Buildroot
Buildroot usage and documentation by Thomas Petazzoni. Contributions from Karsten Kruse, Ned Ludd, Martin Herren and others.
- About Buildroot
- Obtaining Buildroot
- Using Buildroot
- Customizing the generated target filesystem
- Customizing the Busybox configuration
- Customizing the uClibc configuration
- Customizing the Linux kernel configuration
- Understanding how to rebuild packages
- How Buildroot works
- Using the uClibc toolchain outside Buildroot
- Use an external toolchain
- Location of downloaded packages
- Adding new packages to Buildroot
- Creating your own board support
- Resources
About Buildroot
Buildroot is a set of Makefiles and patches that allows you to easily generate a cross-compilation toolchain, a root filesystem and a Linux kernel image for your target. Buildroot can be used for one, two or all of these options, independently.
Buildroot is useful mainly for people working with embedded systems. Embedded systems often use processors that are not the regular x86 processors everyone is used to having in his PC. They can be PowerPC processors, MIPS processors, ARM processors, etc.
A compilation toolchain is the set of tools that allows you to
compile code for your system. It consists of a compiler (in our
case, gcc
), binary utils like assembler and linker
(in our case, binutils
) and a C standard library (for
example GNU
Libc, uClibc or dietlibc). The system
installed on your development station certainly already has a
compilation toolchain that you can use to compile an application that
runs on your system. If you're using a PC, your compilation
toolchain runs on an x86 processor and generates code for an x86
processor. Under most Linux systems, the compilation toolchain
uses the GNU libc (glibc) as the C standard library. This compilation
toolchain is called the "host compilation toolchain".
The machine on which it is running, and on which you're
working, is called the "host system". The compilation toolchain
is provided by your distribution, and Buildroot has nothing to do
with it (other than using it to build a cross-compilation toolchain
and other tools that are run on the development host).
As said above, the compilation toolchain that comes with your system runs on and generates code for the processor in your host system. As your embedded system has a different processor, you need a cross-compilation toolchain — a compilation toolchain that runs on your host system but generates code for your target system (and target processor). For example, if your host system uses x86 and your target system uses ARM, the regular compilation toolchain on your host runs on x86 and generates code for x86, while the cross-compilation toolchain runs on x86 and generates code for ARM.
Even if your embedded system uses an x86 processor, you might be interested in Buildroot for two reasons:
- The compilation toolchain on your host certainly uses the GNU Libc which is a complete but huge C standard library. Instead of using GNU Libc on your target system, you can use uClibc which is a tiny C standard library. If you want to use this C library, then you need a compilation toolchain to generate binaries linked with it. Buildroot can do that for you.
- Buildroot automates the building of a root filesystem with all needed tools like busybox. That makes it much easier than doing it by hand.
You might wonder why such a tool is needed when you can compile
gcc
, binutils
, uClibc
and all
the other tools by hand.
Of course doing so is possible. But, dealing with all of the configure options
and problems of every gcc
or binutils
version is very time-consuming and uninteresting. Buildroot automates this
process through the use of Makefiles and has a collection of patches for
each gcc
and binutils
version to make them work
on most architectures.
Moreover, Buildroot provides an infrastructure for reproducing the build process of your kernel, cross-toolchain, and embedded root filesystem. Being able to reproduce the build process will be useful when a component needs to be patched or updated or when another person is supposed to take over the project.
Obtaining Buildroot
Buildroot releases are made approximately every 3 months. Direct Git access and daily snapshots are also available if you want more bleeding edge.
Releases are available at http://buildroot.net/downloads/.
The latest snapshot is always available at http://buildroot.net/downloads/snapshots/buildroot-snapshot.tar.bz2, and previous snapshots are also available at http://buildroot.net/downloads/snapshots/.
To download Buildroot using Git you can simply follow the rules described on the "Accessing Git" page (http://buildroot.net/git.html) of the Buildroot website (http://buildroot.net). For the impatient, here's a quick recipe:
$ git clone git://git.buildroot.net/buildroot
Using Buildroot
Buildroot has a nice configuration tool similar to the one you can find in the Linux kernel (http://www.kernel.org/) or in Busybox (http://www.busybox.org/). Note that you can (and should) build everything as a normal user. There is no need to be root to configure and use Buildroot. The first step is to run the configuration assistant:
$ make menuconfig
to run the curses-based configurator, or
$ make xconfigor
$ make gconfig
to run the Qt3 or GTK-based configurators.
All of these "make" commands will need to build a configuration
utility, so you may need to install "development" packages for
relevent libraries used by the configuration utilities.
On Debian-like systems, the
libncurses5-dev
package is required to use the
menuconfig interface, libqt3-mt-dev
is
required to use the xconfig interface, and
libglib2.0-dev, libgtk2.0-dev and libglade2-dev
are
needed to used the gconfig interface.
For each menu entry in the configuration tool, you can find associated help that describes the purpose of the entry.
Once everything is configured, the configuration tool generates a
.config
file that contains the description of your
configuration. It will be used by the Makefiles to do what's needed.
Let's go:
$ make
This command will generally perform the following steps:
- Download source files (as required)
- Configure cross-compile toolchain
- Build/install cross-compile toolchain
- Build/install selected target packages
- Build a kernel image
- Create a root filesystem in selected formats
Some of the above steps might not be performed if they are not selected in the Buildroot configuration.
Buildroot output is stored in a single directory,
output/
. This directory contains several
subdirectories:
images/
where all the images (kernel image, bootloader and root filesystem images) are stored.build/
where all the components except for the cross-compilation toolchain are built (this includes tools needed to run Buildroot on the host and packages compiled for the target). Thebuild/
directory contains one subdirectory for each of these components.staging/
which contains a hierarchy similar to a root filesystem hierarchy. This directory contains the installation of the cross-compilation toolchain and all the userspace packages selected for the target. However, this directory is not intended to be the root filesystem for the target: it contains a lot of development files, unstripped binaries and libraries that make it far too big for an embedded system. These development files are used to compile libraries and applications for the target that depend on other libraries.target/
which contains almost the root filesystem for the target: everything needed is present except the device files in/dev/
(Buildroot can't create them because Buildroot doesn't run as root and does not want to run as root). Therefore, this directory should not be used on your target. Instead, you should use one of the images built in theimages/
directory. If you need an extracted image of the root filesystem for booting over NFS, then use the tarball image generated inimages/
and extract it as root.
