric.h ../corelib/global/qconfig-medium.h ../corelib/kernel/qtranslator.h ../corelib/kernel/qvariant.h ../corelib/kernel/qmimedata.h ../corelib/kernel/qeventloop.h ../corelib/kernel/qcoreapplication.h ../corelib/kernel/qabstractitemmodel.h ../corelib/kernel/qsignalmapper.h ../corelib/kernel/qobjectcleanuphandler.h ../corelib/kernel/qbasictimer.h ../corelib/kernel/qsocketnotifier.h ../corelib/kernel/qobject.h ../corelib/kernel/qtimer.h ../corelib/kernel/qmetatype.h ../corelib/kernel/qabstracteventdispatcher.h ../corelib/kernel/qpointer.h ../corelib/kernel/qmetaobject.h ../corelib/kernel/qcoreevent.h ../corelib/kernel/qobjectdefs.h ../corelib/plugin/qpluginloader.h ../corelib/plugin/quuid.h ../corelib/plugin/qlibrary.h ../corelib/plugin/qplugin.h ../corelib/plugin/qfactoryinterface.h ../corelib/thread/qsemaphore.h ../corelib/thread/qthreadstorage.h ../corelib/thread/qwaitcondition.h ../corelib/thread/qthread.h ../corelib/thread/qmutex.h ../corelib/thread/qreadwritelock.h ../corelib/thread/qatomic.h ../../include/QtCore/QtCore 
+SYNCQT.HEADER_FILES = ../corelib/io/qdatastream.h ../corelib/io/qdebug.h ../corelib/io/qtextstream.h ../corelib/io/qtemporaryfile.h ../corelib/io/qfsfileengine.h ../corelib/io/qiodevice.h ../corelib/io/qprocess.h ../corelib/io/qresource.h ../corelib/io/qdiriterator.h ../corelib/io/qbuffer.h ../corelib/io/qfilesystemwatcher.h ../corelib/io/qdir.h ../corelib/io/qurl.h ../corelib/io/qabstractfileengine.h ../corelib/io/qfileinfo.h ../corelib/io/qsettings.h ../corelib/io/qfile.h ../corelib/arch/qatomic_arch.h ../corelib/arch/qatomic_i386.h ../corelib/arch/qatomic_sparc.h ../corelib/arch/qatomic_x86_64.h ../corelib/arch/qatomic_ia64.h ../corelib/arch/qatomic_parisc.h ../corelib/arch/qatomic_mips.h ../corelib/arch/qatomic_s390.h ../corelib/arch/qatomic_arm.h ../corelib/arch/qatomic_avr32.h ../corelib/arch/qatomic_powerpc.h ../corelib/arch/qatomic_alpha.h ../corelib/arch/qatomic_boundschecker.h ../corelib/arch/qatomic_generic.h ../corelib/tools/qcache.h ../corelib/tools/qline.h ../corelib/tools/qlist.h ../corelib/tools/qpair.h ../corelib/tools/qpoint.h ../corelib/tools/qrect.h ../corelib/tools/qsize.h ../corelib/tools/qstringlist.h ../corelib/tools/qstringmatcher.h ../corelib/tools/qlinkedlist.h ../corelib/tools/qbitarray.h ../corelib/tools/qvector.h ../corelib/tools/qbytearraymatcher.h ../corelib/tools/qqueue.h ../corelib/tools/qbytearray.h ../corelib/tools/qalgorithms.h ../corelib/tools/qvarlengtharray.h ../corelib/tools/qshareddata.h ../corelib/tools/qcryptographichash.h ../corelib/tools/qiterator.h ../corelib/tools/qlocale.h ../corelib/tools/qstack.h ../corelib/tools/qmap.h ../corelib/tools/qset.h ../corelib/tools/qdatetime.h ../corelib/tools/qstring.h ../corelib/tools/qcontainerfwd.h ../corelib/tools/qregexp.h ../corelib/tools/qchar.h ../corelib/tools/qhash.h ../corelib/tools/qtimeline.h ../corelib/codecs/qtextcodecplugin.h ../corelib/codecs/qtextcodec.h ../corelib/global/qconfig-large.h ../corelib/global/qconfig-dist.h ../corelib/global/qconfig-small.h ../corelib/global/qlibraryinfo.h ../corelib/global/qendian.h ../corelib/global/qfeatures.h ../corelib/global/qglobal.h ../corelib/global/qconfig-minimal.h ../corelib/global/qnamespace.h ../corelib/global/qnumeric.h ../corelib/global/qconfig-medium.h ../corelib/kernel/qtranslator.h ../corelib/kernel/qvariant.h ../corelib/kernel/qmimedata.h ../corelib/kernel/qeventloop.h ../corelib/kernel/qcoreapplication.h ../corelib/kernel/qabstractitemmodel.h ../corelib/kernel/qsignalmapper.h ../corelib/kernel/qobjectcleanuphandler.h ../corelib/kernel/qbasictimer.h ../corelib/kernel/qsocketnotifier.h ../corelib/kernel/qobject.h ../corelib/kernel/qtimer.h ../corelib/kernel/qmetatype.h ../corelib/kernel/qabstracteventdispatcher.h ../corelib/kernel/qpointer.h ../corelib/kernel/qmetaobject.h ../corelib/kernel/qcoreevent.h ../corelib/kernel/qobjectdefs.h ../corelib/plugin/qpluginloader.h ../corelib/plugin/quuid.h ../corelib/plugin/qlibrary.h ../corelib/plugin/qplugin.h ../corelib/plugin/qfactoryinterface.h ../corelib/thread/qsemaphore.h ../corelib/thread/qthreadstorage.h ../corelib/thread/qwaitcondition.h ../corelib/thread/qthread.h ../corelib/thread/qmutex.h ../corelib/thread/qreadwritelock.h ../corelib/thread/qatomic.h ../../include/QtCore/QtCore 
 SYNCQT.HEADER_CLASSES = ../../include/QtCore/QDataStream ../../include/QtCore/QtDebug ../../include/QtCore/QDebug ../../include/QtCore/QNoDebug ../../include/QtCore/QTextStream ../../include/QtCore/QTextStreamFunction ../../include/QtCore/QTextStreamManipulator ../../include/QtCore/QTS ../../include/QtCore/QTextIStream ../../include/QtCore/QTextOStream ../../include/QtCore/QTemporaryFile ../../include/QtCore/QFSFileEngine ../../include/QtCore/QIODevice ../../include/QtCore/Q_PID ../../include/QtCore/QProcess ../../include/QtCore/QResource ../../include/QtCore/QDirIterator ../../include/QtCore/QBuffer ../../include/QtCore/QFileSystemWatcher ../../include/QtCore/QDir ../../include/QtCore/QUrl ../../include/QtCore/QAbstractFileEngine ../../include/QtCore/QAbstractFileEngineHandler ../../include/QtCore/QAbstractFileEngineIterator ../../include/QtCore/QFileInfo ../../include/QtCore/QFileInfoList ../../include/QtCore/QFileInfoListIterator ../../include/QtCore/QSettings ../../include/QtCore/QFile ../../include/QtCore/QBasicAtomic ../../include/QtCore/QBasicAtomicPointer ../../include/QtCore/QCache ../../include/QtCore/QLine ../../include/QtCore/QLineF ../../include/QtCore/QListData ../../include/QtCore/QList ../../include/QtCore/QListIterator ../../include/QtCore/QMutableListIterator ../../include/QtCore/QPair ../../include/QtCore/QPoint ../../include/QtCore/QPointF ../../include/QtCore/QRect ../../include/QtCore/QRectF ../../include/QtCore/QSize ../../include/QtCore/QSizeF ../../include/QtCore/QStringListIterator ../../include/QtCore/QMutableStringListIterator ../../include/QtCore/QStringList ../../include/QtCore/QStringMatcher ../../include/QtCore/QLinkedListData ../../include/QtCore/QLinkedListNode ../../include/QtCore/QLinkedList ../../include/QtCore/QLinkedListIterator ../../include/QtCore/QMutableLinkedListIterator ../../include/QtCore/QBitArray ../../include/QtCore/QBitRef ../../include/QtCore/QVectorData ../../include/QtCore/QVectorTypedData ../../include/QtCore/QVector ../../include/QtCore/QVectorIterator ../../include/QtCore/QMutableVectorIterator ../../include/QtCore/QByteArrayMatcher ../../include/QtCore/QQueue ../../include/QtCore/QByteArray ../../include/QtCore/QByteRef ../../include/QtCore/QtAlgorithms ../../include/QtCore/QVarLengthArray ../../include/QtCore/QSharedData ../../include/QtCore/QSharedDataPointer ../../include/QtCore/QExplicitlySharedDataPointer ../../include/QtCore/QCryptographicHash ../../include/QtCore/QLocale ../../include/QtCore/QSystemLocale ../../include/QtCore/QStack ../../include/QtCore/QMapData ../../include/QtCore/QMap ../../include/QtCore/QMultiMap ../../include/QtCore/QMapIterator ../../include/QtCore/QMutableMapIterator ../../include/QtCore/QSet ../../include/QtCore/QSetIterator ../../include/QtCore/QMutableSetIterator ../../include/QtCore/QDate ../../include/QtCore/QTime ../../include/QtCore/QDateTime ../../include/QtCore/QStdWString ../../include/QtCore/QString ../../include/QtCore/QLatin1String ../../include/QtCore/QCharRef ../../include/QtCore/QConstString ../../include/QtCore/QStringRef ../../include/QtCore/QtContainerFwd ../../include/QtCore/QRegExp ../../include/QtCore/QLatin1Char ../../include/QtCore/QChar ../../include/QtCore/QHashData ../../include/QtCore/QHashDummyValue ../../include/QtCore/QHashDummyNode ../../include/QtCore/QHashNode ../../include/QtCore/QHash ../../include/QtCore/QMultiHash ../../include/QtCore/QHashIterator ../../include/QtCore/QMutableHashIterator ../../include/QtCore/QTimeLine ../../include/QtCore/QTextCodecFactoryInterface ../../include/QtCore/QTextCodecPlugin ../../include/QtCore/QTextCodec ../../include/QtCore/QTextEncoder ../../include/QtCore/QTextDecoder ../../include/QtCore/QLibraryInfo ../../include/QtCore/QtEndian ../../include/QtCore/QtGlobal ../../include/QtCore/QUintForSize ../../include/QtCore/QUintForType ../../include/QtCore/QIntForSize ../../include/QtCore/QIntForType ../../include/QtCore/QNoImplicitBoolCast ../../include/QtCore/Q_INT8 ../../include/QtCore/Q_UINT8 ../../include/QtCore/Q_INT16 ../../include/QtCore/Q_UINT16 ../../include/QtCore/Q_INT32 ../../include/QtCore/Q_UINT32 ../../include/QtCore/Q_INT64 ../../include/QtCore/Q_UINT64 ../../include/QtCore/Q_LLONG ../../include/QtCore/Q_ULLONG ../../include/QtCore/Q_LONG ../../include/QtCore/Q_ULONG ../../include/QtCore/QSysInfo ../../include/QtCore/QtMsgHandler ../../include/QtCore/QGlobalStatic ../../include/QtCore/QGlobalStaticDeleter ../../include/QtCore/QBool ../../include/QtCore/QTypeInfo ../../include/QtCore/QFlag ../../include/QtCore/QFlags ../../include/QtCore/QForeachContainer ../../include/QtCore/QForeachContainerBase ../../include/QtCore/Qt ../../include/QtCore/QInternal ../../include/QtCore/QCOORD ../../include/QtCore/QTranslator ../../include/QtCore/QVariant ../../include/QtCore/QVariantList ../../include/QtCore/QVariantMap ../../include/QtCore/QVariantComparisonHelper ../../include/QtCore/QMimeData ../../include/QtCore/QEventLoop ../../include/QtCore/QCoreApplication ../../include/QtCore/QtCleanUpFunction ../../include/QtCore/QModelIndex ../../include/QtCore/QPersistentModelIndex ../../include/QtCore/QModelIndexList ../../include/QtCore/QAbstractItemModel ../../include/QtCore/QAbstractTableModel ../../include/QtCore/QAbstractListModel ../../include/QtCore/QSignalMapper ../../include/QtCore/QObjectCleanupHandler ../../include/QtCore/QBasicTimer ../../include/QtCore/QSocketNotifier ../../include/QtCore/QObjectList ../../include/QtCore/QObjectData ../../include/QtCore/QObject ../../include/QtCore/QObjectUserData ../../include/QtCore/QTimer ../../include/QtCore/QMetaType ../../include/QtCore/QMetaTypeId ../../include/QtCore/QMetaTypeId2 ../../include/QtCore/QAbstractEventDispatcher ../../include/QtCore/QPointer ../../include/QtCore/QMetaMethod ../../include/QtCore/QMetaEnum ../../include/QtCore/QMetaProperty ../../include/QtCore/QMetaClassInfo ../../include/QtCore/QEvent ../../include/QtCore/QTimerEvent ../../include/QtCore/QChildEvent ../../include/QtCore/QCustomEvent ../../include/QtCore/QDynamicPropertyChangeEvent ../../include/QtCore/QGenericArgument ../../include/QtCore/QGenericReturnArgument ../../include/QtCore/QArgument ../../include/QtCore/QReturnArgument ../../include/QtCore/QMetaObject ../../include/QtCore/QPluginLoader ../../include/QtCore/QUuid ../../include/QtCore/QLibrary ../../include/QtCore/QtPlugin ../../include/QtCore/QtPluginInstanceFunction ../../include/QtCore/QFactoryInterface ../../include/QtCore/QSemaphore ../../include/QtCore/QThreadStorageData ../../include/QtCore/QThreadStorage ../../include/QtCore/QWaitCondition ../../include/QtCore/QThread ../../include/QtCore/QMutex ../../include/QtCore/QMutexLocker ../../include/QtCore/QReadWriteLock ../../include/QtCore/QReadLocker ../../include/QtCore/QWriteLocker ../../include/QtCore/QAtomic ../../include/QtCore/QAtomicPointer