Compared tostaging/
,target/
contains only the files and libraries needed to run the selected target applications: the development files (headers, etc.) are not present.host/
contains the installation of tools compiled for the host that are needed for the proper execution of Buildroot except for the cross-compilation toolchain which is installed understaging/
.toolchain/
contains the build directories for the various components of the cross-compilation toolchain.
Offline builds
If you intend to do an offline build and just want to download all sources that you previously selected in the configurator (menuconfig, xconfig or gconfig), then issue:
$ make source
You can now disconnect or copy the content of your dl
directory to the build-host.
Building out-of-tree
Buildroot supports building out of tree with a syntax similar to the Linux kernel. To use it, add O=<directory> to the make command line:
$ make O=/tmp/build
All the output files will be located under
/tmp/build
.
When using out-of-tree builds, the Buildroot
.config
and temporary files are also stored in the
output directory. This means that you can safely run multiple
builds in parallel using the same source tree as long as they use
unique output directories.
Environment variables
Buildroot also honors some environment variables when they are passed
to make
or set in the environment:
HOSTCXX
, the host C++ compiler to useHOSTCC
, the host C compiler to useUCLIBC_CONFIG_FILE=<path/to/.config>
, path to the uClibc configuration file to use to compile uClibc if an internal toolchain is being builtBUSYBOX_CONFIG_FILE=<path/to/.config>
, path to the Busybox configuration fileBUILDROOT_DL_DIR
to override the directory in which Buildroot stores/retrieves downloaded files
An example that uses config files located in the toplevel directory and in your $HOME:
$ make UCLIBC_CONFIG_FILE=uClibc.config BUSYBOX_CONFIG_FILE=$HOME/bb.config
If you want to use a compiler other than the default gcc
or g++
for building helper-binaries on your host, then do
$ make HOSTCXX=g++-4.3-HEAD HOSTCC=gcc-4.3-HEAD
Customizing the generated target filesystem
There are a few ways to customize the resulting target filesystem:
- Customize the target filesystem directly and rebuild the image. The
target filesystem is available under
output/target/
. You can simply make your changes here and run make afterwards — this will rebuild the target filesystem image. This method allows you to do anything to the target filesystem, but if you decide to completely rebuild your toolchain and tools, these changes will be lost. - Customize the target filesystem skeleton available under
target/generic/target_skeleton/
. You can customize configuration files or other stuff here. However, the full file hierarchy is not yet present because it's created during the compilation process. Therefore, you can't do everything on this target filesystem skeleton, but changes to it do remain even if you completely rebuild the cross-compilation toolchain and the tools.
You can also customize thetarget/generic/device_table.txt
file which is used by the tools that generate the target filesystem image to properly set permissions and create device nodes.
These customizations are deployed intooutput/target/
just before the actual image is made. Simply rebuilding the image by running make should propagate any new changes to the image. - Add support for your own target in Buildroot so that you have your own target skeleton (see this section for details).
- In the Buildroot configuration, you can specify the path to a
post-build script that gets called after Buildroot builds
all the selected software but before the the rootfs
packages are assembled. The destination root filesystem folder
is given as the first argument to this script, and this script can
then be used to copy programs, static data or any other needed
file to your target filesystem.
You should, however, use this feature with care. Whenever you find that a certain package generates wrong or unneeded files, you should fix that package rather than work around it with a post-build cleanup script. - A special package, customize, stored in
package/customize
can be used. You can put all the files that you want to see in the final target root filesystem inpackage/customize/source
and then enable this special package in the configuration system.
Customizing the Busybox configuration
Busybox is very configurable, and you may want to customize it. You can follow these simple steps to do so. This method isn't optimal, but it's simple and it works:
- Do an initial compilation of Buildroot with busybox without trying to customize it.
- Invoke
make busybox-menuconfig
. The nice configuration tool appears, and you can customize everything. - Run the compilation of Buildroot again.
Otherwise, you can simply change the
package/busybox/busybox-<version>.config
file if you
know the options you want to change without using the configuration tool.
If you want to use an existing config file for busybox, then see section environment variables.
Customizing the uClibc configuration
Just like BusyBox, uClibc offers a lot of configuration options. They allow you to select various functionalities depending on your needs and limitations.
The easiest way to modify the configuration of uClibc is to follow these steps:
- Do an initial compilation of Buildroot without trying to customize uClibc.
- Invoke
make uclibc-menuconfig
. The nice configuration assistant, similar to the one used in the Linux kernel or Buildroot, appears. Make your configuration changes as appropriate. - Copy the
.config
file totoolchain/uClibc/uClibc.config
ortoolchain/uClibc/uClibc.config-locale
. The former is used if you haven't selected locale support in Buildroot configuration, and the latter is used if you have selected locale support. - Run the compilation of Buildroot again.
Otherwise, you can simply change
toolchain/uClibc/uClibc.config
or
toolchain/uClibc/uClibc.config-locale
without running
the configuration assistant.
If you want to use an existing config file for uclibc, then see section environment variables.
Customizing the Linux kernel configuration
The Linux kernel configuration can be customized just like BusyBox and uClibc
using make linux26-menuconfig
. Make sure you have
enabled the kernel build in make menuconfig
first.
Once done, run make
to (re)build everything.
If you want to use an existing config file for Linux, then see section environment variables.
Understanding how to rebuild packages
One of the most common questions asked by Buildroot users is how to rebuild a given package or how to remove a package without rebuilding everything from scratch.
Removing a package is currently unsupported by Buildroot
without rebuilding from scratch. This is because Buildroot doesn't
keep track of which package installs what files in the
output/staging
and output/target
directories. However, implementing clean package removal is on the
TODO-list of Buildroot developers.
The easiest way to rebuild a single package from scratch is to
remove its build directory in output/build
. Buildroot
will then re-extract, re-configure, re-compile and re-install this
package from scratch.
However, if you don't want to rebuild the package completely from scratch, a better understanding of the Buildroot internals is needed. Internally, to keep track of which steps have been done and which steps remain to be done, Buildroot maintains stamp files (empty files that just tell whether this or that action has been done). The problem is that these stamp files are not uniformely named and handled by the different packages, so some understanding of the particular package is needed.
For packages relying on Buildroot packages infrastructures (see this section for details), the following stamp files are relevent:
output/build/packagename-version/.stamp_configured
. If removed, Buildroot will trigger the recompilation of the package from the configuration step (execution of./configure
).output/build/packagename-version/.stamp_built
. If removed, Buildroot will trigger the recompilation of the package from the compilation step (execution ofmake
).
For other packages, an analysis of the specific package.mk file is needed. For example, the zlib Makefile used to look like this (before it was converted to the generic package infrastructure):
$(ZLIB_DIR)/.configured: $(ZLIB_DIR)/.patched (cd $(ZLIB_DIR); rm -rf config.cache; \ [...] ) touch $@ $(ZLIB_DIR)/libz.a: $(ZLIB_DIR)/.configured $(MAKE) -C $(ZLIB_DIR) all libz.a touch -c $@
If you want to trigger the reconfiguration, you need to
remove output/build/zlib-version/.configured
. If
you want to trigger only the recompilation, you need to remove
output/build/zlib-version/libz.a
.
Note that most packages, if not all, will progressively be ported over the generic or the autotools infrastructure, making it much easier to rebuild individual packages.
How Buildroot works
As mentioned above, Buildroot is basically a set of Makefiles that downloads,
configures and compiles software with the correct options. It also includes
patches for various software packages — mainly the ones involved in the
cross-compilation tool chain (gcc
, binutils
and
uClibc
).
There is basically one Makefile per software package, and they are named with
the .mk
extension. Makefiles are split into three main
sections:
- toolchain (in the
toolchain/
directory) contains the Makefiles and associated files for all software related to the cross-compilation toolchain:binutils
,ccache
,gcc
,gdb
,kernel-headers
anduClibc
. - package (in the
package/
directory) contains the Makefiles and associated files for all user-space tools that Buildroot can compile and add to the target root filesystem. There is one sub-directory per tool. - target (in the
target
directory) contains the Makefiles and associated files for software related to the generation of the target root filesystem image. Four types of filesystems are supported: ext2, jffs2, cramfs and squashfs. For each of them there is a sub-directory with the required files. There is also adefault/
directory that contains the target filesystem skeleton.
Each directory contains at least 2 files:
something.mk
is the Makefile that downloads, configures, compiles and installs the packagesomething
.Config.in
is a part of the configuration tool description file. It describes the options related to the package.
The main Makefile performs the following steps (once the configuration is done):
- Create all the output directories:
staging
,target
,build
,stamps
, etc. in the output directory (output/
by default, another value can be specified usingO=
) - Generate all the targets listed in the
BASE_TARGETS
variable. When an internal toolchain is used, this means generating the cross-compilation toolchain. When an external toolchain is used, this means checking the features of the external toolchain and importing it into the Buildroot environment. - Generate all the targets listed in the
TARGETS
variable. This variable is filled by all the individual components' Makefiles. Generating these targets will trigger the compilation of the userspace packages (libraries, programs), the kernel, the bootloader and the generation of the root filesystem images, depending on the configuration.
Creating your own board support
Creating your own board support in Buildroot allows you to have a convenient place to store your project's target filesystem skeleton and configuration files for Buildroot, Busybox, uClibc, and the kernel.
Follow these steps to integrate your board in Buildroot:
- Create a new directory in
target/device/
named after your company or organization - Add a line
source "target/device/yourcompany/Config.in"
intarget/device/Config.in
so that your board appears in the configuration system - In
target/device/yourcompany/
, create a directory for your project. This way, you'll be able to store several of your company's projects inside Buildroot. - Create a
target/device/yourcompany/Config.in
file that looks like the following:menuconfig BR2_TARGET_COMPANY bool "Company projects" if BR2_TARGET_COMPANY config BR2_TARGET_COMPANY_PROJECT_FOOBAR bool "Support for Company project Foobar" help This option enables support for Company project Foobar endif
Of course, you should customize the different values to match your company/organization and your project. This file will create a menu entry that contains the different projects of your company/organization. - Create a
target/device/yourcompany/Makefile.in
file that looks like the following:ifeq ($(BR2_TARGET_COMPANY_PROJECT_FOOBAR),y) include target/device/yourcompany/project-foobar/Makefile.in endif
- Create the
target/device/yourcompany/project-foobar/Makefile.in
file. It is recommended that you define aBOARD_PATH
variable set totarget/device/yourcompany/project-foobar
as it will simplify further definitions. Then, the file might define one or several of the following variables:TARGET_SKELETON
to a directory that contains the target skeleton for your project. If this variable is defined, this target skeleton will be used instead of the default one. If defined, the convention is to define it to$(BOARD_PATH)/target_skeleton
so that the target skeleton is stored in the board specific directory.
- In the
target/device/yourcompany/project-foobar/
directory you can store configuration files for the kernel, Busybox or uClibc. You can furthermore create one or more preconfigured configuration files, referencing those files. These config files are namedsomething_defconfig
and are stored in the toplevelconfigs/
directory. Your users will then be able to runmake something_defconfig
and get the right configuration for your project
Using the generated toolchain outside Buildroot
You may want to compile for your target your own programs or other software that are not packaged in Buildroot. In order to do this you can use the toolchain that was generated by Buildroot.
The toolchain generated by Buildroot is located by default in
output/staging/
. The simplest way to use it
is to add output/staging/usr/bin/
to your PATH
environnement variable and then to use
ARCH-linux-gcc
, ARCH-linux-objdump
,
ARCH-linux-ld
, etc.
Important: do not try to move a gcc-3.x toolchain to another
directory — it won't work because there are some hardcoded paths in the
gcc-3.x configuration. If you are using a current gcc-4.x, it
is possible to relocate the toolchain — but then
--sysroot
must be passed every time the compiler is
called to tell where the libraries and header files are.
It is also possible to generate the Buildroot toolchain in
a directory other than output/staging
by using the
Build options -> Toolchain and header file
location
options. This could be useful if the toolchain
must be shared with other users.
Location of downloaded packages
It might be useful to know that the various tarballs that are
downloaded by the Makefiles are all stored in the
DL_DIR
which by default is the dl
directory. It's useful, for example, if you want to keep a complete
version of Buildroot which is know to be working with the
associated tarballs. This will allow you to regenerate the
toolchain and the target filesystem with exactly the same
versions.
If you maintain several Buildroot trees, it might be better to have
a shared download location. This can be accessed by creating a symbolic link
from the dl
directory to the shared download location:
ln -s <shared download location> dl
Another way of accessing a shared download location is to
create the BUILDROOT_DL_DIR
environment variable.
If this is set, then the value of DL_DIR in the project is
overridden. The following line should be added to
"~/.bashrc"
.
export BUILDROOT_DL_DIR <shared download location>
Using an external toolchain
It might be useful not to use the toolchain generated by Buildroot, for example if you already have a toolchain that is known to work for your specific CPU, or if the toolchain generation feature of Buildroot is not sufficiently flexible for you (for example if you need to generate a system with glibc instead of uClibc). Buildroot supports using an external toolchain.
To enable the use of an external toolchain, go in the
Toolchain
menu, and :
- Select the
External binary toolchain
toolchain type - Adjust the
External toolchain path
appropriately. It should be set to a path where a bin/ directory contains your cross-compiling tools - Adjust the
External toolchain prefix
so that the prefix, suffixed with-gcc
or-ld
will correspond to your cross-compiling tools
If you are using an external toolchain based on uClibc, the
Core C library from the external toolchain
and
Libraries to copy from the external toolchain
options
should already have correct values. However, if your external
toolchain is based on glibc, you'll have to change these values
according to your cross-compiling toolchain.
To generate external toolchains, we recommend using Crosstool-NG. It allows generating toolchains based on uClibc, glibc and eglibc for a wide range of architectures and has good community support.
Adding new packages to Buildroot
This section covers how new packages (userspace libraries or applications) can be integrated into Buildroot. It also allows to understand how existing packages are integrated, which is needed to fix issues or tune their configuration.
Package directory
First of all, create a directory under the package
directory for your software, for example foo
.
Some packages have been grouped by topic in a sub-directory:
multimedia
, java
,
databases
, editors
, x11r7
,
games
. If your package fits in one of these
categories, then create your package directory in these.
Config.in
file
Then, create a file named Config.in
. This file
will contain the option descriptions related to our
libfoo
software that will be used and displayed in the
configuration tool. It should basically contain :
config BR2_PACKAGE_LIBFOO bool "libfoo" help This is a comment that explains what libfoo is. http://foosoftware.org/libfoo/
Of course, you can add other options to configure particular things in your software. You can look at examples in other packages. The syntax of the Config.in file is the same as the one for the kernel Kconfig file. The documentation for this syntax is available at http://lxr.free-electrons.com/source/Documentation/kbuild/kconfig-language.txt
Finally you have to add your new libfoo/Config.in
to
package/Config.in
(or in a category subdirectory if
you decided to put your package in one of the existing
categories). The files included there are sorted
alphabetically per category and are NOT supposed to
contain anything but the bare name of the package.
source "package/libfoo/Config.in"
The .mk
file
Finally, here's the hardest part. Create a file named
foo.mk
. It describes how the package should be
downloaded, configured, built, installed, etc.
Depending on the package type, the .mk
file must be
written in a different way, using different infrastructures:
- Makefiles for generic packages (not using autotools), based
on an infrastructure similar to the one used for autotools-based
packages, but which requires a little more work from the
developer : specify what should be done at for the configuration,
compilation, installation and cleanup of the package. This
infrastructure must be used for all packages that do not use the
autotools as their build system. In the future, other specialized
infrastructures might be written for other build systems.
We cover them through a tutorial and a reference. - Makefiles for autotools-based (autoconf, automake, etc.)
softwares. We provide a dedicated infrastructure for such
packages, since autotools is a very common build system. This
infrastructure must be used for new packages that rely on
the autotools as their build system.
We cover them through a tutorial and a reference. - Manual Makefiles. These are currently obsolete and no new manual Makefiles should be added. However, since there are still many of them in the tree and because the , we keep them documented in a tutorial.
Makefile for generic packages : tutorial
01: ############################################################# 02: # 03: # libfoo 04: # 05: ############################################################# 06: LIBFOO_VERSION:=1.0 07: LIBFOO_SOURCE:=libfoo-$(LIBFOO_VERSION).tar.gz 08: LIBFOO_SITE:=http://www.foosoftware.org/download 09: LIBFOO_INSTALL_STAGING=YES 10: LIBFOO_DEPENDENCIES = host-libaaa libbbb 11: 12: define LIBFOO_BUILD_CMDS 13: $(MAKE) CC=$(TARGET_CC) LD=$(TARGET_LD) -C $(@D) all 14: endef 15: 16: define LIBFOO_INSTALL_STAGING_CMDS 17: $(INSTALL) -D $(@D)/libfoo.a $(STAGING_DIR)/usr/lib/libfoo.a 18: $(INSTALL) -D $(@D)/foo.h $(STAGING_DIR)/usr/include/foo.h 19: cp -dpf $(@D)/libfoo.so* $(STAGING_DIR)/usr/lib 20: endef 21: 22: define LIBFOO_INSTALL_TARGET_CMDS 23: cp -dpf $(@D)/libfoo.so* $(TARGET_DIR)/usr/lib 24: -$(STRIPCMP) $(STRIP_STRIP_UNNEEDED) $(TARGET_DIR)/isr/lib/libfoo.so* 25: endef 26: 27: $(eval $(call GENTARGETS,package,libfoo))
The Makefile begins on line 6 to 8 by metadata informations: the
version of the package (LIBFOO_VERSION
), the name of
the tarball containing the package (LIBFOO_SOURCE
) and
the Internet location at which the tarball can be downloaded
(LIBFOO_SITE
). All variables must start with the same
prefix, LIBFOO_
in this case. This prefix is always
the uppercased version of the package name (see below to understand
where the package name is defined).
On line 9, we specify that this package wants to install
something to the staging space. This is often needed for libraries
since they must install header files and other development files in
the staging space. This will ensure that the commands listed in the
LIBFOO_INSTALL_STAGING_CMDS
variable will be
executed.
On line 10, we specify the list of dependencies this package
relies on. These dependencies are listed in terms of lower-case
package names, which can be packages for the target (without the
host-
prefix) or packages for the host (with the
host-
) prefix). Buildroot will ensure that all these
packages are built and installed before the current package
starts its configuration.
The rest of the Makefile defines what should be done at the
different steps of the package configuration, compilation and
installation. LIBFOO_BUILD_CMDS
tells what steps
should be performed to build the
package. LIBFOO_INSTALL_STAGING_CMDS
tells what steps
should be performed to install the package in the staging
space. LIBFOO_INSTALL_TARGET_CMDS
tells what steps
should be performed to install the package in the target space.
All these steps rely on the $(@D)
variable, which
contains the directory where the source code of the package has
been extracted.
Finally, on line 27, we call the GENTARGETS
which
generates, according to the variables defined previously, all the
Makefile code necessary to make your package working.
Makefile for generic packages : reference
The GENTARGETS
macro takes three arguments:
- The first argument is the package directory prefix. If your
package is in
package/libfoo
, then the directory prefix ispackage
. If your package is inpackage/editors/foo
, then the directory prefix must bepackage/editors
. - The second argument is the lower-cased package name. It must
match the prefix of the variables in the
.mk
file and must match the configuration option name in theConfig.in
file. For example, if the package name islibfoo
, so the variables in the.mk
must start withLIBFOO_
and the configuration option in theConfig.in
file must beBR2_PACKAGE_LIBFOO
. - The third argument is optional. It can be used to tell if the package if a target package (cross-compiled for the target) or a host package (natively compiled for the host). If unspecified, it is assumed that it is a target package. See below for details.
For a given package, in a single .mk
file, it is
possible to call GENTARGETS twice, once to create the rules to
generate a target package and once to create the rules to generate
a host package:
$(eval $(call GENTARGETS,package,libfoo)) $(eval $(call GENTARGETS,package,libfoo,host))
This might be useful if the compilation of the target package
requires some tools to be installed on the host. If the package
name is libfoo
, then the name of the package for the
target is also libfoo
, while the name of the package
for the host is host-libfoo
. These names should be
used in the DEPENDENCIES variables of other packages if they depend
on libfoo
or host-libfoo
.
The call to the GENTARGETS
macro must be at
the end of the .mk
file, after all variable
definitions.
For the target package, the GENTARGETS
uses the
variables defined by the .mk file and prefixed by the uppercased
package name: LIBFOO_*
. For the host package, it uses
the HOST_LIBFOO_*
. For some variables, if the
HOST_LIBFOO_
prefixed variable doesn't exist, the
package infrastructure uses the corresponding variable prefixed by
LIBFOO_
. This is done for variables that are likely to
have the same value for both the target and host packages. See
below for details.
The list of variables that can be set in a .mk
file
to give metadata informations is (assuming the package name is
libfoo
) :
LIBFOO_VERSION
, mandatory, must contain the version of the package. Note that ifHOST_LIBFOO_VERSION
doesn't exist, it is assumed to be the same asLIBFOO_VERSION
.
Example:LIBFOO_VERSION=0.1.2
LIBFOO_SOURCE
may contain the name of the tarball of the package. IfHOST_LIBFOO_SOURCE
is not specified, it defaults toLIBFOO_VERSION
. If none are specified, then the value is assumed to bepackagename-$(LIBFOO_VERSION).tar.gz
.
Example:LIBFOO_SOURCE = foobar-$(LIBFOO_VERSION).tar.bz2
LIBFOO_PATCH
may contain the name of a patch, that will be downloaded from the same location as the tarball indicated inLIBFOO_SOURCE
. IfHOST_LIBFOO_PATCH
is not specified, it defaults toLIBFOO_PATCH
. Also note that another mechanism is available to patch a package: all files of the formpackagename-packageversion-description.patch
present in the package directory inside Buildroot will be applied to the package after extraction.LIBFOO_SITE
may contain the Internet location of the tarball of the package. IfHOST_LIBFOO_SITE
is not specified, it defaults toLIBFOO_SITE
. If none are specified, then the location is assumed to behttp://$$(BR2_SOURCEFORGE_MIRROR).dl.sourceforge.net/sourceforge/packagename
.
Example:LIBFOO_SITE=http://www.foosoftware.org/libfoo
.LIBFOO_DEPENDENCIES
lists the dependencies (in terms of package name) that are required for the current target package to compile. These dependencies are guaranteed to be compiled and installed before the configuration of the current package starts. In a similar way,HOST_LIBFOO_DEPENDENCIES
lists the dependency for the current host package.LIBFOO_INSTALL_STAGING
can be set toYES
orNO
(default). If set toYES
, then the commands in theLIBFOO_INSTALL_STAGING_CMDS
variables are executed to install the package into the staging directory.LIBFOO_INSTALL_TARGET
can be set toYES
(default) orNO
. If set toYES
, then the commands in theLIBFOO_INSTALL_TARGET_CMDS
variables are executed to install the package into the target directory.
The recommended way to define these variables is to use the following syntax:
LIBFOO_VERSION=2.32
Now, the variables that define what should be performed at the different steps of the build process.
LIBFOO_CONFIGURE_CMDS
, used to list the actions to be performed to configure the package before its compilationLIBFOO_BUILD_CMDS
, used to list the actions to be performed to compile the packageHOST_LIBFOO_INSTALL_CMDS
, used to list the actions to be performed to install the package, when the package is a host package. The package must install its files to the directory given by$(HOST_DIR)
. All files, including development files such as headers should be installed, since other packages might be compiled on top of this package.LIBFOO_INSTALL_TARGET_CMDS
, used to list the actions to be performed to install the package to the target directory, when the package is a target package. The package must install its files to the directory given by$(TARGET_DIR)
. Only the files required for execution of the package should be installed. Header files and documentation should not be installed.LIBFOO_INSTALL_STAGING_CMDS
, used to list the actions to be performed to install the package to the staging directory, when the package is a target package. The package must install its files to the directory given by$(STAGING_DIR)
. All development files should be installed, since they might be needed to compile other packages.LIBFOO_CLEAN_CMDS
, used to list the actions to perform to clean up the build directory of the package.LIBFOO_UNINSTALL_TARGET_CMDS
, used to list the actions to uninstall the package from the target directory$(TARGET_DIR)
LIBFOO_UNINSTALL_STAGING_CMDS
, used to
list the actions to uninstall the package from the staging
directory
$(STAGING_DIR)
.
The preferred way to define these variables is:
define LIBFOO_CONFIGURE_CMDS action 1 action 2 action 3 endef
In the action definitions, you can use the following variables:
$(@D)
, which contains the directory in which the package source code has been uncompressed.$(TARGET_CC)
,$(TARGET_LD)
, etc. to get the target cross-compilation utilities$(TARGET_CROSS)
to get the cross-compilation toolchain prefix- Of course the
$(HOST_DIR)
,$(STAGING_DIR)
and$(TARGET_DIR)
variables to install the packages properly.
The last feature of the generic infrastructure is the ability
to add hook more actions after existing steps. These hooks aren't
really useful for generic packages, since the .mk
file already has full control over the actions performed in each
step of the package construction. The hooks are more useful for
packages using the autotools infrastructure described below. But
since they are provided by the generic infrastructure, they are
documented here.
The following hook points are available:
LIBFOO_POST_PATCH_HOOKS
LIBFOO_POST_CONFIGURE_HOOKS
LIBFOO_POST_BUILD_HOOKS
LIBFOO_POST_INSTALL_HOOKS
(for host packages only)LIBFOO_POST_INSTALL_STAGING_HOOKS
(for target packages only)LIBFOO_POST_INSTALL_TARGET_HOOKS
(for target packages only)
This variables are lists of variable names containing actions to be performed at this hook point. This allows several hooks to be registered at a given hook point. Here is an example:
define LIBFOO_POST_PATCH_FIXUP action1 action2 endef LIBFOO_POST_PATCH_HOOKS += LIBFOO_POST_PATCH_FIXUP
Makefile for autotools-based packages : tutorial
First, let's see how to write a .mk
file for an
autotools-based package, with an example :
01: ############################################################# 02: # 03: # foo 04: # 05: ############################################################# 06: 07: FOO_VERSION:=1.0 08: FOO_SOURCE:=foo-$(FOO_VERSION).tar.gz 09: FOO_SITE:=http://www.foosoftware.org/downloads 10: FOO_INSTALL_STAGING = YES 11: FOO_INSTALL_TARGET = YES 12: FOO_CONF_OPT = --enable-shared 13: FOO_DEPENDENCIES = libglib2 host-pkg-config 14: 15: $(eval $(call AUTOTARGETS,package,foo))
On line 7, we declare the version of the package. On line 8 and 9, we declare the name of the tarball and the location of the tarball on the Web. Buildroot will automatically download the tarball from this location.
On line 10, we tell Buildroot to install the package to the
staging directory. The staging directory, located in
output/staging/
is the directory where all the
packages are installed, including their development files, etc. By
default, packages are not installed to the staging directory,
since usually, only libraries need to be installed in the staging
directory: their development files are needed to compile other
libraries or applications depending on them. Also by default, when
staging installation is enabled, packages are installed in this
location using the make install
command.
On line 11, we tell Buildroot to also install the package to
the target directory. This directory contains what will become the
root filesystem running on the target. Usually, we try not to
install the documentation and to install stripped versions of the
binary. By default, target installation is enabled, so in fact,
this line is not strictly necessary. Also by default, packages are
installed in this location using the make
install-strip
command.
On line 12, we tell Buildroot to pass a custom configure
option, that will be passed to the ./configure
script
before configuring and building the package.
On line 13, we declare our dependencies, so that they are built before the build process of our package starts.
Finally, on line line 14, we invoke the
AUTOTARGETS
macro that generates all the Makefile
rules that actually allows the package to be built.
Makefile for autotools packages : reference
The main macro of the autotools package infrastructure is
AUTOTARGETS
. It has the same number of arguments and
the same semantic as the GENTARGETS
macro, which is
the main macro of the generic package infrastructure. For
autotools packages, the ability to have target and host packages
is also available (and is actually widely used).
Just like the generic infrastructure, the autotools
infrastructure works by defining a number of variables before
calling the AUTOTARGETS
macro.
First, all the package meta-information variables that exist in
the generic infrastructure also exist in the autotools
infrastructure: LIBFOO_VERSION
,
LIBFOO_SOURCE
, LIBFOO_PATCH
,
LIBFOO_SITE
, LIBFOO_SUBDIR
,
LIBFOO_DEPENDENCIES
,
LIBFOO_INSTALL_STAGING
,
LIBFOO_INSTALL_TARGET
.
A few additional variables, specific to the autotools infrastructure, can also be defined. Many of them are only useful in very specific cases, typical packages will therefore only use a few of them.
LIBFOO_SUBDIR
may contain the name of a subdirectory inside the package that contains the configure script. This is useful, if for example, the main configure script is not at the root of the tree extracted by the tarball. IfHOST_LIBFOO_SUBDIR
is not specified, it defaults toLIBFOO_SUBDIR
.LIBFOO_CONF_ENV
, to specify additional environment variables to pass to the configure script. By default, empty.LIBFOO_CONF_OPT
, to specify additional configure options to pass to the configure script. By default, empty.LIBFOO_MAKE
, to specify an alternatemake
command. This is typically useful when parallel make it enabled in the configuration (usingBR2_JLEVEL
) but that this feature should be disabled for the given package, for one reason or another. By default, set to$(MAKE)
. If parallel building is not supported by the package, then it should doLIBFOO_MAKE=$(MAKE1)
.LIBFOO_MAKE_ENV
, to specify additional environment variables to pass to make in the build step. These are passed before themake
command. By default, empty.LIBFOO_MAKE_OPT
, to specify additional variables to pass to make in the build step. These are passed after themake
command. By default, empty.LIBFOO_AUTORECONF
, tells whether the package should be autoreconfigured or not (i.e, if the configure script and Makefile.in files should be re-generated by re-running autoconf, automake, libtool, etc.). Valid values areYES
andNO
. By default, the value isNO
LIBFOO_AUTORECONF_OPT
to specify additional options passed to the autoreconf program ifLIBFOO_AUTORECONF=YES
. By default, empty.LIBFOO_LIBTOOL_PATCH
tells whether the Buildroot patch to fix libtool cross-compilation issues should be applied or not. Valid values areYES
andNO
. By default, the value isYES
LIBFOO_USE_CONFIG_CACHE
tells whether the configure script should really on a cache file that caches test results from previous configure script. Usually, this variable should be left to its default value. Only for specific packages having issues with the configure cache can set this variable to theNO
value (but this is more a work-around than a really fix)LIBFOO_INSTALL_STAGING_OPT
contains the make options used to install the package to the staging directory. By default, the value isDESTDIR=$$(STAGING_DIR) install
, which is correct for most autotools packages. It is still possible to override it.LIBFOO_INSTALL_TARGET_OPT
contains the make options used to install the package to the target directory. By default, the value isDESTDIR=$$(TARGET_DIR) install-strip
ifBR2_ENABLE_DEBUG
is not set, andDESTDIR=$$(TARGET_DIR) install-exec
ifBR2_ENABLE_DEBUG
is set. These default values are correct for most autotools packages, but it is still possible to override them if needed.LIBFOO_CLEAN_OPT
contains the make options used to clean the package. By default, the value isclean
.LIBFOO_UNINSTALL_STAGING_OPT
, contains the make options used to uninstall the package from the staging directory. By default, the value isDESTDIR=$$(STAGING_DIR) uninstall
.LIBFOO_UNINSTALL_TARGET_OPT
, contains the make options used to uninstall the package from the target directory. By default, the value isDESTDIR=$$(TARGET_DIR) uninstall
.
With the autotools infrastructure, all the steps required to build and install the packages are already defined, and they generally work well for most autotools-based packages. However, when required, it is still possible to customize what is done in particular step:
- By adding a post-operation hook (after extract, patch, configure, build or install). See the reference documentation of the generic infrastructure for details.
- By overriding one of the steps. For example, even if the
autotools infrastructure is used, if the package
.mk
defines its ownLIBFOO_CONFIGURE_CMDS
variable, it will be used instead of the default autotools one. However, using this method should be restricted to very specific cases. Do not use it in the general case.
Manual Makefile : tutorial
NOTE: new manual makefiles should not be created, and existing manual makefiles should be converted either to the generic infrastructure or the autotools infrastructure. This section is only kept to document the existing manual makefiles and help understanding how they work.
1 ############################################################# 2 # 3 # foo 4 # 5 ############################################################# 6 FOO_VERSION:=1.0 7 FOO_SOURCE:=foo-$(FOO_VERSION).tar.gz 8 FOO_SITE:=http://www.foosoftware.org/downloads 9 FOO_DIR:=$(BUILD_DIR)/foo-$(FOO_VERSION) 10 FOO_BINARY:=foo 11 FOO_TARGET_BINARY:=usr/bin/foo 12 13 $(DL_DIR)/$(FOO_SOURCE): 14 $(call DOWNLOAD,$(FOO_SITE),$(FOO_SOURCE)) 15 16 $(FOO_DIR)/.source: $(DL_DIR)/$(FOO_SOURCE) 17 $(ZCAT) $(DL_DIR)/$(FOO_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) - 18 touch $@ 19 20 $(FOO_DIR)/.configured: $(FOO_DIR)/.source 21 (cd $(FOO_DIR); rm -rf config.cache; \ 22 $(TARGET_CONFIGURE_OPTS) \ 23 $(TARGET_CONFIGURE_ARGS) \ 24 ./configure \ 25 --target=$(GNU_TARGET_NAME) \ 26 --host=$(GNU_TARGET_NAME) \ 27 --build=$(GNU_HOST_NAME) \ 28 --prefix=/usr \ 29 --sysconfdir=/etc \ 30 ) 31 touch $@ 32 33 $(FOO_DIR)/$(FOO_BINARY): $(FOO_DIR)/.configured 34 $(MAKE) CC=$(TARGET_CC) -C $(FOO_DIR) 35 36 $(TARGET_DIR)/$(FOO_TARGET_BINARY): $(FOO_DIR)/$(FOO_BINARY) 37 $(MAKE) DESTDIR=$(TARGET_DIR) -C $(FOO_DIR) install-strip 38 rm -Rf $(TARGET_DIR)/usr/man 39 40 foo: uclibc ncurses $(TARGET_DIR)/$(FOO_TARGET_BINARY) 41 42 foo-source: $(DL_DIR)/$(FOO_SOURCE) 43 44 foo-clean: 45 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(FOO_DIR) uninstall 46 -$(MAKE) -C $(FOO_DIR) clean 47 48 foo-dirclean: 49 rm -rf $(FOO_DIR) 50 51 ############################################################# 52 # 53 # Toplevel Makefile options 54 # 55 ############################################################# 56 ifeq ($(BR2_PACKAGE_FOO),y) 57 TARGETS+=foo 58 endif
First of all, this Makefile example works for a package which comprises a single
binary executable. For other software, such as libraries or more
complex stuff with multiple binaries, it must be adapted. For examples look at
the other *.mk
files in the package
directory.
At lines 6-11, a couple of useful variables are defined:
FOO_VERSION
: The version of foo that should be downloaded.FOO_SOURCE
: The name of the tarball of foo on the download website or FTP site. As you can seeFOO_VERSION
is used.FOO_SITE
: The HTTP or FTP site from which foo archive is downloaded. It must include the complete path to the directory whereFOO_SOURCE
can be found.FOO_DIR
: The directory into which the software will be configured and compiled. Basically, it's a subdirectory ofBUILD_DIR
which is created upon decompression of the tarball.FOO_BINARY
: Software binary name. As said previously, this is an example for a package with a single binary.FOO_TARGET_BINARY
: The full path of the binary inside the target filesystem.
Lines 13-14 define a target that downloads the
tarball from the remote site to the download directory
(DL_DIR
).
Lines 16-18 define a target and associated rules that uncompress the downloaded tarball. As you can see, this target depends on the tarball file so that the previous target (lines 13-14) is called before executing the rules of the current target. Uncompressing is followed by touching a hidden file to mark the software as having been uncompressed. This trick is used everywhere in a Buildroot Makefile to split steps (download, uncompress, configure, compile, install) while still having correct dependencies.
Lines 20-31 define a target and associated rules
that configure the software. It depends on the previous target (the
hidden .source
file) so that we are sure the software has
been uncompressed. In order to configure the package, it basically runs the
well-known ./configure
script. As we may be doing
cross-compilation, target
, host
and
build
arguments are given. The prefix is also set to
/usr
, not because the software will be installed in
/usr
on your host system, but because the software will
bin installed in /usr
on the target
filesystem. Finally it creates a .configured
file to
mark the software as configured.
Lines 33-34 define a target and a rule that
compile the software. This target will create the binary file in the
compilation directory and depends on the software being already
configured (hence the reference to the .configured
file). It basically runs make
inside the source
directory.
Lines 36-38 define a target and associated rules
that install the software inside the target filesystem. They depend on the
binary file in the source directory to make sure the software has
been compiled. They use the install-strip
target of the
software Makefile
by passing a DESTDIR
argument so that the Makefile
doesn't try to install
the software in the host /usr
but rather in the target
/usr
. After the installation, the
/usr/man
directory inside the target filesystem is
removed to save space.
Line 40 defines the main target of the software —
the one that will be eventually be used by the top level
Makefile
to download, compile, and then install
this package. This target should first of all depend on all
needed dependencies of the software (in our example,
uclibc and ncurses) and also depend on the
final binary. This last dependency will call all previous
dependencies in the correct order.
Line 42 defines a simple target that only
downloads the code source. This is not used during normal operation of
Buildroot, but is needed if you intend to download all required sources at
once for later offline build. Note that if you add a new package providing
a foo-source
target is mandatory to support
users that wish to do offline-builds. Furthermore it eases checking
if all package-sources are downloadable.
Lines 44-46 define a simple target to clean the
software build by calling the Makefiles with the appropriate option.
The -clean
target should run make clean
on $(BUILD_DIR)/package-version and MUST uninstall all files of the
package from $(STAGING_DIR) and from $(TARGET_DIR).
Lines 48-49 define a simple target to completely
remove the directory in which the software was uncompressed, configured and
compiled. The -dirclean
target MUST completely rm $(BUILD_DIR)/
package-version.
Lines 51-58 add the target foo
to
the list of targets to be compiled by Buildroot by first checking if
the configuration option for this package has been enabled
using the configuration tool. If so, it then "subscribes"
this package to be compiled by adding the package to the TARGETS
global variable. The name added to the TARGETS global
variable is the name of this package's target, as defined on
line 40, which is used by Buildroot to download,
compile, and then install this package.
Gettext integration and interaction with packages
Many packages that support internationalization use the gettext library. Dependency on this library are fairly complicated and therefore deserves a few explanations.
The uClibc C library doesn't implement gettext functionality, therefore with this C library, a separate gettext must be compiled. On the other hand, the glibc C library does integrate its own gettext, and in this case, the separate gettext library should not be compiled, because it creates various kind of build failures.
Additionnaly, some packages (such as libglib2) do require
gettext unconditionnally, while other packages (those who
support --disable-nls
in general) only require
gettext when locale support is enabled.
Therefore, Buildroot defines two configuration options:
BR2_NEEDS_GETTEXT
, which is true as soon as the toolchain doesn't provide its own gettext implementationBR2_NEEDS_GETTEXT_IF_LOCALE
, which is true if the toolchain doesn't provide its own gettext implementation and if locale support is enabled
Therefore, packages that unconditionnally need gettext should:
- Use
select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT
and possiblyselect BR2_PACKAGE_LIBINTL if BR2_NEEDS_GETTEXT
if libintl is also needed - Use
$(if $(BR2_NEEDS_GETTEXT),gettext)
in the packageDEPENDENCIES
variable
Packages that need gettext only when locale support is enabled should:
- Use
select BR2_PACKAGE_GETTEXT if BR2_NEEDS_GETTEXT_IF_LOCALE
and possiblyselect BR2_PACKAGE_LIBINTL if BR2_NEEDS_GETTEXT_IF_LOCALE
if libintl is also needed - Use
$(if $(BR2_NEEDS_GETTEXT_IF_LOCALE),gettext)
in the packageDEPENDENCIES
variable
Conclusion
As you can see, adding a software package to Buildroot is simply a matter of writing a Makefile using an existing example and modifying it according to the compilation process required by the package.
If you package software that might be useful for other people, don't forget to send a patch to Buildroot developers!
Resources
To learn more about Buildroot you can visit these websites: