summaryrefslogtreecommitdiffstats
path: root/toolchain/gdb
diff options
context:
space:
mode:
Diffstat (limited to 'toolchain/gdb')
-rw-r--r--toolchain/gdb/6.6/700-nios2-6.6.patch7978
1 files changed, 7978 insertions, 0 deletions
diff --git a/toolchain/gdb/6.6/700-nios2-6.6.patch b/toolchain/gdb/6.6/700-nios2-6.6.patch
new file mode 100644
index 000000000..509bcbd81
--- /dev/null
+++ b/toolchain/gdb/6.6/700-nios2-6.6.patch
@@ -0,0 +1,7978 @@
+diff --git a/bfd/Makefile.am b/bfd/Makefile.am
+index 435b30b..488c4ab 100644
+--- a/bfd/Makefile.am
++++ b/bfd/Makefile.am
+@@ -92,6 +92,7 @@ ALL_MACHINES = \
+ cpu-maxq.lo \
+ cpu-mcore.lo \
+ cpu-mips.lo \
++ cpu-nios2.lo \
+ cpu-mmix.lo \
+ cpu-mt.lo \
+ cpu-msp430.lo \
+@@ -156,6 +157,7 @@ ALL_MACHINES_CFILES = \
+ cpu-maxq.c \
+ cpu-mcore.c \
+ cpu-mips.c \
++ cpu-nios2.c \
+ cpu-mmix.c \
+ cpu-mt.c \
+ cpu-msp430.c \
+@@ -270,6 +272,7 @@ BFD32_BACKENDS = \
+ elf32-mips.lo \
+ elf32-mt.lo \
+ elf32-msp430.lo \
++ elf32-nios2.lo \
+ elf32-openrisc.lo \
+ elf32-or32.lo \
+ elf32-pj.lo \
+@@ -446,6 +449,7 @@ BFD32_BACKENDS_CFILES = \
+ elf32-mips.c \
+ elf32-mt.c \
+ elf32-msp430.c \
++ elf32-nios2.c \
+ elf32-openrisc.c \
+ elf32-or32.c \
+ elf32-pj.c \
+@@ -1065,6 +1069,7 @@ cpu-m10300.lo: cpu-m10300.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-maxq.lo: cpu-maxq.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mcore.lo: cpu-mcore.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mips.lo: cpu-mips.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
++cpu-nios2.lo: cpu-nios2.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mmix.lo: cpu-mmix.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mt.lo: cpu-mt.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-msp430.lo: cpu-msp430.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+@@ -1428,6 +1433,10 @@ elf32-msp430.lo: elf32-msp430.c $(INCDIR)/filenames.h \
+ $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h \
+ $(INCDIR)/bfdlink.h $(INCDIR)/elf/msp430.h $(INCDIR)/elf/reloc-macros.h \
+ elf32-target.h
++elf32-nios2.lo: elf32-nios2.c $(INCDIR)/filenames.h $(INCDIR)/bfdlink.h \
++ genlink.h elf-bfd.h $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h \
++ $(INCDIR)/elf/external.h $(INCDIR)/elf/nios2.h \
++ $(INCDIR)/elf/reloc-macros.h elf32-target.h
+ elf32-openrisc.lo: elf32-openrisc.c $(INCDIR)/filenames.h \
+ $(INCDIR)/hashtab.h elf-bfd.h $(INCDIR)/elf/common.h \
+ $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \
+diff --git a/bfd/Makefile.in b/bfd/Makefile.in
+index 5bde689..5e57321 100644
+--- a/bfd/Makefile.in
++++ b/bfd/Makefile.in
+@@ -327,6 +327,7 @@ ALL_MACHINES = \
+ cpu-mt.lo \
+ cpu-msp430.lo \
+ cpu-or32.lo \
++ cpu-nios2.lo \
+ cpu-ns32k.lo \
+ cpu-openrisc.lo \
+ cpu-pdp11.lo \
+@@ -391,6 +392,7 @@ ALL_MACHINES_CFILES = \
+ cpu-mt.c \
+ cpu-msp430.c \
+ cpu-or32.c \
++ cpu-nios2.c \
+ cpu-ns32k.c \
+ cpu-openrisc.c \
+ cpu-pdp11.c \
+@@ -502,6 +504,7 @@ BFD32_BACKENDS = \
+ elf32-mips.lo \
+ elf32-mt.lo \
+ elf32-msp430.lo \
++ elf32-nios2.lo \
+ elf32-openrisc.lo \
+ elf32-or32.lo \
+ elf32-pj.lo \
+@@ -678,6 +681,7 @@ BFD32_BACKENDS_CFILES = \
+ elf32-mips.c \
+ elf32-mt.c \
+ elf32-msp430.c \
++ elf32-nios2.c \
+ elf32-openrisc.c \
+ elf32-or32.c \
+ elf32-pj.c \
+@@ -1626,6 +1630,7 @@ cpu-m10300.lo: cpu-m10300.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-maxq.lo: cpu-maxq.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mcore.lo: cpu-mcore.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mips.lo: cpu-mips.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
++cpu-nios2.lo: cpu-nios2.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mmix.lo: cpu-mmix.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-mt.lo: cpu-mt.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+ cpu-msp430.lo: cpu-msp430.c $(INCDIR)/filenames.h $(INCDIR)/hashtab.h
+@@ -1989,6 +1994,10 @@ elf32-msp430.lo: elf32-msp430.c $(INCDIR)/filenames.h \
+ $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h \
+ $(INCDIR)/bfdlink.h $(INCDIR)/elf/msp430.h $(INCDIR)/elf/reloc-macros.h \
+ elf32-target.h
++elf32-nios2.lo: elf32-nios2.c $(INCDIR)/filenames.h $(INCDIR)/bfdlink.h \
++ genlink.h elf-bfd.h $(INCDIR)/elf/common.h $(INCDIR)/elf/internal.h \
++ $(INCDIR)/elf/external.h $(INCDIR)/elf/nios2.h \
++ $(INCDIR)/elf/reloc-macros.h elf32-target.h
+ elf32-openrisc.lo: elf32-openrisc.c $(INCDIR)/filenames.h \
+ $(INCDIR)/hashtab.h elf-bfd.h $(INCDIR)/elf/common.h \
+ $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \
+diff --git a/bfd/archures.c b/bfd/archures.c
+index 5029cb0..ece60b4 100644
+--- a/bfd/archures.c
++++ b/bfd/archures.c
+@@ -381,6 +381,8 @@ DESCRIPTION
+ . bfd_arch_maxq, {* Dallas MAXQ 10/20 *}
+ .#define bfd_mach_maxq10 10
+ .#define bfd_mach_maxq20 20
++. bfd_arch_nios2,
++.#define bfd_mach_nios2 1
+ . bfd_arch_z80,
+ .#define bfd_mach_z80strict 1 {* No undocumented opcodes. *}
+ .#define bfd_mach_z80 3 {* With ixl, ixh, iyl, and iyh. *}
+@@ -462,6 +464,7 @@ extern const bfd_arch_info_type bfd_mn10300_arch;
+ extern const bfd_arch_info_type bfd_msp430_arch;
+ extern const bfd_arch_info_type bfd_mt_arch;
+ extern const bfd_arch_info_type bfd_ns32k_arch;
++extern const bfd_arch_info_type bfd_nios2_arch;
+ extern const bfd_arch_info_type bfd_openrisc_arch;
+ extern const bfd_arch_info_type bfd_or32_arch;
+ extern const bfd_arch_info_type bfd_pdp11_arch;
+@@ -530,6 +533,7 @@ static const bfd_arch_info_type * const bfd_archures_list[] =
+ &bfd_mn10300_arch,
+ &bfd_mt_arch,
+ &bfd_msp430_arch,
++ &bfd_nios2_arch,
+ &bfd_ns32k_arch,
+ &bfd_openrisc_arch,
+ &bfd_or32_arch,
+diff --git a/bfd/bfd-in2.h b/bfd/bfd-in2.h
+index 8f2af8b..f5c51d6 100644
+--- a/bfd/bfd-in2.h
++++ b/bfd/bfd-in2.h
+@@ -2010,6 +2010,8 @@ enum bfd_architecture
+ bfd_arch_maxq, /* Dallas MAXQ 10/20 */
+ #define bfd_mach_maxq10 10
+ #define bfd_mach_maxq20 20
++ bfd_arch_nios2,
++#define bfd_mach_nios2 1
+ bfd_arch_z80,
+ #define bfd_mach_z80strict 1 /* No undocumented opcodes. */
+ #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
+@@ -4271,6 +4273,23 @@ internally by the linker after analysis of a
+ BFD_RELOC_XTENSA_ASM_EXPAND. */
+ BFD_RELOC_XTENSA_ASM_SIMPLIFY,
+
++/* Relocations used by the Altera New Jersey core */
++ BFD_RELOC_NIOS2_S16,
++ BFD_RELOC_NIOS2_U16,
++ BFD_RELOC_NIOS2_CALL26,
++ BFD_RELOC_NIOS2_IMM5,
++ BFD_RELOC_NIOS2_CACHE_OPX,
++ BFD_RELOC_NIOS2_IMM6,
++ BFD_RELOC_NIOS2_IMM8,
++ BFD_RELOC_NIOS2_HI16,
++ BFD_RELOC_NIOS2_LO16,
++ BFD_RELOC_NIOS2_HIADJ16,
++ BFD_RELOC_NIOS2_GPREL,
++ BFD_RELOC_NIOS2_UJMP,
++ BFD_RELOC_NIOS2_CJMP,
++ BFD_RELOC_NIOS2_CALLR,
++ BFD_RELOC_NIOS2_ALIGN,
++
+ /* 8 bit signed offset in (ix+d) or (iy+d). */
+ BFD_RELOC_Z80_DISP8,
+
+diff --git a/bfd/config.bfd b/bfd/config.bfd
+old mode 100755
+new mode 100644
+index 9b81db7..fa86103
+--- a/bfd/config.bfd
++++ b/bfd/config.bfd
+@@ -88,6 +88,7 @@ m68*) targ_archs=bfd_m68k_arch ;;
+ m88*) targ_archs=bfd_m88k_arch ;;
+ maxq*) targ_archs=bfd_maxq_arch ;;
+ mips*) targ_archs=bfd_mips_arch ;;
++nios2*) targ_archs=bfd_nios2_arch ;;
+ or32*) targ_archs=bfd_or32_arch ;;
+ pdp11*) targ_archs=bfd_pdp11_arch ;;
+ pj*) targ_archs="bfd_pj_arch bfd_i386_arch";;
+@@ -985,6 +986,21 @@ case "${targ}" in
+ targ_underscore=yes
+ ;;
+
++ nios2eb-*-*)
++ targ_defvec=bfd_elf32_bignios2_vec
++ targ_selvecs=bfd_elf32_littlenios2_vec
++ ;;
++
++ nios2el-*-*)
++ targ_defvec=bfd_elf32_littlenios2_vec
++ targ_selvecs=bfd_elf32_bignios2_vec
++ ;;
++
++ nios2-*-*)
++ targ_defvec=bfd_elf32_littlenios2_vec
++ targ_selvecs=bfd_elf32_bignios2_vec
++ ;;
++
+ openrisc-*-elf)
+ targ_defvec=bfd_elf32_openrisc_vec
+ ;;
+diff --git a/bfd/configure b/bfd/configure
+index bc138ff..a64fef5 100755
+--- a/bfd/configure
++++ b/bfd/configure
+@@ -10846,6 +10846,8 @@ do
+ bfd_elf32_littlemips_vec) tb="$tb elf32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo" ;;
+ bfd_elf32_littlemips_vxworks_vec)
+ tb="$tb elf32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo" ;;
++ bfd_elf32_littlenios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;;
++ bfd_elf32_bignios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;;
+ bfd_elf32_m32c_vec) tb="$tb elf32-m32c.lo elf32.lo $elf" ;;
+ bfd_elf32_m32r_vec) tb="$tb elf32-m32r.lo elf32.lo $elf" ;;
+ bfd_elf32_m32rle_vec) tb="$tb elf32-m32r.lo elf32.lo $elf" ;;
+diff --git a/bfd/configure.in b/bfd/configure.in
+index fa0d50f..eb1e5f6 100644
+--- a/bfd/configure.in
++++ b/bfd/configure.in
+@@ -655,6 +655,8 @@ do
+ bfd_elf32_nlittlemips_vec) tb="$tb elfn32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo"; target_size=64 ;;
+ bfd_elf32_ntradbigmips_vec) tb="$tb elfn32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo"; target_size=64 ;;
+ bfd_elf32_ntradlittlemips_vec) tb="$tb elfn32-mips.lo elfxx-mips.lo elf-vxworks.lo elf32.lo $elf ecofflink.lo"; target_size=64 ;;
++ bfd_elf32_littlenios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;;
++ bfd_elf32_bignios2_vec) tb="$tb elf32-nios2.lo elf32.lo $elf" ;;
+ bfd_elf32_openrisc_vec) tb="$tb elf32-openrisc.lo elf32.lo $elf" ;;
+ bfd_elf32_or32_big_vec) tb="$tb elf32-or32.lo elf32.lo $elf" ;;
+ bfd_elf32_pj_vec) tb="$tb elf32-pj.lo elf32.lo $elf";;
+diff --git a/bfd/cpu-nios2.c b/bfd/cpu-nios2.c
+new file mode 100644
+index 0000000..c8f39c9
+--- /dev/null
++++ b/bfd/cpu-nios2.c
+@@ -0,0 +1,70 @@
++/* bfd back-end for Altera Nios II support
++
++ Copyright (C) 2003
++ by Nigel Gray (ngray@altera.com).
++
++This file is part of BFD, the Binary File Descriptor library.
++
++This program is free software; you can redistribute it and/or modify
++it under the terms of the GNU General Public License as published by
++the Free Software Foundation; either version 2 of the License, or
++(at your option) any later version.
++
++This program is distributed in the hope that it will be useful,
++but WITHOUT ANY WARRANTY; without even the implied warranty of
++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with this program; if not, write to the Free Software
++Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#include "bfd.h"
++#include "sysdep.h"
++#include "libbfd.h"
++
++static const bfd_arch_info_type *nios2_compatible
++ (const bfd_arch_info_type *, const bfd_arch_info_type *);
++
++/* The default routine tests bits_per_word, which is wrong on mips as
++ mips word size doesn't correlate with reloc size. */
++
++static const bfd_arch_info_type *
++nios2_compatible (const bfd_arch_info_type *a, const bfd_arch_info_type *b)
++{
++ if (a->arch != b->arch)
++ return NULL;
++
++ /* Machine compatibility is checked in
++ _bfd_mips_elf_merge_private_bfd_data. */
++
++ return a;
++}
++
++#define N(BITS_WORD, BITS_ADDR, NUMBER, PRINT, DEFAULT, NEXT) \
++ { \
++ BITS_WORD, /* bits in a word */ \
++ BITS_ADDR, /* bits in an address */ \
++ 8, /* 8 bits in a byte */ \
++ bfd_arch_nios2, \
++ NUMBER, \
++ "nios2", \
++ PRINT, \
++ 3, \
++ DEFAULT, \
++ nios2_compatible, \
++ bfd_default_scan, \
++ NEXT, \
++ }
++
++#define NN(index) (&arch_info_struct[(index) + 1])
++
++static const bfd_arch_info_type arch_info_struct[] =
++{
++ N (32, 32, bfd_mach_nios2, "nios2", FALSE, 0),
++};
++
++/* There is only one architecture - but we give the default a machine number of 0
++ so the linker can distinguish it */
++const bfd_arch_info_type bfd_nios2_arch =
++N (32, 32, 0, "nios2", TRUE, &arch_info_struct[0]);
+diff --git a/bfd/elf32-nios2.c b/bfd/elf32-nios2.c
+new file mode 100644
+index 0000000..f9ba1a0
+--- /dev/null
++++ b/bfd/elf32-nios2.c
+@@ -0,0 +1,2193 @@
++/* New Jersey-specific support for 32-bit ELF
++
++ Copyright (C) 2003
++ by Nigel Gray (ngray@altera.com).
++
++
++This file is part of BFD, the Binary File Descriptor library.
++
++This program is free software; you can redistribute it and/or modify
++it under the terms of the GNU General Public License as published by
++the Free Software Foundation; either version 2 of the License, or
++(at your option) any later version.
++
++This program is distributed in the hope that it will be useful,
++but WITHOUT ANY WARRANTY; without even the implied warranty of
++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with this program; if not, write to the Free Software
++Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++/* This file handles Altera New Jersey ELF targets */
++
++#include "bfd.h"
++#include "sysdep.h"
++#include "libbfd.h"
++#include "bfdlink.h"
++#include "genlink.h"
++#include "elf-bfd.h"
++#include "elf/nios2.h"
++#include "opcode/nios2.h"
++
++/* use RELA relocations*/
++#ifndef USE_RELA
++#define USE_RELA
++#endif
++
++#ifdef USE_REL
++#undef USE_REL
++#endif
++
++/* Function prototypes */
++
++static reloc_howto_type *nios2_elf32_bfd_reloc_type_lookup
++ (bfd *, bfd_reloc_code_real_type);
++
++static bfd_boolean nios2_elf32_relax_section
++ (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
++
++static bfd_boolean nios2_elf32_relax_delete_bytes
++ (bfd *, asection *, bfd_vma, int);
++
++static reloc_howto_type *nios2_elf32_rtype_to_howto
++ (unsigned int r_type, bfd_boolean rela_p);
++
++static void nios2_elf32_info_to_howto
++ (bfd * abfd, arelent * cache_ptr, Elf_Internal_Rela * dst);
++
++static bfd_boolean nios2_elf32_relocate_section
++ (bfd * output_bfd, struct bfd_link_info * info, bfd * input_bfd,
++ asection * input_section, bfd_byte * contents,
++ Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms,
++ asection ** local_sections);
++
++static reloc_howto_type *lookup_howto (unsigned int rtype);
++
++static bfd_reloc_status_type nios2_elf_final_gp
++ (bfd *, asymbol *, bfd_boolean, char **, bfd_vma *,
++ struct bfd_link_info *);
++
++static bfd_boolean nios2_elf_assign_gp
++ (bfd *, bfd_vma *, struct bfd_link_info *);
++
++static bfd_reloc_status_type nios2_elf32_ignore_reloc
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_hi16_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_lo16_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_hiadj16_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_pcrel16_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_call26_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_gprel_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_ujmp_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_cjmp_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_callr_relocate
++ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
++
++static bfd_reloc_status_type nios2_elf32_do_hi16_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_lo16_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_hiadj16_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_pcrel16_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_call26_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_gprel_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_ujmp_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_cjmp_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++static bfd_reloc_status_type nios2_elf32_do_callr_relocate
++ (bfd *, reloc_howto_type *, asection *,
++ bfd_byte *, bfd_vma, bfd_vma, bfd_vma);
++
++
++static void nios2_elf32_post_process_headers
++ (bfd *, struct bfd_link_info *);
++
++static bfd_boolean nios2_elf32_section_from_shdr
++ (bfd *, Elf_Internal_Shdr *, const char *name, int shindex);
++
++static bfd_boolean nios2_elf32_section_flags
++ (flagword *, const Elf_Internal_Shdr *);
++
++static bfd_boolean nios2_elf32_fake_sections
++ (bfd *, Elf_Internal_Shdr *, asection *);
++
++
++
++static bfd_boolean nios2_elf32_check_relocs
++ (bfd *, struct bfd_link_info *, asection *,
++ const Elf_Internal_Rela *);
++
++static asection *nios2_elf32_gc_mark_hook (asection * sec,
++ struct bfd_link_info *
++ info,
++ Elf_Internal_Rela * rel,
++ struct elf_link_hash_entry
++ * h,
++ Elf_Internal_Sym * sym);
++
++
++/* target vector */
++extern const bfd_target bfd_elf32_littlenios2_vec;
++extern const bfd_target bfd_elf32_bignios2_vec;
++
++/* The relocation table used for SHT_REL sections. */
++
++static reloc_howto_type elf_nios2_howto_table_rel[] = {
++ /* No relocation. */
++ HOWTO (R_NIOS2_NONE, /* type */
++ 0, /* rightshift */
++ 0, /* size (0 = byte, 1 = short, 2 = long) */
++ 0, /* bitsize */
++ FALSE, /* pc_relative */
++ 0, /* bitpos */
++ complain_overflow_dont, /* complain_on_overflow */
++ bfd_elf_generic_reloc, /* special_function */
++ "R_NIOS2_NONE", /* name */
++ FALSE, /* partial_inplace */
++ 0, /* src_mask */
++ 0, /* dst_mask */
++ FALSE), /* pcrel_offset */
++
++ /* 16-bit signed immediate relocation */
++ HOWTO (R_NIOS2_S16, /* type */
++ 0, /* rightshift */
++ 2, /* size (0 = byte, 1 = short, 2 = long) */
++ 16, /* bitsize */
++ FALSE, /* pc_relative */
++ 6, /* bitpos */
++ complain_overflow_signed, /* complain on overflow */
++ bfd_elf_generic_reloc, /* special function */
++ "R_NIOS2_S16", /* name */
++ FALSE, /* partial_inplace */
++ 0x003fffc0, /* src_mask */
++ 0x003fffc0, /* dest_mask */
++ FALSE), /* pcrel_offset */
++
++ /* 16-bit unsigned immediate relocation */
++ HOWTO (R_NIOS2_U16, /* type */
++ 0, /* rightshift */
++ 2, /* size (0 = byte, 1 = short, 2 = long) */
++ 16, /* bitsize */
++ FALSE, /* pc_relative */
++ 6, /* bitpos */
++ complain_overflow_unsigned, /* complain on overflow */
++ bfd_elf_generic_reloc, /* special function */
++ "R_NIOS2_U16", /* name */
++ FALSE, /* partial_inplace */
++ 0x003fffc0, /* src_mask */
++ 0x003fffc0, /* dest_mask */
++ FALSE), /* pcrel_offset */
++
++ HOWTO (R_NIOS2_PCREL16, /* type */
++ 0, /* rightshift */
++ 2, /* size (0 = byte, 1 = short, 2 = long) */
++ 16, /* bitsize */
++ TRUE, /* pc_relative */
++ 6, /* bitpos */
++ complain_overflow_signed, /* complain on overflow */
++ nios2_elf32_pcrel16_relocate, /* special function */
++ "R_NIOS2_PCREL16", /* name */
++ FALSE, /* partial_inplace */
++ 0x003fffc0, /* src_mask */
++ 0x003fffc0, /* dest_mask */
++ TRUE), /* pcrel_offset */
++
++ HOWTO (R_NIOS2_CALL26, /* type */
++ 2, /* rightshift */
++ 2, /* size (0 = byte, 1 = short, 2 = long) */
++ 26, /* bitsize */
++ FALSE, /* pc_relative */
++ 6, /* bitpos */
++ complain_overflow_dont, /* complain on overflow */
++ nios2_elf32_call26_relocate, /* special function */
++ "R_NIOS2_CALL26", /* name */
++ FALSE, /* partial_inplace */
++ 0xffffffc0, /* src_mask */
++ 0xffffffc0, /* dst_mask */
++ FALSE), /* pcrel_offset */
++
++ HOWTO (R_NIOS2_IMM5,
++ 0,
++ 2,
++ 5,
++ FALSE,
++ 6,
++ complain_overflow_bitfield,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_IMM5",
++ FALSE,
++ 0x000007c0,
++ 0x000007c0,
++ FALSE),
++
++ HOWTO (R_NIOS2_CACHE_OPX,
++ 0,
++ 2,
++ 5,
++ FALSE,
++ 22,
++ complain_overflow_bitfield,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_CACHE_OPX",
++ FALSE,
++ 0x07c00000,
++ 0x07c00000,
++ FALSE),
++
++ HOWTO (R_NIOS2_IMM6,
++ 0,
++ 2,
++ 6,
++ FALSE,
++ 6,
++ complain_overflow_bitfield,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_IMM6",
++ FALSE,
++ 0x00000fc0,
++ 0x00000fc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_IMM8,
++ 0,
++ 2,
++ 8,
++ FALSE,
++ 6,
++ complain_overflow_bitfield,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_IMM8",
++ FALSE,
++ 0x00003fc0,
++ 0x00003fc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_HI16,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_hi16_relocate,
++ "R_NIOS2_HI16",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_LO16,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_lo16_relocate,
++ "R_NIOS2_LO16",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_HIADJ16,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_hiadj16_relocate,
++ "R_NIOS2_HIADJ16",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_BFD_RELOC_32,
++ 0,
++ 2, /* long */
++ 32,
++ FALSE,
++ 0,
++ complain_overflow_dont,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_BFD_RELOC32",
++ FALSE,
++ 0xffffffff,
++ 0xffffffff,
++ FALSE),
++
++ HOWTO (R_NIOS2_BFD_RELOC_16,
++ 0,
++ 1, /* short */
++ 16,
++ FALSE,
++ 0,
++ complain_overflow_bitfield,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_BFD_RELOC16",
++ FALSE,
++ 0x0000ffff,
++ 0x0000ffff,
++ FALSE),
++
++ HOWTO (R_NIOS2_BFD_RELOC_8,
++ 0,
++ 0, /* byte */
++ 8,
++ FALSE,
++ 0,
++ complain_overflow_bitfield,
++ bfd_elf_generic_reloc,
++ "R_NIOS2_BFD_RELOC8",
++ FALSE,
++ 0x000000ff,
++ 0x000000ff,
++ FALSE),
++
++ HOWTO (R_NIOS2_GPREL,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_gprel_relocate,
++ "R_NIOS2_GPREL",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_GNU_VTINHERIT,
++ 0,
++ 2, /* short */
++ 0,
++ FALSE,
++ 0,
++ complain_overflow_dont,
++ NULL,
++ "R_NIOS2_GNU_VTINHERIT",
++ FALSE,
++ 0,
++ 0,
++ FALSE),
++
++ HOWTO (R_NIOS2_GNU_VTENTRY,
++ 0,
++ 2, /* byte */
++ 0,
++ FALSE,
++ 0,
++ complain_overflow_dont,
++ _bfd_elf_rel_vtable_reloc_fn,
++ "R_NIOS2_GNU_VTENTRY",
++ FALSE,
++ 0,
++ 0,
++ FALSE),
++
++ HOWTO (R_NIOS2_UJMP,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_ujmp_relocate,
++ "R_NIOS2_UJMP",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_CJMP,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_cjmp_relocate,
++ "R_NIOS2_CJMP",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_CALLR,
++ 0,
++ 2,
++ 32,
++ FALSE,
++ 6,
++ complain_overflow_dont,
++ nios2_elf32_callr_relocate,
++ "R_NIOS2_CALLR",
++ FALSE,
++ 0x003fffc0,
++ 0x003fffc0,
++ FALSE),
++
++ HOWTO (R_NIOS2_ALIGN,
++ 0,
++ 2,
++ 0,
++ FALSE,
++ 0,
++ complain_overflow_dont,
++ nios2_elf32_ignore_reloc,
++ "R_NIOS2_ALIGN",
++ FALSE,
++ 0,
++ 0,
++ TRUE),
++
++/* add other relocations here */
++};
++
++static unsigned char elf_code_to_howto_index[R_NIOS2_ILLEGAL + 1];
++
++static reloc_howto_type *
++lookup_howto (unsigned int rtype)
++{
++ static int initialized = 0;
++ int i;
++ int howto_tbl_size = (int) (sizeof (elf_nios2_howto_table_rel)
++ / sizeof (elf_nios2_howto_table_rel[0]));
++
++ if (!initialized)
++ {
++ initialized = 1;
++ memset (elf_code_to_howto_index, 0xff,
++ sizeof (elf_code_to_howto_index));
++ for (i = 0; i < howto_tbl_size; i++)
++ elf_code_to_howto_index[elf_nios2_howto_table_rel[i].type] = i;
++ }
++
++ BFD_ASSERT (rtype <= R_NIOS2_ILLEGAL);
++ i = elf_code_to_howto_index[rtype];
++ if (i >= howto_tbl_size)
++ return 0;
++ return elf_nios2_howto_table_rel + i;
++}
++
++/*
++ map for converting BFD reloc types to New Jersey
++ reloc types
++ */
++struct elf_reloc_map
++{
++ bfd_reloc_code_real_type bfd_val;
++ enum elf_nios2_reloc_type elf_val;
++};
++
++static const struct elf_reloc_map nios2_reloc_map[] = {
++ {BFD_RELOC_NIOS2_S16, R_NIOS2_S16},
++ {BFD_RELOC_NIOS2_U16, R_NIOS2_U16},
++ {BFD_RELOC_16_PCREL, R_NIOS2_PCREL16},
++ {BFD_RELOC_NIOS2_CALL26, R_NIOS2_CALL26},
++ {BFD_RELOC_NIOS2_IMM5, R_NIOS2_IMM5},
++ {BFD_RELOC_NIOS2_CACHE_OPX, R_NIOS2_CACHE_OPX},
++ {BFD_RELOC_NIOS2_IMM6, R_NIOS2_IMM6},
++ {BFD_RELOC_NIOS2_IMM8, R_NIOS2_IMM8},
++ {BFD_RELOC_NIOS2_HI16, R_NIOS2_HI16},
++ {BFD_RELOC_NIOS2_LO16, R_NIOS2_LO16},
++ {BFD_RELOC_NIOS2_HIADJ16, R_NIOS2_HIADJ16},
++ {BFD_RELOC_32, R_NIOS2_BFD_RELOC_32},
++ {BFD_RELOC_16, R_NIOS2_BFD_RELOC_16},
++ {BFD_RELOC_8, R_NIOS2_BFD_RELOC_8},
++ {BFD_RELOC_NIOS2_GPREL, R_NIOS2_GPREL},
++ {BFD_RELOC_VTABLE_INHERIT, R_NIOS2_GNU_VTINHERIT},
++ {BFD_RELOC_VTABLE_ENTRY, R_NIOS2_GNU_VTENTRY},
++ {BFD_RELOC_NIOS2_UJMP, R_NIOS2_UJMP},
++ {BFD_RELOC_NIOS2_CJMP, R_NIOS2_CJMP},
++ {BFD_RELOC_NIOS2_CALLR, R_NIOS2_CALLR},
++ {BFD_RELOC_NIOS2_ALIGN, R_NIOS2_ALIGN},
++};
++
++/* Given a BFD reloc type, return a howto structure. */
++
++static reloc_howto_type *
++nios2_elf32_bfd_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
++ bfd_reloc_code_real_type code)
++{
++ int i;
++ for (i = 0;
++ i < (int) (sizeof (nios2_reloc_map) / sizeof (struct elf_reloc_map));
++ ++i)
++ {
++ if (nios2_reloc_map[i].bfd_val == code)
++ return &elf_nios2_howto_table_rel[(int) nios2_reloc_map[i].elf_val];
++ }
++
++ return NULL;
++}
++
++/* Helper function for nios2_elf32_info_to_howto */
++
++static reloc_howto_type *
++nios2_elf32_rtype_to_howto (unsigned int r_type,
++ bfd_boolean rela_p ATTRIBUTE_UNUSED)
++{
++ BFD_ASSERT (r_type < R_NIOS2_ILLEGAL);
++ return &elf_nios2_howto_table_rel[r_type];
++}
++
++/* Given a ELF32 relocation, fill in a arelent structure */
++
++static void
++nios2_elf32_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * cache_ptr,
++ Elf_Internal_Rela * dst)
++{
++ unsigned int r_type;
++
++ r_type = ELF32_R_TYPE (dst->r_info);
++ cache_ptr->howto = nios2_elf32_rtype_to_howto (r_type, FALSE);
++
++ // FIXME - do we need to do anything else here???
++}
++
++/* The assembler has output long jmp/call sequences for all calls
++ * and pc-relative branches that it cannot guarantee are within
++ * range, so the linker must attempt to "relax" these sequences to
++ * short branches and calls if it can. Since we only relax in one
++ * direction - long to short - we don't need to see whether each
++ * relaxation invalidates any others
++ *
++ *
++ **/
++static bfd_boolean
++nios2_elf32_relax_section (bfd * abfd,
++ asection * sec,
++ struct bfd_link_info *link_info, bfd_boolean * again)
++{
++ Elf_Internal_Shdr *symtab_hdr;
++ Elf_Internal_Rela *internal_relocs;
++ Elf_Internal_Rela *irel, *irelend;
++ bfd_byte *contents = NULL;
++ Elf_Internal_Sym *isymbuf = NULL;
++
++ /* Assume nothing changes. */
++ *again = FALSE;
++
++ /* We don't have to do anything for a relocatable link, if
++ this section does not have relocs, or if this is not a
++ code section. */
++ if (link_info->relocatable
++ || (sec->flags & SEC_RELOC) == 0
++ || sec->reloc_count == 0 || (sec->flags & SEC_CODE) == 0)
++ return TRUE;
++
++ /* If this is the first time we have been called for this section,
++ initialize the cooked size. */
++ if (sec->size == 0)
++ sec->size = sec->rawsize;
++
++ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
++
++ /* Get a copy of the native relocations. */
++ internal_relocs = (_bfd_elf_link_read_relocs
++ (abfd, sec, (void *) NULL, (Elf_Internal_Rela *) NULL,
++ link_info->keep_memory));
++ if (internal_relocs == NULL)
++ goto error_return;
++
++ /* Walk through them looking for relaxing opportunities. */
++ irelend = internal_relocs + sec->reloc_count;
++ for (irel = internal_relocs; irel < irelend; irel++)
++ {
++ bfd_vma symval;
++
++ /* If this isn't something that can be relaxed, then ignore
++ this reloc. */
++ if (ELF32_R_TYPE (irel->r_info) != (int) R_NIOS2_UJMP
++ && ELF32_R_TYPE (irel->r_info) != (int) R_NIOS2_CJMP
++ && ELF32_R_TYPE (irel->r_info) != (int) R_NIOS2_CALLR)
++ {
++ continue;
++ }
++
++ /* Get the section contents if we haven't done so already. */
++ if (contents == NULL)
++ {
++ /* Get cached copy if it exists. */
++ if (elf_section_data (sec)->this_hdr.contents != NULL)
++ contents = elf_section_data (sec)->this_hdr.contents;
++ else
++ {
++ /* Go get them off disk. */
++ contents = (bfd_byte *) bfd_malloc (sec->rawsize);
++ if (contents == NULL)
++ goto error_return;
++
++ if (!bfd_get_section_contents (abfd, sec, contents,
++ (file_ptr) 0, sec->rawsize))
++ goto error_return;
++ }
++ }
++
++ /* Read this BFD's local symbols if we haven't done so already. */
++ if (isymbuf == NULL && symtab_hdr->sh_info != 0)
++ {
++ isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
++ if (isymbuf == NULL)
++ isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
++ symtab_hdr->sh_info, 0,
++ NULL, NULL, NULL);
++ if (isymbuf == NULL)
++ goto error_return;
++ }
++
++ /* Get the value of the symbol referred to by the reloc. */
++ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
++ {
++ /* A local symbol. */
++ Elf_Internal_Sym *isym;
++ asection *sym_sec;
++
++ isym = isymbuf + ELF32_R_SYM (irel->r_info);
++ if (isym->st_shndx == SHN_UNDEF)
++ sym_sec = bfd_und_section_ptr;
++ else if (isym->st_shndx == SHN_ABS)
++ sym_sec = bfd_abs_section_ptr;
++ else if (isym->st_shndx == SHN_COMMON)
++ sym_sec = bfd_com_section_ptr;
++ else
++ sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
++ symval = (isym->st_value
++ + sym_sec->output_section->vma + sym_sec->output_offset);
++ }
++ else
++ {
++ unsigned long indx;
++ struct elf_link_hash_entry *h;
++
++ /* An external symbol. */
++ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
++ h = elf_sym_hashes (abfd)[indx];
++ BFD_ASSERT (h != NULL);
++ if (h->root.type != bfd_link_hash_defined
++ && h->root.type != bfd_link_hash_defweak)
++ {
++ /* This appears to be a reference to an undefined
++ symbol. Just ignore it--it will be caught by the
++ regular reloc processing. */
++ continue;
++ }
++
++ symval = (h->root.u.def.value
++ + h->root.u.def.section->output_section->vma
++ + h->root.u.def.section->output_offset);
++ }
++
++ /* For simplicity of coding, we are going to modify the section
++ contents, the section relocs, and the BFD symbol table. We
++ must tell the rest of the code not to free up this
++ information. It would be possible to instead create a table
++ of changes which have to be made, as is done in coff-mips.c;
++ that would be more work, but would require less memory when
++ the linker is run. */
++
++ /* try to turn :
++ * movhi at, %hi(symbol)
++ * movui at, %lo(symbol)
++ * callr at
++ * into:
++ * call symbol
++ */
++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_CALLR)
++ {
++ bfd_vma targ_addr = symval + irel->r_addend;
++ bfd_vma curr_addr = (sec->output_section->vma + sec->output_offset);
++ bfd_vma targ_page, curr_page;
++ targ_page = targ_addr & 0xf0000000;
++ curr_page = curr_addr & 0xf0000000;
++
++ if (targ_page == curr_page)
++ {
++ /* change the opcode to a call */
++ bfd_put_32 (abfd, OP_MATCH_CALL, contents + irel->r_offset);
++ /* Note that we've changed the relocs, section contents, etc. */
++ elf_section_data (sec)->relocs = internal_relocs;
++ elf_section_data (sec)->this_hdr.contents = contents;
++ symtab_hdr->contents = (unsigned char *) isymbuf;
++
++ /* Fix the relocation's type. */
++ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
++ R_NIOS2_CALL26);
++
++ /* delete the next two instructions */
++ if (!nios2_elf32_relax_delete_bytes (abfd, sec,
++ irel->r_offset + 4, 8))
++ goto error_return;
++
++ /* NG FIXME - I'm putting this in for now, but I don't think we need it */
++ *again = TRUE;
++ }
++ }
++
++ /* try to turn :
++ * movhi at, %hi(symbol)
++ * movui at, %lo(symbol)
++ * jmp at
++ * into:
++ * br symbol
++ */
++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_UJMP)
++ {
++ bfd_vma pcrel_offset;
++ Elf_Internal_Rela *irelalign = NULL;
++ Elf_Internal_Rela *irela = elf_section_data (sec)->relocs;
++ Elf_Internal_Rela *irelend = irel + sec->reloc_count;
++
++ for (; irela < irelend; irela++)
++ {
++ if (ELF32_R_TYPE (irela->r_info) == (int) R_NIOS2_ALIGN
++ && irela->r_offset > irel->r_offset + 4
++ && 8 < (1 << irela->r_addend))
++ {
++ irelalign = irela;
++ break;
++ }
++ }
++
++ /* calculate the pcrelative offset from current location */
++ pcrel_offset = symval;
++ pcrel_offset -= (sec->output_section->vma + sec->output_offset);
++ pcrel_offset += irel->r_addend;
++
++ /* we need to compute the pcrel_offset from the next instruction */
++ pcrel_offset -= (irel->r_offset + 4);
++
++ /* does this value fit in 16 bits */
++ if ((irelalign == NULL && (long) pcrel_offset <= 0x8004
++ && (long) pcrel_offset >= -0x8000) || (irelalign != NULL
++ && (long) pcrel_offset
++ <= 0x7ffc
++ && (long) pcrel_offset
++ >= -0x8000))
++ {
++ /* change the opcode to an unconditional branch */
++ bfd_put_32 (abfd, OP_MATCH_BR, contents + irel->r_offset);
++ /* Note that we've changed the relocs, section contents, etc. */
++ elf_section_data (sec)->relocs = internal_relocs;
++ elf_section_data (sec)->this_hdr.contents = contents;
++ symtab_hdr->contents = (unsigned char *) isymbuf;
++
++ /* Fix the relocation's type. */
++ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
++ R_NIOS2_PCREL16);
++
++ /* delete the next two instructions */
++ if (!nios2_elf32_relax_delete_bytes (abfd, sec,
++ irel->r_offset + 4, 8))
++ goto error_return;
++
++ /* NG FIXME - I'm putting this in for now, but I don't think we need it */
++ *again = TRUE;
++ }
++ }
++
++ /* try to turn :
++ * b{cond} a, b skip
++ * movhi at, %hi(symbol)
++ * movui at, %lo(symbol)
++ * jmp at
++ * skip:
++ * ...
++ * into:
++ * br{opp_cond} a, b, symbol
++ */
++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_CJMP)
++ {
++ bfd_vma pcrel_offset;
++ Elf_Internal_Rela *irelalign = NULL;
++ Elf_Internal_Rela *irela = elf_section_data (sec)->relocs;
++ Elf_Internal_Rela *irelend = irel + sec->reloc_count;
++
++ for (; irela < irelend; irela++)
++ {
++ if (ELF32_R_TYPE (irela->r_info) == (int) R_NIOS2_ALIGN
++ && irela->r_offset > irel->r_offset + 4
++ && 8 < (1 << irela->r_addend))
++ {
++ irelalign = irela;
++ break;
++ }
++ }
++
++ /* calculate the pcrelative offset from current location */
++ pcrel_offset = symval;
++ pcrel_offset -= (sec->output_section->vma + sec->output_offset);
++ pcrel_offset += irel->r_addend;
++
++ /* we need to compute the pcrel_offset from this instruction
++ * ie the movhi */
++ pcrel_offset -= (irel->r_offset);
++
++ /* does this value fit in 16 bits */
++ if ((irelalign == NULL && (long) pcrel_offset <= 0x8008
++ && (long) pcrel_offset >= -0x8000) || (irelalign != NULL
++ && (long) pcrel_offset
++ <= 0x7ffc
++ && (long) pcrel_offset
++ >= -0x8000))
++ {
++ unsigned long opcode, op_a, op_b;
++ /* get the conditional branch opcode */
++ opcode = bfd_get_32 (abfd, contents + irel->r_offset - 4);
++ /* reverse the condition */
++ switch (opcode & OP_MASK_OP)
++ {
++ case OP_MATCH_BEQ:
++ opcode = (opcode & ~OP_MASK_OP) | OP_MATCH_BNE;
++ break;
++ case OP_MATCH_BNE:
++ opcode = (opcode & ~OP_MASK_OP) | OP_MATCH_BEQ;
++ break;
++ case OP_MATCH_BGE:
++ case OP_MATCH_BGEU:
++ case OP_MATCH_BLT:
++ case OP_MATCH_BLTU:
++ /* swap the operands */
++ op_a = (opcode & OP_MASK_RRT) << 5;
++ op_b = (opcode & OP_MASK_RRS) >> 5;
++ opcode =
++ (opcode & ~(OP_MASK_RRS | OP_MASK_RRT)) | op_a | op_b;
++ break;
++ default:
++ fprintf (stderr,
++ "relaxation error - expecting conditional branch, aborting\n");
++ abort ();
++ break;
++ }
++
++ /* we must set the branch target to zero so that the skip over the jmp doesn't get
++ * added to the jmp */
++ opcode = opcode & (~OP_MASK_IMM16);
++
++ /* change the opcode to the reversed conditional branch */
++ bfd_put_32 (abfd, opcode, contents + irel->r_offset - 4);
++ /* Note that we've changed the relocs, section contents, etc. */
++ elf_section_data (sec)->relocs = internal_relocs;
++ elf_section_data (sec)->this_hdr.contents = contents;
++ symtab_hdr->contents = (unsigned char *) isymbuf;
++
++ /* Fix the relocation's type. */
++ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
++ R_NIOS2_PCREL16);
++
++ /* this relocation's offset has also been reduced by 4 bytes */
++ irel->r_offset -= 4;
++
++ /* delete the next three instructions */
++ if (!nios2_elf32_relax_delete_bytes (abfd, sec,
++ irel->r_offset + 4, 12))
++ goto error_return;
++
++ /* NG FIXME - I'm putting this in for now, but I don't think we need it */
++ *again = TRUE;
++ }
++ }
++
++ /* otherwise, leave alone */
++ }
++
++ if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
++ {
++ if (!link_info->keep_memory)
++ free (isymbuf);
++ else
++ {
++ /* Cache the symbols for elf_link_input_bfd. */
++ symtab_hdr->contents = (unsigned char *) isymbuf;
++ }
++ }
++
++ if (contents != NULL
++ && elf_section_data (sec)->this_hdr.contents != contents)
++ {
++ if (!link_info->keep_memory)
++ free (contents);
++ else
++ {
++ /* Cache the section contents for elf_link_input_bfd. */
++ elf_section_data (sec)->this_hdr.contents = contents;
++ }
++ }
++
++ if (internal_relocs != NULL
++ && elf_section_data (sec)->relocs != internal_relocs)
++ free (internal_relocs);
++
++
++ return TRUE;
++
++error_return:
++ if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
++ free (isymbuf);
++ if (contents != NULL
++ && elf_section_data (sec)->this_hdr.contents != contents)
++ free (contents);
++ if (internal_relocs != NULL
++ && elf_section_data (sec)->relocs != internal_relocs)
++ free (internal_relocs);
++
++ return FALSE;
++}
++
++/* Delete some bytes from a section while relaxing.
++ * Copied from mn10200 port */
++
++static bfd_boolean
++nios2_elf32_relax_delete_bytes (bfd * abfd,
++ asection * sec, bfd_vma addr, int count)
++{
++ Elf_Internal_Shdr *symtab_hdr;
++ unsigned int sec_shndx;
++ bfd_byte *contents;
++ Elf_Internal_Rela *irel, *irelend;
++ Elf_Internal_Rela *irelalign;
++ bfd_vma toaddr;
++ Elf_Internal_Sym *isym;
++ Elf_Internal_Sym *isymend;
++ struct elf_link_hash_entry **sym_hashes;
++ struct elf_link_hash_entry **end_hashes;
++ unsigned int symcount;
++ asection *asec;
++
++ sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
++
++ contents = elf_section_data (sec)->this_hdr.contents;
++
++ /* The deletion must stop at the next ALIGN reloc for an aligment
++ power larger than the number of bytes we are deleting. */
++
++ irelalign = NULL;
++ /* +1 because we need to readjust symbols at end of section */
++ toaddr = sec->size + 1;
++
++ irel = elf_section_data (sec)->relocs;
++ irelend = irel + sec->reloc_count;
++
++ for (; irel < irelend; irel++)
++ {
++ if (ELF32_R_TYPE (irel->r_info) == (int) R_NIOS2_ALIGN
++ && irel->r_offset > addr && count < (1 << irel->r_addend))
++ {
++ irelalign = irel;
++ /* +1 because we need to readjust symbols at end of section */
++ toaddr = irel->r_offset + 1;
++ break;
++ }
++ }
++
++
++ /* Actually delete the bytes. */
++ memmove (contents + addr, contents + addr + count,
++ (size_t) ((toaddr - 1) - addr - count));
++
++ if (irelalign == NULL)
++ sec->size -= count;
++ else
++ {
++ int i;
++
++#define NOP_OPCODE (0x0001883a)
++
++ BFD_ASSERT ((count & 3) == 0);
++ for (i = 0; i < count; i += 4)
++ bfd_put_32 (abfd, (bfd_vma) NOP_OPCODE,
++ contents + (toaddr - 1) - count + i);
++ }
++
++ /* get the symbol table */
++ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
++ isym = (Elf_Internal_Sym *) symtab_hdr->contents;
++
++ /* Adjust all the reloc offsets in this section. */
++ for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
++ {
++ /* Get the new reloc address. */
++ if ((irel->r_offset > addr && irel->r_offset < toaddr))
++ irel->r_offset -= count;
++ }
++
++ /* Adjust relocations against targets in this section whose positions
++ * have moved as a result of the relaxation */
++
++ for (asec = abfd->sections; asec; asec = asec->next)
++ {
++ irelend = elf_section_data (asec)->relocs + asec->reloc_count;
++ for (irel = elf_section_data (asec)->relocs; irel < irelend; irel++)
++ {
++ Elf_Internal_Sym *sym;
++ /* if the symbol which this reloc is against doesn't change
++ * we need to change the reloc addend */
++
++ sym = isym + ELF32_R_SYM (irel->r_info);
++ if (sym->st_shndx == sec_shndx
++ && !(sym->st_value > addr && sym->st_value < toaddr)
++ && sym->st_value + irel->r_addend > addr
++ && sym->st_value + irel->r_addend < toaddr)
++ {
++ irel->r_addend -= count;
++ }
++
++ }
++ }
++
++ /* Adjust the local symbols defined in this section. */
++ for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
++ {
++ if (isym->st_shndx == sec_shndx
++ && isym->st_value > addr && isym->st_value < toaddr)
++ isym->st_value -= count;
++
++
++ }
++
++ /* Now adjust the global symbols defined in this section. */
++ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
++ - symtab_hdr->sh_info);
++ sym_hashes = elf_sym_hashes (abfd);
++ end_hashes = sym_hashes + symcount;
++ for (; sym_hashes < end_hashes; sym_hashes++)
++ {
++ struct elf_link_hash_entry *sym_hash = *sym_hashes;
++ if ((sym_hash->root.type == bfd_link_hash_defined
++ || sym_hash->root.type == bfd_link_hash_defweak)
++ && sym_hash->root.u.def.section == sec
++ && sym_hash->root.u.def.value > addr
++ && sym_hash->root.u.def.value < toaddr)
++ {
++ sym_hash->root.u.def.value -= count;
++ }
++ }
++
++ return TRUE;
++}
++
++struct bfd_link_info *nios2_link_info = NULL;
++
++/*
++void
++_bfd_set_link_info (info)
++ struct bfd_link_info *info;
++{
++ nios2_link_info = info;
++}
++*/
++
++bfd_boolean linker_force_make_executable = FALSE;
++
++/*
++void
++_bfd_set_force_make_executable (force)
++ bfd_boolean force;
++{
++ linker_force_make_executable = force;
++}
++*/
++
++/* Set the GP value for OUTPUT_BFD. Returns FALSE if this is a
++ dangerous relocation. */
++
++static bfd_boolean
++nios2_elf_assign_gp (bfd *output_bfd, bfd_vma *pgp, struct bfd_link_info *info)
++{
++
++ bfd_boolean gp_found;
++ struct bfd_hash_entry *h;
++ struct bfd_link_hash_entry *lh;
++
++ /* If we've already figured out what GP will be, just return it. */
++ *pgp = _bfd_get_gp_value (output_bfd);
++ if (*pgp)
++ return TRUE;
++
++ h = bfd_hash_lookup (&info->hash->table, "_gp", FALSE, FALSE);
++ lh = (struct bfd_link_hash_entry *) h;
++lookup:
++ if (lh)
++ {
++ switch (lh->type)
++ {
++ case bfd_link_hash_undefined:
++ case bfd_link_hash_undefweak:
++ case bfd_link_hash_common:
++ gp_found = FALSE;
++ break;
++ case bfd_link_hash_defined:
++ case bfd_link_hash_defweak:
++ gp_found = TRUE;
++ *pgp = lh->u.def.value;
++ break;
++ case bfd_link_hash_indirect:
++ case bfd_link_hash_warning:
++ lh = lh->u.i.link;
++ /* @@FIXME ignoring warning for now */
++ goto lookup;
++ case bfd_link_hash_new:
++ default:
++ abort ();
++ }
++ }
++ else
++ gp_found = FALSE;
++
++ if (!gp_found)
++ {
++ /* Only get the error once. */
++ *pgp = 4;
++ _bfd_set_gp_value (output_bfd, *pgp);
++ return FALSE;
++ }
++
++ _bfd_set_gp_value (output_bfd, *pgp);
++
++ return TRUE;
++}
++
++/* We have to figure out the gp value, so that we can adjust the
++ symbol value correctly. We look up the symbol _gp in the output
++ BFD. If we can't find it, we're stuck. We cache it in the ELF
++ target data. We don't need to adjust the symbol value for an
++ external symbol if we are producing relocatable output. */
++
++static bfd_reloc_status_type
++nios2_elf_final_gp (bfd *output_bfd, asymbol *symbol, bfd_boolean relocatable,
++ char **error_message, bfd_vma *pgp, struct bfd_link_info *info)
++{
++ if (bfd_is_und_section (symbol->section) && !relocatable)
++ {
++ *pgp = 0;
++ return bfd_reloc_undefined;
++ }
++
++ *pgp = _bfd_get_gp_value (output_bfd);
++ if (*pgp == 0 && (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0))
++ {
++ /* if this is called without link_info, then
++ we cannot be doing a final link */
++ if (info == NULL)
++ relocatable = TRUE;
++
++ if (relocatable)
++ {
++ /* Make up a value. */
++ *pgp = symbol->section->output_section->vma + 0x4000;
++ _bfd_set_gp_value (output_bfd, *pgp);
++ }
++ else if (!nios2_elf_assign_gp (output_bfd, pgp, info))
++ {
++ *error_message =
++ (char *)
++ _("global pointer relative relocation when _gp not defined");
++ return bfd_reloc_dangerous;
++ }
++ }
++
++ return bfd_reloc_ok;
++}
++
++
++/* Relocations that require special handling */
++
++/* This is for relocations used only when relaxing to ensure
++ * changes in size of section don't screw up .align */
++static bfd_reloc_status_type
++nios2_elf32_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
++ asymbol *symbol ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED,
++ asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
++{
++ if (output_bfd != NULL)
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++}
++
++static bfd_reloc_status_type
++nios2_elf32_hi16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data,
++ asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
++{
++ /* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_hi16_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ + symbol->section->output_section->vma
++ + symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
++{
++/* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_lo16_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ + symbol->section->output_section->vma
++ + symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd,
++ char **error_message ATTRIBUTE_UNUSED)
++{
++/* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_hiadj16_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ +
++ symbol->section->output_section->
++ vma +
++ symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_pcrel16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd,
++ char **error_message ATTRIBUTE_UNUSED)
++{
++/* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_pcrel16_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ +
++ symbol->section->output_section->
++ vma +
++ symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_call26_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
++{
++/* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_call26_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ +
++ symbol->section->output_section->
++ vma +
++ symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_gprel_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd, char **msg)
++{
++ bfd_vma relocation;
++ bfd_vma gp;
++ bfd_reloc_status_type r;
++
++
++/* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ relocation = symbol->value
++ + symbol->section->output_section->vma + symbol->section->output_offset;
++
++ if ((r =
++ nios2_elf_final_gp (abfd, symbol, FALSE, msg, &gp,
++ nios2_link_info)) == bfd_reloc_ok)
++ {
++ relocation = relocation + reloc_entry->addend - gp;
++ reloc_entry->addend = 0;
++ if ((signed) relocation < -32768 || (signed) relocation > 32767)
++ {
++ *msg = _("global pointer relative address out of range");
++ r = bfd_reloc_outofrange;
++ }
++ else
++ {
++ r = nios2_elf32_do_gprel_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ relocation, reloc_entry->addend);
++ }
++ }
++
++ return r;
++}
++
++static bfd_reloc_status_type
++nios2_elf32_ujmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
++{
++ /* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_ujmp_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ + symbol->section->output_section->vma
++ + symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_cjmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
++{
++ /* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++ return nios2_elf32_do_cjmp_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ + symbol->section->output_section->vma
++ + symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_callr_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
++ void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
++{
++ /* This part is from bfd_elf_generic_reloc. */
++ if (output_bfd != (bfd *) NULL
++ && (symbol->flags & BSF_SECTION_SYM) == 0
++ && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
++ {
++ reloc_entry->address += input_section->output_offset;
++ return bfd_reloc_ok;
++ }
++
++ if (output_bfd != NULL)
++ /* FIXME: See bfd_perform_relocation. Is this right? */
++ return bfd_reloc_ok;
++
++
++ return nios2_elf32_do_callr_relocate (abfd, reloc_entry->howto,
++ input_section,
++ data, reloc_entry->address,
++ (symbol->value
++ +
++ symbol->section->output_section->
++ vma +
++ symbol->section->output_offset),
++ reloc_entry->addend);
++}
++
++/* Do the relocations which require special handling */
++
++static bfd_reloc_status_type
++nios2_elf32_do_hi16_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ symbol_value = symbol_value + addend;
++ addend = 0;
++ symbol_value = (symbol_value >> 16) & 0xffff;
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_value, addend);
++}
++
++
++static bfd_reloc_status_type
++nios2_elf32_do_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ symbol_value = symbol_value + addend;
++ addend = 0;
++ symbol_value = symbol_value & 0xffff;
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_value, addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_do_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset,
++ bfd_vma symbol_value, bfd_vma addend)
++{
++ symbol_value = symbol_value + addend;
++ addend = 0;
++ symbol_value =
++ ((symbol_value >> 16) & 0xffff) + ((symbol_value >> 15) & 0x01);
++ return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
++ symbol_value, addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_do_pcrel16_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ // NIOS2 pc relative relocations are relative to the next 32-bit instruction so we need
++ // to subtract 4 before doing a final_link_relocate
++ symbol_value = symbol_value + addend - 4;
++ addend = 0;
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_value, addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_do_call26_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ /* check that the relocation is in the same page as the current address */
++ if (((symbol_value + addend) & 0xf0000000)
++ != ((input_section->output_section->vma + offset) & 0xf0000000))
++ return bfd_reloc_overflow;
++
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_value, addend);
++}
++
++
++static bfd_reloc_status_type
++nios2_elf32_do_gprel_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ // because we need the output_bfd, the special handling is done
++ // in nios2_elf32_relocate_section or in nios2_elf32_gprel_relocate
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_value, addend);
++}
++
++static bfd_reloc_status_type
++nios2_elf32_do_ujmp_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ bfd_vma symbol_lo16, symbol_hi16;
++ bfd_reloc_status_type r;
++ symbol_value = symbol_value + addend;
++ addend = 0;
++ symbol_hi16 = (symbol_value >> 16) & 0xffff;
++ symbol_lo16 = symbol_value & 0xffff;
++
++ r = _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_hi16, addend);
++
++ if (r == bfd_reloc_ok)
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset + 4, symbol_lo16, addend);
++
++ return r;
++}
++
++static bfd_reloc_status_type
++nios2_elf32_do_cjmp_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ bfd_vma symbol_lo16, symbol_hi16;
++ bfd_reloc_status_type r;
++ symbol_value = symbol_value + addend;
++ addend = 0;
++ symbol_hi16 = (symbol_value >> 16) & 0xffff;
++ symbol_lo16 = symbol_value & 0xffff;
++
++ r = _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_hi16, addend);
++
++ if (r == bfd_reloc_ok)
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset + 4, symbol_lo16, addend);
++
++ return r;
++}
++
++static bfd_reloc_status_type
++nios2_elf32_do_callr_relocate (bfd *abfd, reloc_howto_type *howto,
++ asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data,
++ bfd_vma offset, bfd_vma symbol_value, bfd_vma addend)
++{
++ bfd_vma symbol_lo16, symbol_hi16;
++ bfd_reloc_status_type r;
++ symbol_value = symbol_value + addend;
++ addend = 0;
++ symbol_hi16 = (symbol_value >> 16) & 0xffff;
++ symbol_lo16 = symbol_value & 0xffff;
++
++ r = _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset, symbol_hi16, addend);
++
++ if (r == bfd_reloc_ok)
++ return _bfd_final_link_relocate (howto, abfd, input_section,
++ data, offset + 4, symbol_lo16, addend);
++
++ return r;
++}
++
++/*
++ The function nios2_elf32_relocate_section is used by the linker
++ to perform relocations
++*/
++static bfd_boolean
++nios2_elf32_relocate_section (bfd * output_bfd,
++ struct bfd_link_info *info,
++ bfd * input_bfd,
++ asection * input_section,
++ bfd_byte * contents,
++ Elf_Internal_Rela * relocs,
++ Elf_Internal_Sym * local_syms,
++ asection ** local_sections)
++{
++ Elf_Internal_Shdr *symtab_hdr;
++ struct elf_link_hash_entry **sym_hashes;
++ Elf_Internal_Rela *rel;
++ Elf_Internal_Rela *relend;
++
++ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
++ sym_hashes = elf_sym_hashes (input_bfd);
++ relend = relocs + input_section->reloc_count;
++
++// size_t psymalloc = 0;
++// _bfd_generic_link_output_symbols(output_bfd, input_bfd, info, &psymalloc);
++ for (rel = relocs; rel < relend; rel++)
++ {
++ reloc_howto_type *howto;
++ unsigned long r_symndx;
++ Elf_Internal_Sym *sym;
++ asection *sec;
++ struct elf_link_hash_entry *h;
++ bfd_vma relocation;
++ bfd_vma gp;
++ bfd_reloc_status_type r = bfd_reloc_ok;
++ const char *name = NULL;
++ int r_type;
++ const char *msg;
++
++ msg = (const char *) NULL;
++
++ r_type = ELF32_R_TYPE (rel->r_info);
++
++ r_symndx = ELF32_R_SYM (rel->r_info);
++
++ if (info->relocatable)
++ {
++ /* This is a relocatable link. We don't have to change
++ anything, unless the reloc is against a section symbol,
++ in which case we have to adjust according to where the
++ section symbol winds up in the output section. */
++ if (r_symndx < symtab_hdr->sh_info)
++ {
++ sym = local_syms + r_symndx;
++
++ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
++ {
++ sec = local_sections[r_symndx];
++ rel->r_addend += sec->output_offset + sym->st_value;
++ }
++ }
++ continue;
++ }
++
++ /* This is a final link. */
++ howto = lookup_howto ((unsigned) ELF32_R_TYPE (rel->r_info));
++ h = NULL;
++ sym = NULL;
++ sec = NULL;
++
++ if (r_symndx < symtab_hdr->sh_info)
++ {
++ sym = local_syms + r_symndx;
++ sec = local_sections[r_symndx];
++
++ relocation = (sec->output_section->vma
++ + sec->output_offset + sym->st_value);
++
++ // this ensures that relocations against duplicated symbols
++ // in merged sections that have been removed are fixed up against
++ // the remaining symbol and not the one that has been removed
++ if ((sec->flags & SEC_MERGE)
++ && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
++ {
++ rel->r_addend =
++ _bfd_elf_rel_local_sym (output_bfd, sym, &sec, rel->r_addend);
++ rel->r_addend -= relocation;
++ rel->r_addend += sec->output_section->vma + sec->output_offset;
++ }
++
++ name = bfd_elf_string_from_elf_section
++ (input_bfd, symtab_hdr->sh_link, sym->st_name);
++
++ name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
++ }
++ else
++ {
++ h = sym_hashes[r_symndx - symtab_hdr->sh_info];
++
++ while (h->root.type == bfd_link_hash_indirect
++ || h->root.type == bfd_link_hash_warning)
++ h = (struct elf_link_hash_entry *) h->root.u.i.link;
++
++ name = h->root.root.string;
++
++ if (h->root.type == bfd_link_hash_defined
++ || h->root.type == bfd_link_hash_defweak)
++ {
++ sec = h->root.u.def.section;
++
++ relocation = (h->root.u.def.value
++ + sec->output_section->vma + sec->output_offset);
++ }
++ else if (h->root.type == bfd_link_hash_undefweak)
++ {
++ relocation = 0;
++ }
++ else
++ {
++ if (!((*info->callbacks->undefined_symbol)
++ (info, h->root.root.string, input_bfd,
++ input_section, rel->r_offset, TRUE)))
++ return FALSE;
++ relocation = 0;
++ }
++ }
++
++ if (howto != NULL)
++ {
++ switch (howto->type)
++ {
++ case R_NIOS2_HI16:
++ r =
++ nios2_elf32_do_hi16_relocate (input_bfd, howto, input_section,
++ contents, rel->r_offset,
++ relocation, rel->r_addend);
++ break;
++ case R_NIOS2_LO16:
++ r =
++ nios2_elf32_do_lo16_relocate (input_bfd, howto, input_section,
++ contents, rel->r_offset,
++ relocation, rel->r_addend);
++ break;
++ case R_NIOS2_HIADJ16:
++ r =
++ nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
++ input_section, contents,
++ rel->r_offset, relocation,
++ rel->r_addend);
++ break;
++ case R_NIOS2_PCREL16:
++ r =
++ nios2_elf32_do_pcrel16_relocate (input_bfd, howto,
++ input_section, contents,
++ rel->r_offset, relocation,
++ rel->r_addend);
++ break;
++ case R_NIOS2_GPREL:
++ // turns an absolute address into a gp-relative address
++ if (!nios2_elf_assign_gp (output_bfd, &gp, info))
++ {
++ msg =
++ _
++ ("global pointer relative relocation when _gp not defined");
++ r = bfd_reloc_dangerous;
++ }
++ else
++ {
++ relocation = relocation + rel->r_addend - gp;
++ rel->r_addend = 0;
++ if ((signed) relocation < -32768
++ || (signed) relocation > 32767)
++ {
++ msg = _("global pointer relative address out of range");
++ r = bfd_reloc_outofrange;
++ }
++ else
++ {
++ r =
++ _bfd_final_link_relocate (howto, input_bfd,
++ input_section, contents,
++ rel->r_offset, relocation,
++ rel->r_addend);
++ }
++ }
++
++ break;
++ case R_NIOS2_UJMP:
++ r =
++ nios2_elf32_do_ujmp_relocate (input_bfd, howto, input_section,
++ contents, rel->r_offset,
++ relocation, rel->r_addend);
++ break;
++ case R_NIOS2_CJMP:
++ r =
++ nios2_elf32_do_cjmp_relocate (input_bfd, howto, input_section,
++ contents, rel->r_offset,
++ relocation, rel->r_addend);
++ break;
++ case R_NIOS2_CALLR:
++ r =
++ nios2_elf32_do_callr_relocate (input_bfd, howto,
++ input_section, contents,
++ rel->r_offset, relocation,
++ rel->r_addend);
++ break;
++ case R_NIOS2_CALL26:
++ r =
++ nios2_elf32_do_call26_relocate (input_bfd, howto,
++ input_section, contents,
++ rel->r_offset, relocation,
++ rel->r_addend);
++ break;
++ case R_NIOS2_ALIGN:
++ r = bfd_reloc_ok;
++ /* comment - for symmetry this would be
++ r = nios2_elf32_do_ignore_reloc (input_bfd, howto, input_section,
++ contents, rel->r_offset,
++ relocation, rel->r_addend);
++ but do_ignore_reloc would do no more than return bfd_reloc_ok */
++ break;
++ default:
++ r = _bfd_final_link_relocate (howto, input_bfd, input_section,
++ contents, rel->r_offset,
++ relocation, rel->r_addend);
++ break;
++ }
++ }
++ else
++ {
++ r = bfd_reloc_notsupported;
++ }
++
++ if (r != bfd_reloc_ok)
++ {
++ if (h != NULL)
++ name = h->root.root.string;
++ else
++ {
++ name = (bfd_elf_string_from_elf_section
++ (input_bfd, symtab_hdr->sh_link, sym->st_name));
++ if (name == NULL || *name == '\0')
++ name = bfd_section_name (input_bfd, sec);
++ }
++
++ switch (r)
++ {
++ case bfd_reloc_overflow:
++ r = info->callbacks->reloc_overflow
++ (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
++ input_bfd, input_section, rel->r_offset);
++ break;
++
++ case bfd_reloc_undefined:
++ r = info->callbacks->undefined_symbol
++ (info, name, input_bfd, input_section, rel->r_offset, TRUE);
++ break;
++
++ case bfd_reloc_outofrange:
++ if (msg == NULL)
++ msg = _("relocation out of range");
++ break;
++
++ case bfd_reloc_notsupported:
++ if (msg == NULL)
++ msg = _("unsupported relocation");
++ break;
++
++ case bfd_reloc_dangerous:
++ if (msg == NULL)
++ msg = _("dangerous relocation");
++ break;
++
++ default:
++ if (msg == NULL)
++ msg = _("unknown error");
++ break;
++ }
++
++ if (msg)
++ {
++ r = info->callbacks->warning
++ (info, msg, name, input_bfd, input_section, rel->r_offset);
++ return linker_force_make_executable;
++ }
++ }
++ }
++ return TRUE;
++}
++
++
++
++/* Handle an NIOS2 specific section when reading an object file. This
++ is called when elfcode.h finds a section with an unknown type.
++ FIXME: We need to handle the SHF_NIOS2_GPREL flag */
++
++static bfd_boolean
++nios2_elf32_section_from_shdr (bfd *abfd,
++ Elf_Internal_Shdr *hdr, const char *name, int shindex)
++{
++ asection *newsect;
++
++ /* NG - I'm keeping this code commented out at the moment
++ in case we add a .mdebug section */
++
++ /*
++ switch (hdr->sh_type)
++ {
++ case SHT_NIOS2_DEBUG:
++ if (strcmp (name, ".mdebug") != 0)
++ return FALSE;
++ break;
++ default:
++ return FALSE;
++ }
++ */
++
++ if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
++ return FALSE;
++
++ newsect = hdr->bfd_section;
++
++ /* ditto */
++ /*
++ if (hdr->sh_type == SHT_NIOS2_DEBUG)
++ {
++ if (! bfd_set_section_flags (abfd, newsect,
++ (bfd_get_section_flags (abfd, newsect)
++ | SEC_DEBUGGING)))
++ return FALSE;
++ }
++ */
++ return TRUE;
++}
++
++/* Convert NIOS2 specific section flags to bfd internal section flags. */
++
++static bfd_boolean
++nios2_elf32_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
++{
++ if (hdr->sh_flags & SHF_NIOS2_GPREL)
++ *flags |= SEC_SMALL_DATA;
++
++ return TRUE;
++}
++
++/* Set the correct type for an NIOS2 ELF section. We do this by the
++ section name, which is a hack, but ought to work. */
++
++static bfd_boolean
++nios2_elf32_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
++ Elf_Internal_Shdr *hdr, asection *sec)
++{
++ register const char *name;
++
++ name = bfd_get_section_name (abfd, sec);
++
++ if (strcmp (name, ".mdebug") == 0)
++ {
++ /* we don't yet have an .mdebug section, but I'm leaving this here
++ in case we ever do
++ hdr->sh_type = SHT_NIOS2_DEBUG;
++
++ if ((abfd->flags & DYNAMIC) != 0 )
++ hdr->sh_entsize = 0;
++ else
++ hdr->sh_entsize = 1;
++ */
++ }
++ else if ((sec->flags & SEC_SMALL_DATA)
++ || strcmp (name, ".sdata") == 0
++ || strcmp (name, ".sbss") == 0
++ || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0)
++ hdr->sh_flags |= SHF_NIOS2_GPREL;
++
++ return TRUE;
++}
++
++/* Look through the relocs for a section during the first phase.
++ Since we don't do .gots or .plts, we just need to consider the
++ virtual table relocs for gc. */
++
++static bfd_boolean
++nios2_elf32_check_relocs (bfd *abfd, struct bfd_link_info *info,
++ asection *sec, const Elf_Internal_Rela *relocs)
++{
++ Elf_Internal_Shdr *symtab_hdr;
++ struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
++ const Elf_Internal_Rela *rel;
++ const Elf_Internal_Rela *rel_end;
++
++ if (info->relocatable)
++ return TRUE;
++
++ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
++ sym_hashes = elf_sym_hashes (abfd);
++ sym_hashes_end =
++ sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
++ if (!elf_bad_symtab (abfd))
++ sym_hashes_end -= symtab_hdr->sh_info;
++
++ rel_end = relocs + sec->reloc_count;
++ for (rel = relocs; rel < rel_end; rel++)
++ {
++ struct elf_link_hash_entry *h;
++ unsigned long r_symndx;
++
++ r_symndx = ELF32_R_SYM (rel->r_info);
++ if (r_symndx < symtab_hdr->sh_info)
++ h = NULL;
++ else
++ h = sym_hashes[r_symndx - symtab_hdr->sh_info];
++
++ switch (ELF32_R_TYPE (rel->r_info))
++ {
++ /* This relocation describes the C++ object vtable hierarchy.
++ Reconstruct it for later use during GC. */
++ case R_NIOS2_GNU_VTINHERIT:
++ if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
++ return FALSE;
++ break;
++
++ /* This relocation describes which C++ vtable entries are actually
++ used. Record for later use during GC. */
++ case R_NIOS2_GNU_VTENTRY:
++ if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
++ return FALSE;
++ break;
++ }
++ }
++
++ return TRUE;
++}
++
++
++/* Return the section that should be marked against GC for a given
++ relocation. */
++
++asection *
++nios2_elf32_gc_mark_hook (asection *sec,
++ struct bfd_link_info *info ATTRIBUTE_UNUSED,
++ Elf_Internal_Rela *rel, struct elf_link_hash_entry *h,
++ Elf_Internal_Sym *sym)
++{
++ if (h != NULL)
++ {
++ switch (ELF32_R_TYPE (rel->r_info))
++ {
++ case R_NIOS2_GNU_VTINHERIT:
++ case R_NIOS2_GNU_VTENTRY:
++ break;
++
++ default:
++ switch (h->root.type)
++ {
++ case bfd_link_hash_defined:
++ case bfd_link_hash_defweak:
++ return h->root.u.def.section;
++
++ case bfd_link_hash_common:
++ return h->root.u.c.p->section;
++
++ default:
++ break;
++ }
++ }
++ }
++ else
++ return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
++
++ return NULL;
++}
++
++/*
++ NG ??? I'm marking the sections as standalone ie. I'm linking for
++ standalone embedded applications, not for UNIX System V or any other
++ OS/ABI - this may need to change when we deal with embedded PIC or
++ dynamic linking
++*/
++
++static void
++nios2_elf32_post_process_headers (bfd *abfd,
++ struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
++{
++ Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
++
++ i_ehdrp = elf_elfheader (abfd);
++ i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_STANDALONE;
++}
++
++#define ELF_ARCH bfd_arch_nios2
++#define ELF_MACHINE_CODE EM_ALTERA_NIOS2
++
++/* for now we just make this 1, as we have no MMU in New Jersey */
++
++#define ELF_MAXPAGESIZE 1
++
++/* relocation table lookup macros */
++
++#define bfd_elf32_bfd_reloc_type_lookup nios2_elf32_bfd_reloc_type_lookup
++
++/* JUMP_TABLE_LINK macros */
++
++#define bfd_elf32_bfd_relax_section nios2_elf32_relax_section
++
++/* elf_info_to_howto (using RELA relocations) */
++
++#define elf_info_to_howto nios2_elf32_info_to_howto
++
++/* elf backend functions */
++
++#define elf_backend_can_gc_sections 1
++
++#define elf_backend_relocate_section nios2_elf32_relocate_section
++#define elf_backend_section_from_shdr nios2_elf32_section_from_shdr
++#define elf_backend_section_flags nios2_elf32_section_flags
++#define elf_backend_fake_sections nios2_elf32_fake_sections
++#define elf_backend_post_process_headers nios2_elf32_post_process_headers
++#define elf_backend_check_relocs nios2_elf32_check_relocs
++
++#define elf_backend_gc_mark_hook nios2_elf32_gc_mark_hook
++
++
++
++/* Support for SGI-ish mips targets. */
++#define TARGET_LITTLE_SYM bfd_elf32_littlenios2_vec
++#define TARGET_LITTLE_NAME "elf32-littlenios2"
++#define TARGET_BIG_SYM bfd_elf32_bignios2_vec
++#define TARGET_BIG_NAME "elf32-bignios2"
++
++#include "elf32-target.h"
+diff --git a/bfd/reloc.c b/bfd/reloc.c
+index 1b8c8d7..c66a23d 100644
+--- a/bfd/reloc.c
++++ b/bfd/reloc.c
+@@ -4733,6 +4733,39 @@ ENUMDOC
+ msp430 specific relocation codes
+
+ ENUM
++ BFD_RELOC_NIOS2_S16
++ENUMX
++ BFD_RELOC_NIOS2_U16
++ENUMX
++ BFD_RELOC_NIOS2_CALL26
++ENUMX
++ BFD_RELOC_NIOS2_IMM5
++ENUMX
++ BFD_RELOC_NIOS2_CACHE_OPX
++ENUMX
++ BFD_RELOC_NIOS2_IMM6
++ENUMX
++ BFD_RELOC_NIOS2_IMM8
++ENUMX
++ BFD_RELOC_NIOS2_HI16
++ENUMX
++ BFD_RELOC_NIOS2_LO16
++ENUMX
++ BFD_RELOC_NIOS2_HIADJ16
++ENUMX
++ BFD_RELOC_NIOS2_GPREL
++ENUMX
++ BFD_RELOC_NIOS2_UJMP
++ENUMX
++ BFD_RELOC_NIOS2_CJMP
++ENUMX
++ BFD_RELOC_NIOS2_CALLR
++ENUMX
++ BFD_RELOC_NIOS2_ALIGN
++ENUMDOC
++ Relocations used by the Altera Nios II core
++
++ENUM
+ BFD_RELOC_IQ2000_OFFSET_16
+ ENUMX
+ BFD_RELOC_IQ2000_OFFSET_21
+diff --git a/bfd/targets.c b/bfd/targets.c
+index 71e3337..d5f6d60 100644
+--- a/bfd/targets.c
++++ b/bfd/targets.c
+@@ -619,6 +619,8 @@ extern const bfd_target bfd_elf32_ntradbigmips_vec;
+ extern const bfd_target bfd_elf32_ntradlittlemips_vec;
+ extern const bfd_target bfd_elf32_openrisc_vec;
+ extern const bfd_target bfd_elf32_or32_big_vec;
++extern const bfd_target bfd_elf32_littlenios2_vec;
++extern const bfd_target bfd_elf32_bignios2_vec;
+ extern const bfd_target bfd_elf32_pj_vec;
+ extern const bfd_target bfd_elf32_pjl_vec;
+ extern const bfd_target bfd_elf32_powerpc_vec;
+@@ -819,6 +821,8 @@ extern const bfd_target sco5_core_vec;
+ extern const bfd_target trad_core_vec;
+
+ extern const bfd_target bfd_elf32_am33lin_vec;
++extern const bfd_target bfd_elf32_littlenios2_vec;
++extern const bfd_target bfd_elf32_bignios2_vec;
+ static const bfd_target * const _bfd_target_vector[] =
+ {
+ #ifdef SELECT_VECS
+@@ -923,6 +927,8 @@ static const bfd_target * const _bfd_target_vector[] =
+ &bfd_elf32_littlearm_vxworks_vec,
+ &bfd_elf32_littlemips_vec,
+ &bfd_elf32_littlemips_vxworks_vec,
++ &bfd_elf32_littlenios2_vec,
++ &bfd_elf32_bignios2_vec,
+ &bfd_elf32_m32c_vec,
+ &bfd_elf32_m32r_vec,
+ &bfd_elf32_m32rle_vec,
+diff --git a/config.sub b/config.sub
+index fab0aa3..462e7c6 100755
+--- a/config.sub
++++ b/config.sub
+@@ -270,7 +270,7 @@ case $basic_machine in
+ | mn10200 | mn10300 \
+ | mt \
+ | msp430 \
+- | nios | nios2 \
++ | nios2 | nios2eb | nios2el \
+ | ns16k | ns32k \
+ | or32 \
+ | pdp10 | pdp11 | pj | pjl \
+diff --git a/configure.in b/configure.in
+index a4befda..f2e34c7 100644
+--- a/configure.in
++++ b/configure.in
+@@ -740,6 +740,9 @@ case "${target}" in
+ mips*-*-*)
+ noconfigdirs="$noconfigdirs gprof ${libgcj}"
+ ;;
++ nios2*-*-*)
++ noconfigdirs="$noconfigdirs ld"
++ ;;
+ romp-*-*)
+ noconfigdirs="$noconfigdirs bfd binutils ld gas opcodes target-libgloss ${libgcj}"
+ ;;
+diff --git a/gdb/Makefile.in b/gdb/Makefile.in
+index 14fd58b..eac9489 100644
+--- a/gdb/Makefile.in
++++ b/gdb/Makefile.in
+@@ -593,6 +593,7 @@ libiberty_h = $(INCLUDE_DIR)/libiberty.h
+ libbfd_h = $(BFD_SRC)/libbfd.h
+ remote_sim_h = $(INCLUDE_DIR)/gdb/remote-sim.h
+ demangle_h = $(INCLUDE_DIR)/demangle.h
++nios2_h = $(INCLUDE_DIR)/opcode/nios2.h
+ obstack_h = $(INCLUDE_DIR)/obstack.h
+ opcode_m68hc11_h = $(INCLUDE_DIR)/opcode/m68hc11.h
+ readline_h = $(READLINE_SRC)/readline.h
+@@ -2399,6 +2400,7 @@ ms1-tdep.o: ms1-tdep.c $(defs_h) $(frame_h) $(frame_unwind_h) $(frame_base_h) \
+ $(trad_frame_h) $(inferior_h) $(dwarf2_frame_h) $(infcall_h) \
+ $(gdb_assert_h)
+ nbsd-tdep.o: nbsd-tdep.c $(defs_h) $(gdb_string_h) $(solib_svr4_h)
++nios2-tdep.o: nios2-tdep.c $(defs_h) $(symtab_h) $(frame_h) $(nios2_h)
+ nlmread.o: nlmread.c $(defs_h) $(bfd_h) $(symtab_h) $(symfile_h) \
+ $(objfiles_h) $(buildsym_h) $(stabsread_h) $(block_h)
+ nto-procfs.o: nto-procfs.c $(defs_h) $(gdb_dirent_h) $(exceptions_h) \
+diff --git a/gdb/config/nios2/nios2.mt b/gdb/config/nios2/nios2.mt
+new file mode 100644
+index 0000000..63413b4
+--- /dev/null
++++ b/gdb/config/nios2/nios2.mt
+@@ -0,0 +1,4 @@
++# Target: Altera New Jersey Processor machine (NIOS2)
++TDEPFILES= nios2-tdep.o
++
++
+diff --git a/gdb/config/nios2/tm-nios2.h b/gdb/config/nios2/tm-nios2.h
+new file mode 100644
+index 0000000..2962b6b
+--- /dev/null
++++ b/gdb/config/nios2/tm-nios2.h
+@@ -0,0 +1,28 @@
++/* Definitions to target GDB to New Jersey targets.
++ Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994,
++ 1995, 1996, 1997, 1998, 1999, 2000, 2003
++ by Peter Brookes (pbrookes@altera.com)
++
++ This file is part of GDB.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330,
++ Boston, MA 02111-1307, USA. */
++
++#ifndef TM_NIOS2_H
++#define TM_NIOS2_H
++
++#define GDB_MULTI_ARCH 1
++
++#endif /* TM_NIOS2_H */
+diff --git a/gdb/configure.tgt b/gdb/configure.tgt
+index dd2e719..7222f59 100644
+--- a/gdb/configure.tgt
++++ b/gdb/configure.tgt
+@@ -20,6 +20,7 @@ m68hc11*|m6811*) gdb_target_cpu=m68hc11 ;;
+ m68*) gdb_target_cpu=m68k ;;
+ m88*) gdb_target_cpu=m88k ;;
+ mips*) gdb_target_cpu=mips ;;
++nios2*) gdb_target_cpu=nios2 ;;
+ powerpc*) gdb_target_cpu=powerpc ;;
+ sparc*) gdb_target_cpu=sparc ;;
+ thumb*) gdb_target_cpu=arm ;;
+@@ -155,6 +156,8 @@ mn10300-*-*) gdb_target=mn10300 ;;
+
+ mt-*-*) gdb_target=mt ;;
+
++nios2*-*-*) gdb_target=nios2 ;;
++
+ powerpc-*-netbsd* | powerpc-*-knetbsd*-gnu)
+ gdb_target=nbsd ;;
+ powerpc-*-openbsd*) gdb_target=obsd ;;
+diff --git a/gdb/gdbserver/Makefile.in b/gdb/gdbserver/Makefile.in
+index 9748c95..b3fb5f8 100644
+--- a/gdb/gdbserver/Makefile.in
++++ b/gdb/gdbserver/Makefile.in
+@@ -280,6 +280,7 @@ linux-ia64-low.o: linux-ia64-low.c $(linux_low_h) $(server_h)
+ linux-m32r-low.o: linux-m32r-low.c $(linux_low_h) $(server_h)
+ linux-mips-low.o: linux-mips-low.c $(linux_low_h) $(server_h) \
+ $(gdb_proc_service_h)
++linux-nios2-low.o: linux-nios2-low.c $(linux_low_h) $(server_h)
+ linux-ppc-low.o: linux-ppc-low.c $(linux_low_h) $(server_h)
+ linux-ppc64-low.o: linux-ppc64-low.c $(linux_low_h) $(server_h)
+ linux-s390-low.o: linux-s390-low.c $(linux_low_h) $(server_h)
+@@ -318,6 +319,9 @@ reg-m68k.c : $(srcdir)/../regformats/reg-m68k.dat $(regdat_sh)
+ reg-mips.o : reg-mips.c $(regdef_h)
+ reg-mips.c : $(srcdir)/../regformats/reg-mips.dat $(regdat_sh)
+ sh $(regdat_sh) $(srcdir)/../regformats/reg-mips.dat reg-mips.c
++reg-nios2.o : reg-nios2.c $(regdef_h)
++reg-nios2.c : $(srcdir)/../regformats/reg-nios2.dat $(regdat_sh)
++ sh $(regdat_sh) $(srcdir)/../regformats/reg-nios2.dat reg-nios2.c
+ reg-ppc.o : reg-ppc.c $(regdef_h)
+ reg-ppc.c : $(srcdir)/../regformats/reg-ppc.dat $(regdat_sh)
+ sh $(regdat_sh) $(srcdir)/../regformats/reg-ppc.dat reg-ppc.c
+diff --git a/gdb/gdbserver/configure.srv b/gdb/gdbserver/configure.srv
+index 5a4792c..fdc847c 100644
+--- a/gdb/gdbserver/configure.srv
++++ b/gdb/gdbserver/configure.srv
+@@ -72,6 +72,10 @@ case "${target}" in
+ srv_linux_usrregs=yes
+ srv_linux_thread_db=yes
+ ;;
++ nios2-*-linux*) srv_regobj=reg-nios2.o
++ srv_tgtobj="linux-low.o linux-nios2-low.o"
++ srv_linux_usrregs=yes
++ ;;
+ powerpc64-*-linux*) srv_regobj=reg-ppc64.o
+ srv_tgtobj="linux-low.o linux-ppc64-low.o"
+ srv_linux_usrregs=yes
+diff --git a/gdb/gdbserver/linux-nios2-low.c b/gdb/gdbserver/linux-nios2-low.c
+new file mode 100644
+index 0000000..1fab749
+--- /dev/null
++++ b/gdb/gdbserver/linux-nios2-low.c
+@@ -0,0 +1,89 @@
++/* GNU/Linux/Nios2 specific low level interface for the remote server for GDB */
++
++#include "server.h"
++#include "linux-low.h"
++
++#ifdef HAVE_SYS_REG_H
++#include <sys/reg.h>
++#endif
++
++#include <asm/ptrace.h>
++
++static int nios2_regmap[] =
++{
++ -1, PTR_R1 * 4, PTR_R2 * 4, PTR_R3 * 4,
++ PTR_R4 * 4, PTR_R5 * 4, PTR_R6 * 4, PTR_R7 * 4,
++ PTR_R8 * 4, PTR_R9 * 4, PTR_R10 * 4, PTR_R11 * 4,
++ PTR_R12 * 4, PTR_R13 * 4, PTR_R14 * 4, PTR_R15 * 4, /* reg 15 */
++ PTR_R16 * 4, PTR_R17 * 4, PTR_R18 * 4, PTR_R19 * 4,
++ PTR_R20 * 4, PTR_R21 * 4, PTR_R22 * 4, PTR_R23 * 4,
++ -1, -1, PTR_GP * 4, PTR_SP * 4,
++ PTR_FP * 4, -1, -1, PTR_RA * 4, /* reg 31 */
++ PTR_PC * 4, -1, -1, -1,
++ -1, -1, -1, -1,
++ -1, -1, -1, -1
++};
++
++#define nios2_num_regs (sizeof(nios2_regmap) / sizeof(nios2_regmap[0]))
++
++static int
++nios2_cannot_store_register (int regno)
++{
++ return (regno >= 33);
++}
++
++static int
++nios2_cannot_fetch_register (int regno)
++{
++ return (regno >= 33);
++}
++
++static CORE_ADDR
++nios2_get_pc ()
++{
++ unsigned long pc;
++ collect_register_by_name ("pc", &pc);
++ return pc;
++}
++
++static void
++nios2_set_pc (CORE_ADDR pc)
++{
++ unsigned long newpc = pc;
++ supply_register_by_name ("pc", &newpc);
++}
++
++#if 0
++static const unsigned long nios2_breakpoint = 0x003da03a;
++#else
++static const unsigned long nios2_breakpoint = 0x003b687a; /* Trap instr. w/imm=0x01 */
++#endif
++#define nios2_breakpoint_len 4
++
++static int
++nios2_breakpoint_at (CORE_ADDR where)
++{
++ unsigned long insn;
++
++ (*the_target->read_memory) (where, (char *) &insn, nios2_breakpoint_len);
++ if (insn == nios2_breakpoint)
++ return 1;
++
++ /* If necessary, recognize more trap instructions here. GDB only uses the
++ one. */
++ return 0;
++}
++
++struct linux_target_ops the_low_target = {
++ nios2_num_regs,
++ nios2_regmap,
++ nios2_cannot_fetch_register,
++ nios2_cannot_store_register,
++ nios2_get_pc,
++ nios2_set_pc,
++ (const char *) &nios2_breakpoint,
++ nios2_breakpoint_len,
++ NULL,
++ 0,
++ nios2_breakpoint_at,
++};
+diff --git a/gdb/nios2-tdep.c b/gdb/nios2-tdep.c
+new file mode 100644
+index 0000000..e0712dd
+--- /dev/null
++++ b/gdb/nios2-tdep.c
+@@ -0,0 +1,1610 @@
++/* Target-machine dependent code for Nios2, for GDB.
++ Copyright (C) 2003-2005
++ by Peter Brookes (pbrookes@altera.com)
++ and Andrew Draper (adraper@altera.com)
++
++ This file is part of GDB.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 59 Temple Place - Suite 330,
++ Boston, MA 02111-1307, USA. */
++
++#include "defs.h"
++#include "frame.h"
++#include "frame-unwind.h"
++#include "frame-base.h"
++#include "trad-frame.h"
++#include "dwarf2-frame.h"
++#include "symtab.h"
++#include "inferior.h"
++#include "gdbtypes.h"
++#include "gdbcore.h"
++#include "gdbcmd.h"
++#include "target.h"
++#include "dis-asm.h"
++#include "regcache.h"
++#include "value.h"
++#include "symfile.h"
++#include "arch-utils.h"
++#include "floatformat.h"
++#include "gdb_assert.h"
++
++/* To get entry_point_address. */
++#include "objfiles.h"
++
++/* Nios II ISA specific encodings and macros */
++#include "opcode/nios2.h"
++
++/* Macros */
++
++#define Z_REGNUM 0 /* Zero */
++#define R2_REGNUM 2 /* used for return value */
++#define R3_REGNUM 3 /* used for return value */
++/* used for hidden zero argument to store ptr to struct return value */
++#define R4_REGNUM 4
++#define R7_REGNUM 7
++#define GP_REGNUM 26 /* Global Pointer */
++#undef SP_REGNUM
++#define SP_REGNUM 27 /* Stack Pointer */
++#undef FP_REGNUM
++#define FP_REGNUM 28 /* Frame Pointer */
++#define EA_REGNUM 29 /* Exception address */
++#define BA_REGNUM 30 /* Breakpoint return address */
++#define RA_REGNUM 31 /* Return address */
++#undef PC_REGNUM
++#define PC_REGNUM 32
++#define STATUS_REGNUM 33 /* Ctrl registers */
++#define ESTATUS_REGNUM 34
++#define BSTATUS_REGNUM 35
++#define IENABLE_REGNUM 36
++#define IPENDING_REGNUM 37
++#define CPUID_REGNUM 38
++#define PTEADDR_REGNUM 41
++#define TLBACC_REGNUM 42
++#define TLBMISC_REGNUM 43
++#define FIRST_ARGREG R4_REGNUM
++#define LAST_ARGREG R7_REGNUM
++/* Number of all registers */
++#define NIOS2_NUM_REGS (44)
++/* The maximum register number displayed to the user, */
++/* as a result of typing "info reg" at the gdb prompt */
++#define NIOS2_MAX_REG_DISPLAYED_REGNUM (38)
++
++#define NIOS2_OPCODE_SIZE 4
++
++/* Structures */
++struct register_info
++{
++ int size;
++ char *name;
++ struct type **type;
++};
++
++/* The current value in the register is the value in r[base] at the start of
++ * the function + offset ; unless base < 0 in which case it's unknown.
++ */
++typedef struct
++{
++ int reg;
++ unsigned int offset;
++
++} REG_VALUE;
++
++
++typedef struct
++{
++ int basereg;
++ CORE_ADDR addr;
++
++} REG_SAVED;
++
++struct nios2_unwind_cache
++{
++ /* The frame's base, optionally used by the high-level debug info. */
++ CORE_ADDR base;
++
++ /* The previous frame's inner most stack address. Used as this
++ frame ID's stack_addr. */
++ CORE_ADDR cfa;
++
++ /* The address of the first instruction in this function */
++ CORE_ADDR pc;
++
++ /* Which register holds the return address for the frame. */
++ int return_regnum;
++
++ /* Table indicating what changes have been made to each register */
++ REG_VALUE reg_value[NIOS2_NUM_REGS];
++
++ /* Table indicating where each register has been saved. */
++ REG_SAVED reg_saved[NIOS2_NUM_REGS];
++};
++
++
++/* Function prototypes */
++CORE_ADDR nios2_saved_pc_after_call (struct frame_info *fi);
++
++/* nios2_register_info_table[i] is the number of bytes of storage in
++ GDB's register array occupied by register i. */
++static struct register_info nios2_register_info_table[] = {
++ /* 0 */ {4, "zero", &builtin_type_uint32},
++ /* 1 */ {4, "at", &builtin_type_uint32},
++ /* 2 */ {4, "r2", &builtin_type_uint32},
++ /* 3 */ {4, "r3", &builtin_type_uint32},
++ /* 4 */ {4, "r4", &builtin_type_uint32},
++ /* 5 */ {4, "r5", &builtin_type_uint32},
++ /* 6 */ {4, "r6", &builtin_type_uint32},
++ /* 7 */ {4, "r7", &builtin_type_uint32},
++ /* 8 */ {4, "r8", &builtin_type_uint32},
++ /* 9 */ {4, "r9", &builtin_type_uint32},
++ /* 10 */ {4, "r10", &builtin_type_uint32},
++ /* 11 */ {4, "r11", &builtin_type_uint32},
++ /* 12 */ {4, "r12", &builtin_type_uint32},
++ /* 13 */ {4, "r13", &builtin_type_uint32},
++ /* 14 */ {4, "r14", &builtin_type_uint32},
++ /* 15 */ {4, "r15", &builtin_type_uint32},
++ /* 16 */ {4, "r16", &builtin_type_uint32},
++ /* 17 */ {4, "r17", &builtin_type_uint32},
++ /* 18 */ {4, "r18", &builtin_type_uint32},
++ /* 19 */ {4, "r19", &builtin_type_uint32},
++ /* 20 */ {4, "r20", &builtin_type_uint32},
++ /* 21 */ {4, "r21", &builtin_type_uint32},
++ /* 22 */ {4, "r22", &builtin_type_uint32},
++ /* 23 */ {4, "r23", &builtin_type_uint32},
++ /* 24 */ {4, "et", &builtin_type_uint32},
++ /* 25 */ {4, "bt", &builtin_type_uint32},
++ /* 26 */ {4, "gp", &builtin_type_uint32},
++ /* 27 */ {4, "sp", &builtin_type_uint32},
++ /* 28 */ {4, "fp", &builtin_type_uint32},
++ /* 29 */ {4, "ea", &builtin_type_uint32},
++ /* 30 */ {4, "ba", &builtin_type_uint32},
++ /* 31 */ {4, "ra", &builtin_type_uint32},
++ /* 32 */ {4, "pc", &builtin_type_uint32},
++ /* 33 */ {4, "status", &builtin_type_uint32},
++ /* 34 */ {4, "estatus", &builtin_type_uint32},
++ /* 35 */ {4, "bstatus", &builtin_type_uint32},
++ /* 36 */ {4, "ienable", &builtin_type_uint32},
++ /* 37 */ {4, "ipending", &builtin_type_uint32},
++ /* 38 */ {4, "cpuid", &builtin_type_uint32},
++ /* 39 */ {4, "ctl6", &builtin_type_uint32},
++ /* 40 */ {4, "ctl7", &builtin_type_uint32},
++ /* 41 */ {4, "pteaddr", &builtin_type_uint32},
++ /* 42 */ {4, "tlbacc", &builtin_type_uint32},
++ /* 43 */ {4, "tlbmisc", &builtin_type_uint32}
++};
++
++/* This array is a mapping from Dwarf-2 register
++ numbering to GDB's */
++static int nios2_dwarf2gdb_regno_map[] = {
++ 0, 1, 2, 3,
++ 4, 5, 6, 7,
++ 8, 9, 10, 11,
++ 12, 13, 14, 15,
++ 16, 17, 18, 19,
++ 20, 21, 22, 23,
++ 24, 25,
++ GP_REGNUM, /* 26 */
++ SP_REGNUM, /* 27 */
++ FP_REGNUM, /* 28 */
++ EA_REGNUM, /* 29 */
++ BA_REGNUM, /* 30 */
++ RA_REGNUM, /* 31 */
++ PC_REGNUM, /* 32 */
++ STATUS_REGNUM, /* 33 */
++ ESTATUS_REGNUM, /* 34 */
++ BSTATUS_REGNUM, /* 35 */
++ IENABLE_REGNUM, /* 36 */
++ IPENDING_REGNUM, /* 37 */
++ 38, 39, 40, 41, 42, 43
++};
++
++/* Dwarf-2 <-> GDB register numbers mapping. */
++int
++nios2_dwarf_reg_to_regnum (int dw_reg)
++{
++ if (dw_reg < 0 || dw_reg > NIOS2_NUM_REGS)
++ {
++ warning ("Dwarf-2 uses unmapped register #%d\n", dw_reg);
++ return dw_reg;
++ }
++
++ return nios2_dwarf2gdb_regno_map[dw_reg];
++}
++
++/* Same as read_memory_u6signed_integer, but don't report an error if
++ can't read. */
++int
++nios2_read_memory_unsigned_integer (CORE_ADDR memaddr, int len, ULONGEST *ret)
++{
++ char buf[sizeof (ULONGEST)];
++ int error;
++
++ error = target_read_memory (memaddr, buf, len);
++ if (error != 0)
++ return 0;
++ else
++ {
++ *ret = extract_unsigned_integer (buf, len);
++ return 1;
++ }
++}
++
++/* Find the name for the specified NIOS2 regno */
++static const char *
++nios2_register_name (int regno)
++{
++ /* Don't display any registers after NIOS2_MAX_REG_DISPLAYED_REGNUM */
++ if (regno < 0)
++ return NULL;
++ else if (regno > NIOS2_MAX_REG_DISPLAYED_REGNUM)
++ return NULL;
++ return nios2_register_info_table[regno].name;
++}
++
++/* Returns the default type for register N. */
++static struct type *
++nios2_register_type (struct gdbarch *gdbarch, int regno)
++{
++/* FIXME Do we need some checks on regno ? */
++ return *nios2_register_info_table[regno].type;
++}
++
++/* nios2_register_byte_table[i] is the offset into the register file of the
++ start of register number i. We initialize this from
++ nios2_register_info_table. */
++int nios2_register_byte_table[NIOS2_NUM_REGS];
++
++/* Index within `registers' of the first byte of the space for register REGNO. */
++int
++nios2_register_byte (int regno)
++{
++ return nios2_register_byte_table[regno];
++}
++
++/* Number of bytes of storage in the actual machine representation for
++ register 'regno'. */
++static int
++nios2_register_raw_size (int regno)
++{
++ return nios2_register_info_table[regno].size;
++}
++
++/* Number of bytes of storage in the program's representation for
++ register 'regno'. */
++static int
++nios2_register_virtual_size (int regno)
++{
++ return nios2_register_info_table[regno].size;
++}
++
++/* Return the GDB type object for the "standard" data type
++ of data in register 'regno'. */
++static struct type *
++nios2_register_virtual_type (int regno)
++{
++ return *nios2_register_info_table[regno].type;
++}
++
++/* Does this register need conversion betwen raw and virtual formats */
++int
++nios2_register_convertible (int regno)
++{
++ if (nios2_register_raw_size (regno) == nios2_register_virtual_size (regno))
++ return 0;
++ else
++ return 1;
++}
++
++
++
++/* Given a return value in `regcache' with a type `valtype',
++ extract and copy its value into `valbuf'. */
++/* FIXME: check this function*/
++void
++nios2_extract_return_value (struct type *valtype, struct regcache *regcache, void *valbuf)
++{
++#ifdef PORTINGTO61
++ int len = TYPE_LENGTH (valtype);
++
++ /* pointer types are returned in register r2,
++ up to 16-bit types in r2
++ up to 32-bit types in r2,r3 */
++ if (len <= nios2_register_raw_size (R2_REGNUM))
++ memcpy (valbuf, regbuf + REGISTER_BYTE (R2_REGNUM), len);
++ else if (len <= (nios2_register_raw_size (R2_REGNUM)
++ + nios2_register_raw_size (R3_REGNUM)))
++ memcpy (valbuf, regbuf + REGISTER_BYTE (R2_REGNUM), len);
++ else
++ {
++ /* Can I get the returned value here ? */
++ memset(valbuf, 0, len);
++ }
++#endif
++}
++
++/* Write into appropriate registers a function return value
++ of type TYPE, given in virtual format. */
++/* FIXME: check if required */
++void
++nios2_store_return_value (struct type *valtype, void *valbuf)
++{
++#ifdef PORTINGTO61
++ int len = TYPE_LENGTH (valtype);
++
++ /* return values of up to 8 bytes are returned in $r2 $r3 */
++
++ if (len <= nios2_register_raw_size (R2_REGNUM))
++ write_register_bytes (REGISTER_BYTE (R2_REGNUM),
++ valbuf,
++ len);
++ else if (len <= (nios2_register_raw_size (R2_REGNUM)
++ + nios2_register_raw_size (R3_REGNUM)))
++ write_register_bytes (REGISTER_BYTE (R2_REGNUM),
++ valbuf,
++ len);
++#endif
++}
++
++#ifdef PORTINGTO61
++
++/* Setup the function arguments for calling a function in the inferior. */
++static CORE_ADDR
++nios2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
++ int struct_return, CORE_ADDR struct_addr)
++{
++ int argreg;
++ int argnum;
++ struct stack_arg
++ {
++ int len;
++ char *val;
++ } *stack_args;
++ int nstack_args = 0;
++
++ stack_args = (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
++
++ /* The lowest register number containing arguments */
++ argreg = FIRST_ARGREG;
++
++ /* Align the stack. It will be needed
++ if we call a function which has argument overflow. */
++ sp &= ~3;
++
++ /* If this function returns a struct which does not fit in the
++ return registers, we must pass a buffer to the function
++ which it can use to save the return value. */
++ if (struct_return)
++ write_register (R2_REGNUM, struct_addr);
++
++ /* FIXME: what about unions? */
++ for (argnum = 0; argnum < nargs; argnum++)
++ {
++ char *val = (char *) VALUE_CONTENTS (args[argnum]);
++ int len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
++ struct type *type = VALUE_TYPE (args[argnum]);
++ int olen;
++
++ if ((argreg <= LAST_ARGREG && len <= (LAST_ARGREG - argreg + 1) * DEPRECATED_REGISTER_SIZE)
++ || (TYPE_CODE (type) == TYPE_CODE_STRUCT))
++ {
++ /* Something that will fit entirely into registers or go on the stack. */
++ while (len > 0 && argreg <= LAST_ARGREG)
++ { write_register (argreg, extract_unsigned_integer (val, DEPRECATED_REGISTER_SIZE));
++
++ argreg++;
++ val += DEPRECATED_REGISTER_SIZE;
++ len -= DEPRECATED_REGISTER_SIZE;
++ }
++
++ /* Any remainder for the stack is noted below... */
++ }
++ else if (TYPE_CODE (VALUE_TYPE (args[argnum])) != TYPE_CODE_STRUCT
++ && len > DEPRECATED_REGISTER_SIZE)
++ {
++ /* All subsequent args go onto the stack. */
++ argnum = LAST_ARGREG + 1;
++ }
++
++ if (len > 0)
++ {
++ /* Note that this must be saved onto the stack */
++ stack_args[nstack_args].val = val;
++ stack_args[nstack_args].len = len;
++ nstack_args++;
++ }
++ }
++
++ /* We're done with registers and stack allocation. Now do the actual
++ stack pushes. */
++ while (nstack_args--)
++ {
++ sp -= stack_args[nstack_args].len;
++ write_memory (sp, stack_args[nstack_args].val, stack_args[nstack_args].len);
++ }
++
++ /* Return adjusted stack pointer. */
++ return sp;
++}
++
++/* Function: push_return_address (pc)
++ Set up the return address for the inferior function call.*/
++/* FIXME: Check if required */
++static CORE_ADDR
++nios2_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
++{
++ write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
++ return sp;
++}
++
++/* Extract from an array regcache containing the (raw) register state
++ the address in which a function should return its structure value,
++ as a CORE_ADDR (or an expression that can be used as one). */
++/* FIXME: Check if required */
++
++static CORE_ADDR
++nios2_extract_struct_value_address (char *regbuf)
++{
++ return (extract_address ((regbuf) + REGISTER_BYTE (R4_REGNUM),
++ REGISTER_RAW_SIZE (R4_REGNUM)));
++}
++
++/* Store the address of the place in which to copy the structure the
++ subroutine will return. This is called from call_function. */
++
++/* FIXME: Check if required */
++static void
++nios2_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
++{
++ write_register (R4_REGNUM, (addr));
++}
++#endif
++
++
++/* This function analyzes the function prologue and tries to work
++ out where registers are saved and how long the prologue is.
++ The prologue will consist of the following parts:
++ 1) Optional profiling instrumentation. The old version uses six
++ instructions. We step over this if there is an exact match.
++ nextpc r8
++ mov r9, ra
++ movhi r10, %hiadj(.LP2)
++ addi r10, r10, %lo(.LP2)
++ call mcount
++ mov ra, r9
++ The new version uses two or three instructions (the last of
++ these might get merged in with the STW which saves RA to the
++ stack). We interpret these.
++ mov r8, ra
++ call mcount
++ mov ra, r8
++
++ 2) Optional interrupt entry decision. Again, we step over
++ this if there is an exact match.
++ rdctl et,estatus
++ andi et,et,1
++ beq et,zero, <software_exception>
++ rdctl et,ipending
++ beq et,zero, <software_exception>
++
++ 3) A stack adjustment or stack which, which will be one of:
++ addi sp, sp, -constant
++ or:
++ movi r8, constant
++ sub sp, sp, r8
++ or
++ movhi r8, constant
++ addi r8, r8, constant
++ sub sp, sp, r8
++ or
++ movhi rx, %hiadj(newstack)
++ addhi rx, rx, %lo(newstack)
++ stw sp, constant(rx)
++ mov sp, rx
++
++ 4) An optional stack check, which can take either of these forms:
++ bgeu sp, rx, +8
++ break 3
++ or
++ bltu sp, rx, .Lstack_overflow
++ ...
++ .Lstack_overflow:
++ break 3
++
++ 5) Saving any registers which need to be saved. These will
++ normally just be stored onto the stack:
++ stw rx, constant(sp)
++ but in the large frame case will use r8 as an offset back
++ to the cfa:
++ add r8, r8, sp
++ stw rx, -constant(r8)
++
++ Saving control registers looks slightly different:
++ rdctl rx, ctlN
++ stw rx, constant(sp)
++
++ 6) An optional FP setup, either if the user has requested a
++ frame pointer or if the function calls alloca.
++ This is always:
++ mov fp, sp
++
++ The prologue instructions may be interleaved, and the register
++ saves and FP setup can occur in either order.
++
++ To cope with all this variability we decode all the instructions
++ from the start of the prologue until we hit a branch, call or
++ return. For each of the instructions mentioned in 3, 4 and 5 we
++ handle the limited cases of stores to the stack and operations
++ on constant values.
++ */
++
++typedef struct
++{
++ unsigned int insn;
++ unsigned int mask;
++} wild_insn;
++
++static const wild_insn profiler_insn[] =
++{
++ { 0x0010e03a, 0x00000000 }, // nextpc r8
++ { 0xf813883a, 0x00000000 }, // mov r9,ra
++ { 0x02800034, 0x003FFFC0 }, // movhi r10,257
++ { 0x52800004, 0x003FFFC0 }, // addi r10,r10,-31992
++ { 0x00000000, 0xFFFFFFC0 }, // call <mcount>
++ { 0x483f883a, 0x00000000 } // mov ra,r9
++};
++
++static const wild_insn irqentry_insn[] =
++{
++ { 0x0031307a, 0x00000000 }, // rdctl et,estatus
++ { 0xc600004c, 0x00000000 }, // andi et,et,1
++ { 0xc0000026, 0x003FFFC0 }, // beq et,zero, <software_exception>
++ { 0x0031313a, 0x00000000 }, // rdctl et,ipending
++ { 0xc0000026, 0x003FFFC0 } // beq et,zero, <software_exception>
++};
++
++static void
++nios2_setup_default(struct nios2_unwind_cache *cache)
++{
++ int i;
++
++ for (i = 0; i < NIOS2_NUM_REGS; i++)
++ {
++ /* All registers start off holding their previous values */
++ cache->reg_value[i].reg = i;
++ cache->reg_value[i].offset = 0;
++
++ /* All registers start off not saved */
++ cache->reg_saved[i].basereg = -1;
++ cache->reg_saved[i].addr = 0;
++ }
++}
++
++static int
++nios2_match_sequence(CORE_ADDR start_pc, const wild_insn * sequence, int count)
++{
++ CORE_ADDR pc = start_pc;
++ int i;
++ unsigned int insn;
++
++ for (i = 0 ; i < count ; i++)
++ {
++ insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE);
++ if ((insn & ~sequence[i].mask) != sequence[i].insn)
++ return 0;
++
++ pc += NIOS2_OPCODE_SIZE;
++ }
++
++ return 1;
++}
++
++
++CORE_ADDR
++nios2_analyze_prologue (const CORE_ADDR start_pc, const CORE_ADDR current_pc,
++ struct nios2_unwind_cache *cache, struct frame_info *next_frame)
++{
++ /* Maximum lines of prologue to check */
++ /* Note that this number should not be too large, else we can potentially */
++ /* end up iterating through unmapped memory */
++ CORE_ADDR limit_pc = start_pc + 200;
++ int regno;
++
++ /* Does the frame set up the FP register? */
++ int base_reg = 0;
++
++ REG_VALUE * value = cache->reg_value;
++ REG_VALUE temp_value[NIOS2_NUM_REGS];
++
++ int i;
++
++ /* Save the starting PC so we can correct the pc after running */
++ /* through the prolog, using symbol info */
++ CORE_ADDR pc = start_pc;
++
++ /* Is this an exception handler? */
++ int exception_handler = 0;
++
++ /* What was the original value of SP (or fake original value for
++ * functions which switch stacks?
++ */
++ CORE_ADDR frame_high;
++
++ /* Is this the end of the prologue? */
++ int within_prologue = 1;
++
++ CORE_ADDR prologue_end;
++
++ /* Is this the innermost function? */
++ int innermost = (frame_relative_level(next_frame) < 0);
++
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog,
++ "{ nios2_analyze_prologue start=0x%s, current=0x%s ",
++ paddr_nz (start_pc), paddr_nz (current_pc));
++#endif
++
++ /* Set up the default values of the registers. */
++ nios2_setup_default(cache);
++
++ /* If the first few instructions are the profile entry then skip over them. */
++ /* Newer versions of the compiler use more efficient profiling code. */
++ if (nios2_match_sequence(pc, profiler_insn, sizeof(profiler_insn)/sizeof(profiler_insn[0])))
++ pc += sizeof(profiler_insn)/sizeof(profiler_insn[0]) * NIOS2_OPCODE_SIZE;
++
++ /* If the first few are an interrupt entry then skip over them too */
++ if (nios2_match_sequence(pc, irqentry_insn, sizeof(irqentry_insn)/sizeof(irqentry_insn[0])))
++ {
++ pc += sizeof(irqentry_insn)/sizeof(irqentry_insn[0]) * NIOS2_OPCODE_SIZE;
++ exception_handler = 1;
++ }
++
++ prologue_end = start_pc;
++
++ /* Find the prologue instructions. */
++ /* Fortunately we're in 32bit paradise */
++ while (pc < limit_pc && within_prologue)
++ {
++ /* Present instruction. */
++ unsigned int insn;
++
++ int prologue_insn = 0;
++
++ if (pc == current_pc)
++ {
++ /*
++ * When we reach the current PC we must save the current register
++ * state (for the backtrace) but keep analysing because there might
++ * be more to find out (eg. is this an exception handler).
++ */
++ memcpy(temp_value, value, sizeof(temp_value));
++ value = temp_value;
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog, "*");
++#endif
++ }
++
++ insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE);
++ pc += NIOS2_OPCODE_SIZE;
++
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
++#endif
++
++ /* The following instructions can appear in the prologue */
++
++ if ((insn & 0x0001FFFF) == 0x0001883A)
++ {
++ /* ADD rc, ra, rb (also used for MOV) */
++
++ int ra = GET_IW_A(insn);
++ int rb = GET_IW_B(insn);
++ int rc = GET_IW_C(insn);
++
++ if (rc == SP_REGNUM && rb == 0 && value[ra].reg == cache->reg_saved[SP_REGNUM].basereg)
++ {
++ /* If the previous value of SP is available somewhere near the new
++ * stack pointer value then this is a stack switch.
++ */
++
++ /* If any registers were saved on the stack before then we can't backtrace
++ * into them now.
++ */
++ for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
++ {
++ if (cache->reg_saved[i].basereg == SP_REGNUM)
++ cache->reg_saved[i].basereg = -1;
++ if (value[i].reg == SP_REGNUM)
++ value[i].reg = -1;
++ }
++
++ /* Create a fake "high water mark" 4 bytes above where SP was stored
++ * and fake up the registers to be consistent with that.
++ */
++ value[SP_REGNUM].reg = SP_REGNUM;
++ value[SP_REGNUM].offset = value[ra].offset - cache->reg_saved[SP_REGNUM].addr - 4;
++
++ cache->reg_saved[SP_REGNUM].basereg = SP_REGNUM;
++ cache->reg_saved[SP_REGNUM].addr = -4;
++ }
++
++ else if (rc != 0)
++ {
++ if (value[rb].reg == 0)
++ value[rc].reg = value[ra].reg;
++ else if (value[ra].reg == 0)
++ value[rc].reg = value[rb].reg;
++ else
++ value[rc].reg = -1;
++
++ value[rc].offset = value[ra].offset + value[rb].offset;
++ }
++ prologue_insn = 1;
++ }
++
++ else if ((insn & 0x0001FFFF) == 0x0001983A)
++ {
++ /* SUB rc, ra, rb */
++
++ int ra = GET_IW_A(insn);
++ int rb = GET_IW_B(insn);
++ int rc = GET_IW_C(insn);
++
++ if (rc != 0)
++ {
++ if (value[rb].reg == 0)
++ value[rc].reg = value[ra].reg;
++ else
++ value[rc].reg = -1;
++
++ value[rc].offset = value[ra].offset - value[rb].offset;
++ }
++ }
++
++ else if ((insn & 0x0000003F) == 0x00000004)
++ {
++ /* ADDI rb, ra, immed (also used for MOVI) */
++ short immed = GET_IW_IMM16(insn);
++ int ra = GET_IW_A(insn);
++ int rb = GET_IW_B(insn);
++
++ if (rb == SP_REGNUM)
++ {
++ /* The first stack adjustment is part of the prologue. Any subsequent
++ stack adjustments are either down to alloca or the epilogue so stop
++ analysing when we hit them. */
++ if (value[rb].offset != 0 || value[ra].reg != SP_REGNUM)
++ break;
++ }
++
++ if (rb != 0)
++ {
++ value[rb].reg = value[ra].reg;
++ value[rb].offset = value[ra].offset + immed;
++ }
++
++ prologue_insn = 1;
++ }
++
++ else if ((insn & 0x0000003F) == 0x00000034)
++ {
++ /* ORHI rb, ra, immed (also used for MOVHI) */
++ unsigned int immed = GET_IW_IMM16(insn);
++ int ra = GET_IW_A(insn);
++ int rb = GET_IW_B(insn);
++
++ if (rb != 0)
++ {
++ value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
++ value[rb].offset = value[ra].offset | (immed << 16);
++ }
++ }
++
++ else if (((insn & IW_OP_MASK) == OP_STW || (insn & IW_OP_MASK) == OP_STWIO))
++ {
++ /* STW rb, immediate(ra) */
++
++ short immed16 = GET_IW_IMM16(insn);
++ int ra = GET_IW_A(insn);
++ int rb = GET_IW_B(insn);
++
++ /* Are we storing the original value of a register? For exception handlers
++ * the value of EA-4 (return address from interrupts etc) is sometimes stored.
++ */
++ int orig = value[rb].reg;
++ if (orig > 0 && (value[rb].offset == 0 || (orig == EA_REGNUM && value[rb].offset == -4)))
++ {
++ /* We are most interested in stores to the stack, but will also take note
++ * of stores to other places as they might be useful later.
++ */
++ if ((value[ra].reg == SP_REGNUM && cache->reg_saved[orig].basereg != SP_REGNUM) ||
++ cache->reg_saved[orig].basereg == -1)
++ {
++ if (pc < current_pc)
++ {
++ /* Save off callee saved registers */
++ cache->reg_saved[orig].basereg = value[ra].reg;
++ cache->reg_saved[orig].addr = value[ra].offset + GET_IW_IMM16(insn);
++ }
++
++ prologue_insn = 1;
++
++ if (orig == EA_REGNUM || orig == ESTATUS_REGNUM)
++ exception_handler = 1;
++ }
++ }
++ }
++
++ else if ((insn & 0xFFC1F83F) == 0x0001303A)
++ {
++ /* RDCTL rC, ctlN */
++ int rc = GET_IW_C(insn);
++ int n = GET_IW_CONTROL_REGNUM(insn);
++
++ if (rc != 0)
++ {
++ value[rc].reg = STATUS_REGNUM + n;
++ value[rc].offset = 0;
++ }
++
++ prologue_insn = 1;
++ }
++
++ else if ((insn & 0x0000003F) == 0 &&
++ value[8].reg == RA_REGNUM && value[8].offset == 0 &&
++ value[SP_REGNUM].reg == SP_REGNUM && value[SP_REGNUM].offset == 0)
++ {
++ /* A CALL instruction. This is treated as a call to mcount if ra
++ * has been stored into r8 beforehand and if it's before the stack adjust.
++ * mcount corrupts r2-r3, r9-r15 & ra
++ */
++ for (i = 2 ; i <= 3 ; i++)
++ value[i].reg = -1;
++ for (i = 9 ; i <= 15 ; i++)
++ value[i].reg = -1;
++ value[RA_REGNUM].reg = -1;
++
++ prologue_insn = 1;
++ }
++
++ else if ((insn & 0xF83FFFFF) == 0xD800012E)
++ {
++ /* BGEU sp, rx, +8
++ * BREAK 3
++ * This instruction sequence is used in stack checking - we can ignore it
++ */
++ unsigned int next_insn = read_memory_unsigned_integer(pc, NIOS2_OPCODE_SIZE);
++
++ if (next_insn != 0x003DA0FA)
++ within_prologue = 0;
++ else
++ pc += NIOS2_OPCODE_SIZE;
++ }
++
++ else if ((insn & 0xF800003F) == 0xD8000036)
++ {
++ /* BLTU sp, rx, .Lstackoverflow
++ * If the location branched to holds a BREAK 3 instruction then this is
++ * also stack overflow detection. We can ignore it.
++ */
++ CORE_ADDR target_pc = pc + ((insn & 0x3FFFC0) >> 6);
++ unsigned int target_insn = read_memory_unsigned_integer(target_pc, NIOS2_OPCODE_SIZE);
++
++ if (target_insn != 0x003DA0FA)
++ within_prologue = 0;
++ }
++
++ /* Any other instructions are allowed to be moved up into the prologue. If we
++ reach a branch, call or return then the prologue is considered over */
++ /* We also consider a second stack adjustment as terminating the prologue (see
++ above) */
++
++ else
++ {
++ switch (GET_IW_OP(insn))
++ {
++ case OP_BEQ:
++ case OP_BGE:
++ case OP_BGEU:
++ case OP_BLT:
++ case OP_BLTU:
++ case OP_BNE:
++ case OP_BR:
++ case OP_CALL:
++ within_prologue = 0;
++ break;
++ case OP_OPX:
++ if (GET_IW_OPX(insn) == OPX_RET ||
++ GET_IW_OPX(insn) == OPX_ERET ||
++ GET_IW_OPX(insn) == OPX_BRET ||
++ GET_IW_OPX(insn) == OPX_CALLR ||
++ GET_IW_OPX(insn) == OPX_JMP)
++ {
++ within_prologue = 0;
++ }
++ default:
++ break;
++ }
++ }
++
++ if (prologue_insn)
++ prologue_end = pc;
++ }
++
++ /* Are we within the function epilogue? If so then we should go back to the
++ original register values */
++ if (innermost && current_pc > start_pc)
++ {
++ /* First check whether the previous instruction was a stack
++ adjustment. */
++ unsigned int insn = read_memory_unsigned_integer (current_pc - NIOS2_OPCODE_SIZE, NIOS2_OPCODE_SIZE);
++
++ if ((insn & 0xFFC0003C) == 0xDEC00004 || /* ADDI sp, sp, */
++ (insn & 0xFFC1FFFF) == 0xDEC1883A || /* ADD sp, sp, */
++ (insn & 0xFFC0003F) == 0xDEC00017) /* LDW sp, constant(sp) */
++ {
++ /* Then check if it's followed by a return or a tail call */
++ insn = read_memory_unsigned_integer (current_pc, NIOS2_OPCODE_SIZE);
++
++ if (insn == 0xF800283A || /* RET */
++ insn == 0xE800083A || /* ERET */
++ (insn & 0x07FFFFFF) == 0x0000683A || /* JMP */
++ (insn & 0xFFC0003F) == 6) /* BR */
++ {
++ /* Go back to default value of the registers */
++ nios2_setup_default(cache);
++ }
++ }
++ }
++
++ /* Exception handlers use a different return address register. */
++ if (exception_handler)
++ cache->return_regnum = EA_REGNUM;
++
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
++#endif
++
++ if (cache->reg_value[FP_REGNUM].reg == SP_REGNUM)
++ {
++ /* If the FP now holds an offset from the CFA then this is a normal
++ frame which uses the frame pointer. */
++ base_reg = FP_REGNUM;
++ }
++ else if (cache->reg_value[SP_REGNUM].reg == SP_REGNUM)
++ {
++ /* FP doesn't hold an offset from the CFA. If SP still holds an
++ offset from the CFA then we might be in a function which omits
++ the frame pointer, or we might be partway through the prologue.
++ In both cases we can find the CFA using SP. */
++ base_reg = SP_REGNUM;
++ }
++ else
++ {
++ /* Somehow the stack pointer has been corrupted. We can't return. */
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
++#endif
++ return 0;
++ }
++
++ if (cache->reg_value[base_reg].offset == 0 ||
++ cache->reg_saved[RA_REGNUM].basereg != SP_REGNUM ||
++ cache->reg_saved[cache->return_regnum].basereg != SP_REGNUM)
++ {
++ /*
++ * If the frame didn't adjust the stack, didn't save RA or didn't save
++ * EA in an exception handler then it must either be a leaf function
++ * (doesn't call any other functions) or it can't return. If it has
++ * called another function then it can't be a leaf, so set base == 0
++ * to indicate that we can't backtrace past it.
++ */
++
++ if (!innermost)
++ {
++ /* If it isn't the innermost function then it can't be a leaf, unless
++ * it was interrupted. Check whether RA for this frame is the same
++ * as PC. If so then it probably wan't interrupted.
++ */
++ char buf[8];
++ CORE_ADDR ra;
++
++ frame_unwind_register (next_frame, RA_REGNUM, buf);
++ ra = extract_typed_address (buf, builtin_type_void_func_ptr);
++
++ if (ra == current_pc)
++ {
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog, "<noreturn ADJUST 0x%s, r31@r%d+?>, r%d@r%d+?> }\n",
++ paddr_nz(cache->reg_value[base_reg].offset),
++ cache->reg_saved[RA_REGNUM].basereg,
++ cache->return_regnum, cache->reg_saved[cache->return_regnum].basereg);
++#endif
++ return 0;
++ }
++ }
++ }
++
++ /* Get the value of whichever register we are using for the base. */
++ cache->base = frame_unwind_register_unsigned (next_frame, base_reg);
++
++ /* What was the value of SP at the start of this function (or just
++ * after the stack switch).
++ */
++ frame_high = cache->base - cache->reg_value[base_reg].offset;
++
++ /* Adjust all the saved registers such that they contain addresses
++ instead of offsets. */
++ for (i = 0; i < NIOS2_NUM_REGS; i++)
++ if (cache->reg_saved[i].basereg == SP_REGNUM)
++ {
++ cache->reg_saved[i].basereg = Z_REGNUM;
++ cache->reg_saved[i].addr += frame_high;
++ }
++
++ for (i = 0; i < NIOS2_NUM_REGS; i++)
++ if (cache->reg_saved[i].basereg == GP_REGNUM)
++ {
++ CORE_ADDR gp = frame_unwind_register_unsigned (next_frame, GP_REGNUM);
++
++ for ( ; i < NIOS2_NUM_REGS; i++)
++ if (cache->reg_saved[i].basereg == GP_REGNUM)
++ {
++ cache->reg_saved[i].basereg = Z_REGNUM;
++ cache->reg_saved[i].addr += gp;
++ }
++ }
++
++ /* Work out what the value of SP was on the first instruction of this
++ * function. If we didn't switch stacks then this can be trivially
++ * computed from the base address.
++ */
++ if (cache->reg_saved[SP_REGNUM].basereg == Z_REGNUM)
++ {
++ cache->cfa = read_memory_unsigned_integer(cache->reg_saved[SP_REGNUM].addr, 4);
++ }
++ else
++ cache->cfa = frame_high;
++
++ /* Exception handlers restore ESTATUS into STATUS. */
++ if (exception_handler)
++ {
++ cache->reg_saved[STATUS_REGNUM] = cache->reg_saved[ESTATUS_REGNUM];
++ cache->reg_saved[ESTATUS_REGNUM].basereg = -1;
++ }
++
++#ifdef DEBUG_PRINT
++ fprintf_unfiltered (gdb_stdlog, "cfa=0x%s }\n", paddr_nz(cache->cfa));
++#endif
++
++ return prologue_end;
++}
++
++struct frame_info *
++setup_arbitrary_frame (int argc, CORE_ADDR *argv)
++{
++ if (argc != 2)
++ error ("Nios II frame specifications require two arguments: sp and pc");
++
++ return create_new_frame (argv[0], argv[1]);
++}
++
++#ifdef PORTINGTO61
++/* Should be handled by unwind informations. */
++/* However, doing this manually until we can find */
++/* use the CFA information to examine the stack */
++void
++nios2_frame_init_saved_regs (struct frame_info *fi)
++{
++ CORE_ADDR ip;
++
++ /* Examine the entire prologue. */
++ register int frameless_p = 0;
++
++ /* Has this frame's registers already been initialized? */
++ if (fi->saved_regs)
++ return;
++
++ frame_saved_regs_zalloc (fi);
++
++ ip = get_pc_function_start (fi->pc);
++ nios2_examine (ip, fi, frameless_p);
++}
++#endif
++
++
++/* Given a PC value corresponding to the start of a function, return the PC
++ of the first instruction after the function prologue. */
++
++CORE_ADDR
++nios2_skip_prologue (CORE_ADDR start_pc)
++{
++ CORE_ADDR func_addr, func_end;
++ struct symtab_and_line sal;
++ CORE_ADDR pc_after_prologue;
++
++ /* If we have line debugging information, then the end of the prologue
++ should the first assembly instruction of the first source line. */
++ if (find_pc_partial_function (start_pc, NULL, &func_addr, &func_end))
++ {
++ sal = find_pc_line (func_addr, 0);
++ if (sal.end > 0 && sal.end < func_end)
++ return sal.end;
++ }
++
++ return start_pc;
++}
++
++/* nios2_software_single_step() is called just before we want to resume
++ the inferior, if we want to single-step it but there is no hardware
++ or kernel single-step support (NIOS2 on GNU/Linux for example). We find
++ the target of the coming instruction and breakpoint it.
++
++ single_step is also called just after the inferior stops. If we had
++ set up a simulated single-step, we undo our damage. */
++
++void
++nios2_software_single_step (enum target_signal sig, int insert_breakpoints_p)
++{
++ int ii;
++ unsigned int insn;
++ CORE_ADDR pc;
++ CORE_ADDR breaks[2];
++ int imme;
++
++ if (insert_breakpoints_p)
++ {
++ pc = read_pc ();
++ breaks[0] = pc + 4;
++ breaks[1] = -1;
++ insn = read_memory_unsigned_integer (pc, 4);
++
++ /* Calculate the destination of a branch/jump */
++ switch (GET_IW_OP(insn))
++ {
++ /* I-type branch */
++ case OP_BEQ:
++ case OP_BGE:
++ case OP_BGEU:
++ case OP_BLT:
++ case OP_BLTU:
++ case OP_BNE:
++ imme = (short) GET_IW_IMM16(insn);
++ breaks[1] = pc + 4 + imme;
++ break;
++ case OP_BR:
++ imme = (short) GET_IW_IMM16(insn);
++ breaks[0] = pc + 4 + imme;
++ break;
++ /* J-type branch */
++ case OP_CALL:
++ case OP_JMPI:
++ imme = GET_IW_IMM26(insn);
++ breaks[0] = (pc & 0xf0000000) | (imme * 4);
++ break;
++ /* R-type branch */
++ case OP_OPX:
++ switch (GET_IW_OPX(insn))
++ {
++ case OPX_CALLR:
++ case OPX_JMP:
++ case OPX_RET:
++ imme = read_register (GET_IW_A(insn));
++ breaks[0] = imme;
++ break;
++ }
++ break;
++ }
++
++ /* Don't put two breakpoints on the same address. */
++ if (breaks[1] == breaks[0])
++ breaks[1] = -1;
++
++ for (ii = 0; ii < 2; ++ii)
++ {
++ /* ignore invalid breakpoint. */
++ if (breaks[ii] == -1)
++ continue;
++ insert_single_step_breakpoint (breaks[ii]);
++ }
++ }
++ else
++ remove_single_step_breakpoints ();
++
++}
++
++const unsigned char*
++nios2_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
++{
++ /* break encoding: 31->27 26->22 21->17 16->11 10->6 5->0 */
++ /* 00000 00000 0x1e 0x34 00000 0x3a */
++ /* 00000 00000 11110 110100 00000 111010 */
++ /* In bytes: 00000000 00111101 10100000 00111010 */
++ /* 0x0 0x3d 0xa0 0x3a */
++#if 0
++ static unsigned char breakpoint[] = {0x3a, 0xa0, 0x3d, 0x0};
++#else
++ static unsigned char breakpoint[] = {0x7a, 0x68, 0x3b, 0x0}; /* Trap instr. w/imm=0x01 */
++#endif
++ *bp_size = 4;
++ return breakpoint;
++}
++
++
++int
++gdb_print_insn_nios2 (bfd_vma memaddr, disassemble_info *info)
++{
++ if (info->endian == BFD_ENDIAN_BIG)
++ {
++ return print_insn_big_nios2 (memaddr, info);
++ }
++ else
++ {
++ return print_insn_little_nios2 (memaddr, info);
++ }
++}
++
++
++
++/* Adjust the address downward (direction of stack growth) so that it
++ is correctly aligned for a new stack frame. */
++
++/* ??? Big endian issues here? */
++
++static CORE_ADDR
++nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
++{
++ return align_down (addr, 4);
++}
++
++
++
++/* We don't convert anything at the moment */
++static int
++nios2_convert_register_p (int regnum, struct type *type)
++{
++ return 0;
++}
++
++static void
++nios2_register_to_value (struct frame_info *frame, int regnum,
++ struct type *type, void *to)
++{
++ get_frame_register (frame, regnum + 0, (char *) to + 0);
++ get_frame_register (frame, regnum + 0, (char *) to + 0);
++}
++
++static void
++nios2_value_to_register (struct frame_info *frame, int regnum,
++ struct type *type, const void *from)
++{
++ put_frame_register (frame, regnum + 0, (const char *) from + 0);
++ put_frame_register (frame, regnum + 0, (const char *) from + 0);
++}
++
++/* Determine, for architecture GDBARCH, how a return value of TYPE
++ should be returned. If it is supposed to be returned in registers,
++ and READBUF is non-zero, read the appropriate value from REGCACHE,
++ and copy it into READBUF. If WRITEBUF is non-zero, write the value
++ from WRITEBUF into REGCACHE. */
++
++static enum return_value_convention
++nios2_return_value (struct gdbarch *gdbarch, struct type *type,
++ struct regcache *regcache, void *readbuf,
++ const void *writebuf)
++{
++ enum type_code code = TYPE_CODE (type);
++
++ /* FIXME PBrookes add struct return function */
++ if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
++ /*&& !nios2_reg_struct_return_p (gdbarch, type)*/)
++ return RETURN_VALUE_STRUCT_CONVENTION;
++
++
++ if (readbuf)
++ nios2_extract_return_value (type, regcache, readbuf);
++ if (writebuf)
++ nios2_store_return_value (type, regcache);
++
++ return RETURN_VALUE_REGISTER_CONVENTION;
++}
++
++/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
++ dummy frame. The frame ID's base needs to match the TOS value
++ saved by save_dummy_frame_tos() and returned from
++ nios2_push_dummy_call, and the PC needs to match the dummy frame's
++ breakpoint. */
++
++static struct frame_id
++nios2_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
++{
++ return frame_id_build (frame_unwind_register_unsigned (next_frame, SP_REGNUM),
++ frame_pc_unwind (next_frame));
++}
++
++static CORE_ADDR
++nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
++{
++ char buf[8];
++
++ frame_unwind_register (next_frame, PC_REGNUM, buf);
++ return extract_typed_address (buf, builtin_type_void_func_ptr);
++}
++
++
++/* Frame base handling. */
++
++struct nios2_unwind_cache *
++nios2_frame_unwind_cache (struct frame_info *next_frame,
++ void **this_prologue_cache)
++{
++ CORE_ADDR current_pc;
++ struct nios2_unwind_cache *cache;
++ int i;
++
++ if (*this_prologue_cache)
++ return *this_prologue_cache;
++
++ cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
++ (*this_prologue_cache) = cache;
++
++ /* Zero all fields. */
++ cache->base = 0;
++ cache->cfa = 0;
++ cache->pc = 0;
++
++ cache->return_regnum = RA_REGNUM;
++
++ nios2_setup_default(cache);
++
++ cache->pc = frame_func_unwind (next_frame);
++ current_pc = frame_pc_unwind (next_frame);
++
++ /* Prologue analysis does the rest... */
++ if (cache->pc != 0)
++ nios2_analyze_prologue (cache->pc, current_pc, cache, next_frame);
++
++ return cache;
++}
++
++static void
++nios2_frame_this_id (struct frame_info *next_frame, void **this_cache,
++ struct frame_id *this_id)
++{
++ struct nios2_unwind_cache *cache =
++ nios2_frame_unwind_cache (next_frame, this_cache);
++
++ /* This marks the outermost frame. */
++ if (cache->base == 0)
++ return;
++
++ (*this_id) = frame_id_build (cache->cfa, cache->pc);
++}
++
++static void
++nios2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
++ int regnum, int *optimizedp,
++ enum lval_type *lvalp, CORE_ADDR *addrp,
++ int *realnump, void *valuep)
++{
++ struct nios2_unwind_cache *cache =
++ nios2_frame_unwind_cache (next_frame, this_cache);
++
++ gdb_assert (regnum >= 0);
++
++ /* The PC of the previous frame is stored in the RA register of
++ the current frame. Frob regnum so that we pull the value from
++ the correct place. */
++ if (regnum == PC_REGNUM)
++ regnum = cache->return_regnum;
++
++ /* If we've worked out where a register is stored then load it from there.
++ */
++ if (regnum < NIOS2_NUM_REGS && cache->reg_saved[regnum].basereg == Z_REGNUM)
++ {
++ *optimizedp = 0;
++ *lvalp = lval_memory;
++ *addrp = cache->reg_saved[regnum].addr;
++ *realnump = -1;
++ if (valuep)
++ {
++ /* Read the value in from memory. */
++ read_memory (*addrp, valuep,
++ register_size (current_gdbarch, regnum));
++ }
++ return;
++ }
++
++ if (regnum == SP_REGNUM && cache->cfa)
++ {
++ *optimizedp = 0;
++ *lvalp = not_lval;
++ *addrp = 0;
++ *realnump = -1;
++ if (valuep)
++ {
++ /* Store the value. */
++ store_unsigned_integer (valuep, 8, cache->cfa);
++ }
++ return;
++ }
++
++ frame_register_unwind (next_frame, regnum,
++ optimizedp, lvalp, addrp, realnump, valuep);
++}
++
++
++
++static const struct frame_unwind nios2_frame_unwind =
++{
++ NORMAL_FRAME,
++ nios2_frame_this_id,
++ nios2_frame_prev_register
++};
++
++static CORE_ADDR
++nios2_frame_base_address (struct frame_info *next_frame, void **this_cache)
++{
++ struct nios2_unwind_cache *info
++ = nios2_frame_unwind_cache (next_frame, this_cache);
++ return info->base;
++}
++
++static const struct frame_base nios2_frame_base =
++{
++ &nios2_frame_unwind,
++ nios2_frame_base_address,
++ nios2_frame_base_address,
++ nios2_frame_base_address
++};
++
++static const struct frame_unwind *
++nios2_frame_sniffer (struct frame_info *next_frame)
++{
++ return &nios2_frame_unwind;
++}
++
++
++static struct gdbarch *
++nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
++{
++ struct gdbarch *gdbarch;
++ int register_bytes, i;
++
++ /* Change the register names based on the current machine type. */
++ if (info.bfd_arch_info->arch != bfd_arch_nios2)
++ return NULL;
++
++ /* None found, create a new architecture from the information
++ provided. We don't have any architecture specific state, so just
++ pass in 0 for the struct gdbarch_tdep parameter. */
++ gdbarch = gdbarch_alloc (&info, NULL);
++
++ /* Data type sizes. */
++ set_gdbarch_ptr_bit (gdbarch, 32);
++ set_gdbarch_addr_bit (gdbarch, 32);
++ set_gdbarch_short_bit (gdbarch, 16);
++ set_gdbarch_int_bit (gdbarch, 32);
++ set_gdbarch_long_bit (gdbarch, 32);
++ set_gdbarch_long_long_bit (gdbarch, 64);
++ set_gdbarch_float_bit (gdbarch, 32);
++ set_gdbarch_double_bit (gdbarch, 64);
++
++ switch (info.byte_order)
++ {
++ case BFD_ENDIAN_BIG:
++ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
++ set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
++ break;
++
++ case BFD_ENDIAN_LITTLE:
++ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
++ set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
++ break;
++
++ default:
++ internal_error (__FILE__, __LINE__,
++ "nios2_gdbarch_init: bad byte ordering");
++ break;
++ }
++
++ /* The register set. */
++ set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
++ set_gdbarch_sp_regnum (gdbarch, SP_REGNUM);
++ set_gdbarch_pc_regnum (gdbarch, PC_REGNUM); /* Pseudo register PC */
++
++ set_gdbarch_register_name (gdbarch, nios2_register_name);
++ /* Length of ordinary registers used in push_word and a few other
++ places. DEPRECATED_REGISTER_RAW_SIZE is the real way to know how
++ big a register is. */
++/* FIXME
++ set_gdbarch_deprecated_register_size (gdbarch, 4);
++ set_gdbarch_deprecated_register_virtual_type (gdbarch,
++ nios2_register_virtual_type);
++*/
++
++ set_gdbarch_register_type (gdbarch, nios2_register_type);
++
++ /* The "default" register numbering scheme for AMD64 is referred to
++ as the "DWARF Register Number Mapping" in the System V psABI.
++ The preferred debugging format for all known Nios II targets is
++ actually DWARF2, and GCC doesn't seem to support DWARF (that is
++ DWARF-1), but we provide the same mapping just in case. This
++ mapping is also used for stabs, which GCC does support. */
++ set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
++ set_gdbarch_dwarf_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
++ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
++
++ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
++
++ /* Call dummy code. */
++ set_gdbarch_frame_align (gdbarch, nios2_frame_align);
++
++ /* Some registers require conversion from raw format to virtual format. */
++/* FIXME
++ set_gdbarch_deprecated_register_convertible (gdbarch, nios2_register_convertible);
++*/
++
++ set_gdbarch_convert_register_p (gdbarch, nios2_convert_register_p);
++ set_gdbarch_register_to_value (gdbarch, nios2_register_to_value);
++ set_gdbarch_value_to_register (gdbarch, nios2_value_to_register);
++
++ set_gdbarch_return_value (gdbarch, nios2_return_value);
++
++ set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
++ set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc);
++ set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
++
++ set_gdbarch_unwind_dummy_id (gdbarch, nios2_unwind_dummy_id);
++ set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
++
++ /* The dwarf2 unwinder will normally produce the best results if the
++ debug information is available, so register it first. */
++ frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
++
++ /* FIXME: PBrookes - copied from AMD64-TDEP.c (kettenis/20021026):
++ This is ELF-specific. Fine for now, since all supported NIOS II
++ targets are ELF, but that might change in the future. */
++/* FIXME again.. Does not exist anymore...
++ set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
++*/
++
++ frame_unwind_append_sniffer (gdbarch, nios2_frame_sniffer);
++
++ frame_base_set_default (gdbarch, &nios2_frame_base);
++
++ set_gdbarch_print_insn (gdbarch, gdb_print_insn_nios2);
++
++ return gdbarch;
++}
++
++void
++_initialize_nios2_tdep (void)
++{
++ register_gdbarch_init (bfd_arch_nios2, nios2_gdbarch_init);
++
++ int i, offset = 0;
++
++ /* Do not display anything after NIOS2_MAX_REG_DISPLAYED_REGNUM */
++ for (i = 0; i <= NIOS2_MAX_REG_DISPLAYED_REGNUM; i++)
++ {
++ nios2_register_byte_table[i] = offset;
++ offset += nios2_register_info_table[i].size;
++ }
++
++ for (i = NIOS2_MAX_REG_DISPLAYED_REGNUM + 1; i <= NIOS2_NUM_REGS; i++)
++ {
++ nios2_register_byte_table[i] = -1;
++ }
++
++}
+diff --git a/gdb/regformats/reg-nios2.dat b/gdb/regformats/reg-nios2.dat
+new file mode 100644
+index 0000000..77b39a9
+--- /dev/null
++++ b/gdb/regformats/reg-nios2.dat
+@@ -0,0 +1,46 @@
++name:nios2
++expedite:sp,fp,pc
++32:zero
++32:at
++32:r2
++32:r3
++32:r4
++32:r5
++32:r6
++32:r7
++32:r8
++32:r9
++32:r10
++32:r11
++32:r12
++32:r13
++32:r14
++32:r15
++32:r16
++32:r17
++32:r18
++32:r19
++32:r20
++32:r21
++32:r22
++32:r23
++32:et
++32:bt
++32:gp
++32:sp
++32:fp
++32:ea
++32:ba
++32:ra
++32:pc
++32:status
++32:estatus
++32:bstatus
++32:ienable
++32:ipending
++32:cpuid
++32:ctl6
++32:ctl7
++32:pteaddr
++32:tlbacc
++32:tlbmisc
+diff --git a/gdb/testsuite/config/nios2-iss.exp b/gdb/testsuite/config/nios2-iss.exp
+new file mode 100644
+index 0000000..624f831
+--- /dev/null
++++ b/gdb/testsuite/config/nios2-iss.exp
+@@ -0,0 +1,233 @@
++# Test framework for GDB (remote protocol) using a "gdbserver",
++# ie. a debug agent running as a native process on the same or
++# a different host.
++
++# Copyright 2000, 2002 Free Software Foundation, Inc.
++
++# This program is free software; you can redistribute it and/or modify
++# it under the terms of the GNU General Public License as published by
++# the Free Software Foundation; either version 2 of the License, or
++# (at your option) any later version.
++#
++# This program is distributed in the hope that it will be useful,
++# but WITHOUT ANY WARRANTY; without even the implied warranty of
++# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++# GNU General Public License for more details.
++#
++# You should have received a copy of the GNU General Public License
++# along with this program; if not, write to the Free Software
++# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++
++# Please email any bugs, comments, and/or additions to this file to:
++# bug-gdb@prep.ai.mit.edu
++
++# This file was written by Michael Snyder. (msnyder@redhat.com)
++
++#
++# This module to be used for testing gdb with a "gdbserver"
++# built either from libremote or from gdb/gdbserver.
++#
++
++# Load the basic testing library, and the remote stuff.
++load_lib ../config/monitor.exp
++
++#
++# To be addressed or set in your baseboard config file:
++#
++# set_board_info gdb_protocol "remote"
++# Unles you have a gdbserver that uses a different protocol...
++#
++# set_board_info use_gdb_stub 1
++# This tells the rest of the test suite not to do things
++# like "run" which don't work well on remote targets.
++#
++# set_board_info gdb,do_reload_on_run 1
++# Unles you have a gdbserver that can handle multiple sessions.
++#
++# set_board_info noargs 1
++# At present there is no provision in the remote protocol
++# for passing arguments. This test framework does not
++# address the issue, so it's best to set this variable
++# in your baseboard configuration file.
++# FIXME: there's no reason why the test harness couldn't
++# pass commandline args when it spawns gdbserver.
++#
++# set_board_info gdb,noinferiorio 1
++# Neither the traditional gdbserver nor the one in libremote
++# can presently capture stdout and relay it to GDB via the
++# 'O' packet. This means that tests involving printf will
++# fail unles you set this varibale in your baseboard
++# configuration file.
++#
++# set_board_info gdb,no_hardware_watchpoints 1
++# Unles you have a gdbserver that supports hardware watchpoints.
++# FIXME: gdb should detect if the target doesn't support them,
++# and fall back to using software watchpoints.
++#
++# set_board_info gdb_server_prog
++# This will be the path to the gdbserver program you want to test.
++# Defaults to "gdbserver".
++#
++# set_board_info sockethost
++# The name of the host computer whose socket is being used.
++# Defaults to "localhost". Note: old gdbserver requires
++# that you define this, but libremote/gdbserver does not.
++#
++# set_board_info socketport
++# Port id to use for socket connection. If not set explicitly,
++# it will start at "9996" and increment for each use.
++#
++
++
++
++#
++# gdb_load -- load a file into the debugger.
++# return a -1 if anything goes wrong.
++#
++
++global server_exec;
++global portnum;
++set portnum "9996";
++
++proc gdb_load { arg } {
++ global host_exec;
++ global server_exec;
++ global portnum;
++ global verbose;
++ global gdb_prompt;
++
++ regsub "/cygdrive/c" $arg "c:" arg
++ regsub "/cygdrive/d" $arg "d:" arg
++ regsub "/cygdrive/e" $arg "e:" arg
++ regsub "/cygdrive/q" $arg "q:" arg
++ regsub "/cygdrive/r" $arg "r:" arg
++
++ # Always kill and restart quest (or try to before loading)
++ slay quest
++ slay gdb
++
++ # Port id -- either specified in baseboard file, or managed here.
++ if [target_info exists gdb,socketport] {
++ set portnum [target_info gdb,socketport];
++ } else {
++ # Bump the port number to avoid conflicts with hung ports.
++ incr portnum;
++ }
++
++ verbose "gdb_load : portnum = $portnum arg = $arg"
++ # Extract the local and remote host ids from the target board struct.
++
++ if [target_info exists sockethost] {
++ set debughost [target_info sockethost];
++ } else {
++ set debughost "localhost:";
++ }
++ # Extract the protocol
++ if [target_info exists gdb_protocol] {
++ set protocol [target_info gdb_protocol];
++ } else {
++ set protocol "remote";
++ }
++
++ # Extract the name of the gdbserver, if known (default 'gdbserver').
++ if [target_info exists gdb_server_prog] {
++ set gdbserver [target_info gdb_server_prog];
++ } else {
++ set gdbserver "gdbserver";
++ }
++
++ verbose "gdbserver is set to $gdbserver"
++ # Extract the socket hostname
++ if [target_info exists sockethost] {
++ set sockethost [target_info sockethost];
++ } else {
++ set sockethost ""
++ }
++
++ # Export the host:port pair.
++ set gdbport $debughost$portnum;
++ verbose "gdbport is now $gdbport"
++ # Remember new exec file.
++ if { $arg == "" } {
++ if { ! [info exists host_exec] } {
++ send_gdb "info files\n";
++ gdb_expect 30 {
++ -re "Symbols from \"(\[^\"\]+)\"" {
++ set host_exec $expect_out(1,string);
++ exp_continue;
++ }
++ -re "Local exec file:\[\r\n\]+\[ \t\]*`(\[^'\]+)'," {
++ set host_exec $expect_out(1,string);
++ exp_continue;
++ }
++ -re "$gdb_prompt $" { }
++ }
++ }
++ } else {
++ set host_exec $arg
++ if [info exists server_exec] { unset server_exec }
++ }
++
++ # Fire off the debug agent
++ if [target_info exists gdb_server_args] {
++ # This flavour of gdbserver takes as arguments those specified
++ # in the board configuration file
++ set custom_args [target_info gdb_server_args];
++ set launch_return [eval remote_spawn host \{ $gdbserver $custom_args \} $arg ]
++ verbose "spawned $gdbserver $custom_args $arg with return code $launch_return"
++ } else {
++ # This flavour of gdbserver takes as arguments the port information
++ # and the name of the executable file to be debugged.
++ set server_spawn_id [remote_spawn target\
++ "$gdbserver $sockethost$portnum "]
++ verbose "remote_spawn $gdbserver $sockethost$portnum"
++ }
++
++ # We can't call close, because if gdbserver is local then that means
++ # that it will get a SIGHUP.
++ ## close -i $server_spawn_id
++ #wait -nowait -i $server_spawn_id
++
++ # Give it a little time to establish
++ sleep 1
++
++ # tell gdb what file we are debugging
++ if { $arg != "" } {
++ if [gdb_file_cmd $arg] {
++ return -1;
++ }
++ }
++ verbose "gdb_file_cmd has been called with $arg"
++
++ # attach to the "serial port"
++ gdb_target_cmd $protocol $gdbport;
++
++ # do the real load if needed
++ if [target_info exists gdb_server_do_load] {
++ send_gdb "load\n"
++ set timeout 2400
++ verbose "Timeout is now $timeout seconds" 2
++ gdb_expect {
++ -re ".*$gdb_prompt $" {
++ if $verbose>1 then {
++ send_user "Loaded $arg into $GDB\n"
++ }
++ set timeout 30
++ verbose "Timeout is now $timeout seconds" 2
++ return 1
++ }
++ -re "$gdb_prompt $" {
++ if $verbose>1 then {
++ perror "GDB couldn't load."
++ }
++ }
++ timeout {
++ if $verbose>1 then {
++ perror "Timed out trying to load $arg."
++ }
++ }
++ }
++ }
++
++ return 0;
++}
+diff --git a/include/dis-asm.h b/include/dis-asm.h
+index af48e85..e3d84ab 100644
+--- a/include/dis-asm.h
++++ b/include/dis-asm.h
+@@ -280,6 +280,8 @@ extern int print_insn_xtensa (bfd_vma, disassemble_info *);
+ extern int print_insn_z80 (bfd_vma, disassemble_info *);
+ extern int print_insn_z8001 (bfd_vma, disassemble_info *);
+ extern int print_insn_z8002 (bfd_vma, disassemble_info *);
++extern int print_insn_little_nios2 (bfd_vma, disassemble_info *);
++extern int print_insn_big_nios2 (bfd_vma, disassemble_info *);
+
+ extern disassembler_ftype arc_get_disassembler (void *);
+ extern disassembler_ftype cris_get_disassembler (bfd *);
+diff --git a/include/elf/nios2.h b/include/elf/nios2.h
+new file mode 100644
+index 0000000..ef810c5
+--- /dev/null
++++ b/include/elf/nios2.h
+@@ -0,0 +1,65 @@
++/* Altera New Jersey ELF support for BFD
++
++ Copyright (C) 2003
++ by Nigel Gray (ngray@altera.com).
++
++This file is part of BFD, the Binary File Descriptor library.
++
++This program is free software; you can redistribute it and/or modify
++it under the terms of the GNU General Public License as published by
++the Free Software Foundation; either version 2 of the License, or
++(at your option) any later version.
++
++This program is distributed in the hope that it will be useful,
++but WITHOUT ANY WARRANTY; without even the implied warranty of
++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with this program; if not, write to the Free Software
++Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++/* This file holds definitions specific to the Altera New Jersey ELF ABI. Note
++ that most of this is not actually implemented by BFD. */
++
++#ifndef _ELF_NIOS2_H
++#define _ELF_NIOS2_H
++
++#include "elf/reloc-macros.h"
++
++/* the order of these numbers must match the order in
++ the elf_nios2_howto_table_rel table for the lookup
++ function to work properly */
++
++START_RELOC_NUMBERS (elf_nios2_reloc_type)
++ RELOC_NUMBER (R_NIOS2_NONE, 0)
++ RELOC_NUMBER (R_NIOS2_S16, 1)
++ RELOC_NUMBER (R_NIOS2_U16, 2)
++ RELOC_NUMBER (R_NIOS2_PCREL16, 3)
++ RELOC_NUMBER (R_NIOS2_CALL26, 4)
++ RELOC_NUMBER (R_NIOS2_IMM5, 5)
++ RELOC_NUMBER (R_NIOS2_CACHE_OPX, 6)
++ RELOC_NUMBER (R_NIOS2_IMM6, 7)
++ RELOC_NUMBER (R_NIOS2_IMM8, 8)
++ RELOC_NUMBER (R_NIOS2_HI16, 9)
++ RELOC_NUMBER (R_NIOS2_LO16, 10)
++ RELOC_NUMBER (R_NIOS2_HIADJ16, 11)
++ RELOC_NUMBER (R_NIOS2_BFD_RELOC_32, 12)
++ RELOC_NUMBER (R_NIOS2_BFD_RELOC_16, 13)
++ RELOC_NUMBER (R_NIOS2_BFD_RELOC_8, 14)
++ RELOC_NUMBER (R_NIOS2_GPREL, 15)
++ RELOC_NUMBER (R_NIOS2_GNU_VTINHERIT, 16)
++ RELOC_NUMBER (R_NIOS2_GNU_VTENTRY, 17)
++ RELOC_NUMBER (R_NIOS2_UJMP, 18)
++ RELOC_NUMBER (R_NIOS2_CJMP, 19)
++ RELOC_NUMBER (R_NIOS2_CALLR, 20)
++ RELOC_NUMBER (R_NIOS2_ALIGN, 21)
++ RELOC_NUMBER (R_NIOS2_ILLEGAL, 22)
++END_RELOC_NUMBERS (R_NIOS2_maxext)
++
++/* Processor specific section flags */
++
++/* This is used to mark gp-relative sections */
++#define SHF_NIOS2_GPREL 0x10000000
++
++#endif //_ELF_NIOS2_H
+diff --git a/include/opcode/nios2-isa.h b/include/opcode/nios2-isa.h
+new file mode 100644
+index 0000000..0023880
+--- /dev/null
++++ b/include/opcode/nios2-isa.h
+@@ -0,0 +1,1860 @@
++/*
++ * This file defines Nios II instruction set constants.
++ * To include it in assembly code (.S file), define ALT_ASM_SRC
++ * before including this file.
++ *
++ * This file is automatically generated by gen_isa.pl - do not edit
++ */
++
++#ifndef _NIOS2_ISA_H_
++#define _NIOS2_ISA_H_
++
++/* OP instruction opcode values (index is OP field) */
++#define NUM_OP_INSTS 64
++
++#ifndef ALT_ASM_SRC
++extern const char* op_names[NUM_OP_INSTS];
++#endif /* ALT_ASM_SRC */
++
++/* OPX instruction opcode values (index is OPX field) */
++#define NUM_OPX_INSTS 64
++
++#ifndef ALT_ASM_SRC
++extern const char* opx_names[NUM_OPX_INSTS];
++#endif /* ALT_ASM_SRC */
++
++/* Constants for instruction fields and ISA */
++#define CPU_RESET_EXC_ID 1
++#define DIV_ERROR_EXC_ID 9
++#define DTLB_MISS_EXC_ID 15
++#define DTLB_PERM_EXC_ID 16
++#define FAST_INTR_EXC_ID 3
++#define HBREAK_EXC_ID 0
++#define ITLB_MISS_EXC_ID 13
++#define ITLB_PERM_EXC_ID 14
++#define MISALIGNED_DATA_ADDR_EXC_ID 7
++#define MISALIGNED_TARGET_PC_EXC_ID 8
++#define NMI_EXC_ID 2
++#define NORM_INTR_EXC_ID 4
++#define SBREAK_EXC_ID 6
++#define SLAVE_DATA_ACCESS_ERROR_EXC_ID 18
++#define SLAVE_INST_ACCESS_ERROR_EXC_ID 17
++#define SUPERVISOR_DATA_ADDR_EXC_ID 12
++#define SUPERVISOR_INST_ADDR_EXC_ID 10
++#define SUPERVISOR_INST_EXC_ID 11
++#define TRAP_EXC_ID 5
++#define AT_REGNUM 1
++#define BRETADDR_REGNUM 30
++#define BSTATUS_REG_LSB 2
++#define BSTATUS_REG_MMU_LSB 0
++#define BSTATUS_REG_MMU_MSB 2
++#define BSTATUS_REG_MMU_SZ 3
++#define BSTATUS_REG_MMU_MASK 0x7
++#define BSTATUS_REG_NO_MMU_LSB 0
++#define BSTATUS_REG_NO_MMU_MSB 0
++#define BSTATUS_REG_NO_MMU_SZ 1
++#define BSTATUS_REG_NO_MMU_MASK 0x1
++#define BSTATUS_REG_REGNUM 2
++#define BSTATUS_REG_SZ 3
++#define BSTATUS_REG_MASK 0x7
++#define BT_REGNUM 25
++#define CACHE_MAX_BYTES 65536
++#define CACHE_MAX_LINE_BYTES 32
++#define CACHE_MIN_LINE_BYTES 4
++#define COMPARE_OP_EQ 0x0
++#define COMPARE_OP_GE 0x1
++#define COMPARE_OP_LSB 3
++#define COMPARE_OP_LT 0x2
++#define COMPARE_OP_MSB 4
++#define COMPARE_OP_NE 0x3
++#define COMPARE_OP_SZ 2
++#define COMPARE_OP_MASK 0x3
++#define CPUID_REG_LSB 0
++#define CPUID_REG_MSB 31
++#define CPUID_REG_REGNUM 5
++#define CPUID_REG_SZ 32
++#define CPUID_REG_MASK 0xffffffff
++#define DATAPATH_LOG2_SZ 5
++#define DATAPATH_LOG2_MASK 0x1f
++#define DATAPATH_LSB 0
++#define DATAPATH_MSB 31
++#define DATAPATH_SZ 32
++#define DATAPATH_MASK 0xffffffff
++#define EMPTY_CRST_IW 127034
++#define EMPTY_HBREAK_IW 4040762
++#define EMPTY_INTR_IW 3926074
++#define EMPTY_NOP_IW 100410
++#define EMPTY_RET_IW 4160759866
++#define ERETADDR_REGNUM 29
++#define ESTATUS_REG_LSB 0
++#define ESTATUS_REG_MMU_LSB 0
++#define ESTATUS_REG_MMU_MSB 2
++#define ESTATUS_REG_MMU_SZ 3
++#define ESTATUS_REG_MMU_MASK 0x7
++#define ESTATUS_REG_MSB 2
++#define ESTATUS_REG_NO_MMU_LSB 0
++#define ESTATUS_REG_NO_MMU_MSB 0
++#define ESTATUS_REG_NO_MMU_SZ 1
++#define ESTATUS_REG_NO_MMU_MASK 0x1
++#define ESTATUS_REG_REGNUM 1
++#define ESTATUS_REG_SZ 3
++#define ESTATUS_REG_MASK 0x7
++#define ET_REGNUM 24
++#define EXCEPTION_REG_LSB 0
++#define EXCEPTION_REG_MEA_LSB 0
++#define EXCEPTION_REG_MEA_MSB 0
++#define EXCEPTION_REG_MEA_SZ 1
++#define EXCEPTION_REG_MEA_MASK 0x1
++#define EXCEPTION_REG_MEE_LSB 1
++#define EXCEPTION_REG_MEE_MSB 1
++#define EXCEPTION_REG_MEE_SZ 1
++#define EXCEPTION_REG_MEE_MASK 0x1
++#define EXCEPTION_REG_MSB 1
++#define EXCEPTION_REG_REGNUM 7
++#define EXCEPTION_REG_SZ 2
++#define EXCEPTION_REG_MASK 0x3
++#define FP_REGNUM 28
++#define FSTATUS_REG_REGNUM 11
++#define GP_REGNUM 26
++#define IENABLE_REG_LSB 0
++#define IENABLE_REG_MSB 31
++#define IENABLE_REG_REGNUM 3
++#define IENABLE_REG_SZ 32
++#define IENABLE_REG_MASK 0xffffffff
++#define IPENDING_REG_LSB 0
++#define IPENDING_REG_MSB 31
++#define IPENDING_REG_REGNUM 4
++#define IPENDING_REG_SZ 32
++#define IPENDING_REG_MASK 0xffffffff
++#define IW_A_LSB 27
++#define IW_A_MSB 31
++#define IW_A_SZ 5
++#define IW_A_MASK 0x1f
++#define IW_B_LSB 22
++#define IW_B_MSB 26
++#define IW_B_SZ 5
++#define IW_B_MASK 0x1f
++#define IW_C_LSB 17
++#define IW_C_MSB 21
++#define IW_C_SZ 5
++#define IW_C_MASK 0x1f
++#define IW_CONTROL_REGNUM_BASE 0
++#define IW_CONTROL_REGNUM_LSB 6
++#define IW_CONTROL_REGNUM_MSB 9
++#define IW_CONTROL_REGNUM_SZ 4
++#define IW_CONTROL_REGNUM_MASK 0xf
++#define IW_CUSTOM_N_LSB 6
++#define IW_CUSTOM_N_MSB 13
++#define IW_CUSTOM_N_SZ 8
++#define IW_CUSTOM_N_MASK 0xff
++#define IW_CUSTOM_READRA_LSB 16
++#define IW_CUSTOM_READRA_MSB 16
++#define IW_CUSTOM_READRA_SZ 1
++#define IW_CUSTOM_READRA_MASK 0x1
++#define IW_CUSTOM_READRB_LSB 15
++#define IW_CUSTOM_READRB_MSB 15
++#define IW_CUSTOM_READRB_SZ 1
++#define IW_CUSTOM_READRB_MASK 0x1
++#define IW_CUSTOM_WRITERC_LSB 14
++#define IW_CUSTOM_WRITERC_MSB 14
++#define IW_CUSTOM_WRITERC_SZ 1
++#define IW_CUSTOM_WRITERC_MASK 0x1
++#define IW_IMM16_LSB 6
++#define IW_IMM16_MSB 21
++#define IW_IMM16_SZ 16
++#define IW_IMM16_MASK 0xffff
++#define IW_IMM26_LSB 6
++#define IW_IMM26_MSB 31
++#define IW_IMM26_SZ 26
++#define IW_IMM26_MASK 0x3ffffff
++#define IW_MEMSZ_BYTE 0x0
++#define IW_MEMSZ_HWORD 0x1
++#define IW_MEMSZ_LSB 3
++#define IW_MEMSZ_MSB 4
++#define IW_MEMSZ_SZ 2
++#define IW_MEMSZ_MASK 0x3
++#define IW_MEMSZ_WORD 0x2
++#define IW_MEMSZ_WORD_MSB 0x1
++#define IW_OP_LSB 0
++#define IW_OP_MSB 5
++#define IW_OP_SZ 6
++#define IW_OP_MASK 0x3f
++#define IW_OPX_LSB 11
++#define IW_OPX_MSB 16
++#define IW_OPX_SZ 6
++#define IW_OPX_MASK 0x3f
++#define IW_SHIFT_IMM5_LSB 6
++#define IW_SHIFT_IMM5_MSB 10
++#define IW_SHIFT_IMM5_SZ 5
++#define IW_SHIFT_IMM5_MASK 0x1f
++#define IW_SZ 32
++#define IW_MASK 0xffffffff
++#define IW_TRAP_BREAK_IMM5_LSB 6
++#define IW_TRAP_BREAK_IMM5_MSB 10
++#define IW_TRAP_BREAK_IMM5_SZ 5
++#define IW_TRAP_BREAK_IMM5_MASK 0x1f
++#define JMP_CALLR_VS_RET_IS_RET 0
++#define JMP_CALLR_VS_RET_OPX_BIT 3
++#define LOGIC_OP_AND 0x1
++#define LOGIC_OP_LSB 3
++#define LOGIC_OP_MSB 4
++#define LOGIC_OP_NOR 0x0
++#define LOGIC_OP_OR 0x2
++#define LOGIC_OP_SZ 2
++#define LOGIC_OP_MASK 0x3
++#define LOGIC_OP_XOR 0x3
++#define MMU_ADDR_BYPASS_TLB 0x3
++#define MMU_ADDR_BYPASS_TLB_CACHEABLE 0x0
++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB 29
++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_MSB 29
++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_SZ 1
++#define MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK 0x1
++#define MMU_ADDR_BYPASS_TLB_LSB 30
++#define MMU_ADDR_BYPASS_TLB_MSB 31
++#define MMU_ADDR_BYPASS_TLB_PADDR_LSB 0
++#define MMU_ADDR_BYPASS_TLB_PADDR_MSB 28
++#define MMU_ADDR_BYPASS_TLB_PADDR_SZ 29
++#define MMU_ADDR_BYPASS_TLB_PADDR_MASK 0x1fffffff
++#define MMU_ADDR_BYPASS_TLB_SZ 2
++#define MMU_ADDR_BYPASS_TLB_MASK 0x3
++#define MMU_ADDR_IO_REGION 0x7
++#define MMU_ADDR_IO_REGION_LSB 29
++#define MMU_ADDR_IO_REGION_MSB 31
++#define MMU_ADDR_IO_REGION_SZ 3
++#define MMU_ADDR_IO_REGION_MASK 0x7
++#define MMU_ADDR_IO_REGION_VPN 0xe0000
++#define MMU_ADDR_KERNEL_MMU_REGION 0x2
++#define MMU_ADDR_KERNEL_MMU_REGION_LSB 30
++#define MMU_ADDR_KERNEL_MMU_REGION_MSB 31
++#define MMU_ADDR_KERNEL_MMU_REGION_SZ 2
++#define MMU_ADDR_KERNEL_MMU_REGION_MASK 0x3
++#define MMU_ADDR_KERNEL_REGION 0x6
++#define MMU_ADDR_KERNEL_REGION_INT 6
++#define MMU_ADDR_KERNEL_REGION_LSB 29
++#define MMU_ADDR_KERNEL_REGION_MSB 31
++#define MMU_ADDR_KERNEL_REGION_SZ 3
++#define MMU_ADDR_KERNEL_REGION_MASK 0x7
++#define MMU_ADDR_PAGE_OFFSET_LSB 0
++#define MMU_ADDR_PAGE_OFFSET_MSB 11
++#define MMU_ADDR_PAGE_OFFSET_SZ 12
++#define MMU_ADDR_PAGE_OFFSET_MASK 0xfff
++#define MMU_ADDR_PFN_LSB 12
++#define MMU_ADDR_PFN_MSB 31
++#define MMU_ADDR_PFN_SZ 20
++#define MMU_ADDR_PFN_MASK 0xfffff
++#define MMU_ADDR_USER_REGION 0x0
++#define MMU_ADDR_USER_REGION_LSB 31
++#define MMU_ADDR_USER_REGION_MSB 31
++#define MMU_ADDR_USER_REGION_SZ 1
++#define MMU_ADDR_USER_REGION_MASK 0x1
++#define MMU_ADDR_VPN_LSB 12
++#define MMU_ADDR_VPN_MSB 31
++#define MMU_ADDR_VPN_SZ 20
++#define MMU_ADDR_VPN_MASK 0xfffff
++#define PTEADDR_REG_LSB 0
++#define PTEADDR_REG_MSB 31
++#define PTEADDR_REG_PTBASE_LSB 22
++#define PTEADDR_REG_PTBASE_MSB 31
++#define PTEADDR_REG_PTBASE_SZ 10
++#define PTEADDR_REG_PTBASE_MASK 0x3ff
++#define PTEADDR_REG_REGNUM 8
++#define PTEADDR_REG_RSV_LSB 0
++#define PTEADDR_REG_RSV_MSB 1
++#define PTEADDR_REG_RSV_SZ 2
++#define PTEADDR_REG_RSV_MASK 0x3
++#define PTEADDR_REG_SZ 32
++#define PTEADDR_REG_MASK 0xffffffff
++#define PTEADDR_REG_VPN_LSB 2
++#define PTEADDR_REG_VPN_MSB 21
++#define PTEADDR_REG_VPN_SZ 20
++#define PTEADDR_REG_VPN_MASK 0xfffff
++#define REGNUM_SZ 5
++#define REGNUM_MASK 0x1f
++#define RETADDR_REGNUM 31
++#define RF_ADDR_SZ 5
++#define RF_ADDR_MASK 0x1f
++#define RF_NUM_REG 32
++#define SIM_REG_LSB 0
++#define SIM_REG_MSB 3
++#define SIM_REG_PERF_CNT_CLR_LSB 2
++#define SIM_REG_PERF_CNT_CLR_MSB 2
++#define SIM_REG_PERF_CNT_CLR_SZ 1
++#define SIM_REG_PERF_CNT_CLR_MASK 0x1
++#define SIM_REG_PERF_CNT_EN_LSB 1
++#define SIM_REG_PERF_CNT_EN_MSB 1
++#define SIM_REG_PERF_CNT_EN_SZ 1
++#define SIM_REG_PERF_CNT_EN_MASK 0x1
++#define SIM_REG_REGNUM 6
++#define SIM_REG_SHOW_DTLB_LSB 4
++#define SIM_REG_SHOW_DTLB_MSB 4
++#define SIM_REG_SHOW_DTLB_SZ 1
++#define SIM_REG_SHOW_DTLB_MASK 0x1
++#define SIM_REG_SHOW_ITLB_LSB 3
++#define SIM_REG_SHOW_ITLB_MSB 3
++#define SIM_REG_SHOW_ITLB_SZ 1
++#define SIM_REG_SHOW_ITLB_MASK 0x1
++#define SIM_REG_SHOW_MMU_REGS_LSB 5
++#define SIM_REG_SHOW_MMU_REGS_MSB 5
++#define SIM_REG_SHOW_MMU_REGS_SZ 1
++#define SIM_REG_SHOW_MMU_REGS_MASK 0x1
++#define SIM_REG_STOP_LSB 0
++#define SIM_REG_STOP_MSB 0
++#define SIM_REG_STOP_SZ 1
++#define SIM_REG_STOP_MASK 0x1
++#define SIM_REG_SZ 4
++#define SIM_REG_MASK 0xf
++#define SP_REGNUM 27
++#define STATUS_REG_EH_LSB 2
++#define STATUS_REG_EH_MSB 2
++#define STATUS_REG_EH_SZ 1
++#define STATUS_REG_EH_MASK 0x1
++#define STATUS_REG_LSB 0
++#define STATUS_REG_MMU_LSB 0
++#define STATUS_REG_MMU_MSB 2
++#define STATUS_REG_MMU_RSV_LSB 3
++#define STATUS_REG_MMU_RSV_MSB 31
++#define STATUS_REG_MMU_RSV_SZ 29
++#define STATUS_REG_MMU_RSV_MASK 0x1fffffff
++#define STATUS_REG_MMU_SZ 3
++#define STATUS_REG_MMU_MASK 0x7
++#define STATUS_REG_MSB 2
++#define STATUS_REG_NO_MMU_LSB 0
++#define STATUS_REG_NO_MMU_MSB 0
++#define STATUS_REG_NO_MMU_RSV_LSB 1
++#define STATUS_REG_NO_MMU_RSV_MSB 31
++#define STATUS_REG_NO_MMU_RSV_SZ 31
++#define STATUS_REG_NO_MMU_RSV_MASK 0x7fffffff
++#define STATUS_REG_NO_MMU_SZ 1
++#define STATUS_REG_NO_MMU_MASK 0x1
++#define STATUS_REG_PIE_LSB 0
++#define STATUS_REG_PIE_MSB 0
++#define STATUS_REG_PIE_SZ 1
++#define STATUS_REG_PIE_MASK 0x1
++#define STATUS_REG_REGNUM 0
++#define STATUS_REG_SZ 3
++#define STATUS_REG_MASK 0x7
++#define STATUS_REG_U_LSB 1
++#define STATUS_REG_U_MSB 1
++#define STATUS_REG_U_SZ 1
++#define STATUS_REG_U_MASK 0x1
++#define TLB_MAX_ENTRIES 1024
++#define TLB_MAX_LINES 512
++#define TLB_MAX_PID_SZ 14
++#define TLB_MAX_PID_MASK 0x3fff
++#define TLB_MAX_PTR_SZ 10
++#define TLB_MAX_PTR_MASK 0x3ff
++#define TLB_MAX_WAYS 8
++#define TLB_MIN_PID_SZ 1
++#define TLB_MIN_PID_MASK 0x1
++#define TLB_MIN_PTR_SZ 7
++#define TLB_MIN_PTR_MASK 0x7f
++#define TLB_MIN_WAYS 2
++#define TLBACC_REG_C_LSB 24
++#define TLBACC_REG_C_MSB 24
++#define TLBACC_REG_C_SZ 1
++#define TLBACC_REG_C_MASK 0x1
++#define TLBACC_REG_G_LSB 20
++#define TLBACC_REG_G_MSB 20
++#define TLBACC_REG_G_SZ 1
++#define TLBACC_REG_G_MASK 0x1
++#define TLBACC_REG_IG_LSB 25
++#define TLBACC_REG_IG_MSB 31
++#define TLBACC_REG_IG_SZ 7
++#define TLBACC_REG_IG_MASK 0x7f
++#define TLBACC_REG_LSB 0
++#define TLBACC_REG_MSB 24
++#define TLBACC_REG_PFN_LSB 0
++#define TLBACC_REG_PFN_MSB 19
++#define TLBACC_REG_PFN_SZ 20
++#define TLBACC_REG_PFN_MASK 0xfffff
++#define TLBACC_REG_R_LSB 23
++#define TLBACC_REG_R_MSB 23
++#define TLBACC_REG_R_SZ 1
++#define TLBACC_REG_R_MASK 0x1
++#define TLBACC_REG_REGNUM 9
++#define TLBACC_REG_SZ 25
++#define TLBACC_REG_MASK 0x1ffffff
++#define TLBACC_REG_W_LSB 22
++#define TLBACC_REG_W_MSB 22
++#define TLBACC_REG_W_SZ 1
++#define TLBACC_REG_W_MASK 0x1
++#define TLBACC_REG_X_LSB 21
++#define TLBACC_REG_X_MSB 21
++#define TLBACC_REG_X_SZ 1
++#define TLBACC_REG_X_MASK 0x1
++#define TLBMISC_REG_BAD_LSB 2
++#define TLBMISC_REG_BAD_MSB 2
++#define TLBMISC_REG_BAD_SZ 1
++#define TLBMISC_REG_BAD_MASK 0x1
++#define TLBMISC_REG_D_LSB 0
++#define TLBMISC_REG_D_MSB 0
++#define TLBMISC_REG_D_SZ 1
++#define TLBMISC_REG_D_MASK 0x1
++#define TLBMISC_REG_DBL_LSB 3
++#define TLBMISC_REG_DBL_MSB 3
++#define TLBMISC_REG_DBL_SZ 1
++#define TLBMISC_REG_DBL_MASK 0x1
++#define TLBMISC_REG_LSB 0
++#define TLBMISC_REG_MSB 23
++#define TLBMISC_REG_PERM_LSB 1
++#define TLBMISC_REG_PERM_MSB 1
++#define TLBMISC_REG_PERM_SZ 1
++#define TLBMISC_REG_PERM_MASK 0x1
++#define TLBMISC_REG_PID_LSB 4
++#define TLBMISC_REG_PID_MSB 17
++#define TLBMISC_REG_PID_SZ 14
++#define TLBMISC_REG_PID_MASK 0x3fff
++#define TLBMISC_REG_RD_LSB 24
++#define TLBMISC_REG_RD_MSB 24
++#define TLBMISC_REG_RD_SZ 1
++#define TLBMISC_REG_RD_MASK 0x1
++#define TLBMISC_REG_REGNUM 10
++#define TLBMISC_REG_RSV0_LSB 18
++#define TLBMISC_REG_RSV0_MSB 19
++#define TLBMISC_REG_RSV0_SZ 2
++#define TLBMISC_REG_RSV0_MASK 0x3
++#define TLBMISC_REG_RSV1_LSB 25
++#define TLBMISC_REG_RSV1_MSB 31
++#define TLBMISC_REG_RSV1_SZ 7
++#define TLBMISC_REG_RSV1_MASK 0x7f
++#define TLBMISC_REG_SZ 24
++#define TLBMISC_REG_MASK 0xffffff
++#define TLBMISC_REG_WAY_LSB 20
++#define TLBMISC_REG_WAY_MSB 22
++#define TLBMISC_REG_WAY_SZ 3
++#define TLBMISC_REG_WAY_MASK 0x7
++#define TLBMISC_REG_WE_LSB 23
++#define TLBMISC_REG_WE_MSB 23
++#define TLBMISC_REG_WE_SZ 1
++#define TLBMISC_REG_WE_MASK 0x1
++
++/* Macros to extract instruction fields */
++#define GET_IW_A(Iw) \
++ (((Iw) >> IW_A_LSB) & IW_A_MASK)
++#define SET_IW_A(Iw, Val) \
++ Iw = (((Iw) & (~(IW_A_MASK << IW_A_LSB))) | \
++ (((Val) & IW_A_MASK) << IW_A_LSB))
++#define GET_IW_B(Iw) \
++ (((Iw) >> IW_B_LSB) & IW_B_MASK)
++#define SET_IW_B(Iw, Val) \
++ Iw = (((Iw) & (~(IW_B_MASK << IW_B_LSB))) | \
++ (((Val) & IW_B_MASK) << IW_B_LSB))
++#define GET_IW_C(Iw) \
++ (((Iw) >> IW_C_LSB) & IW_C_MASK)
++#define SET_IW_C(Iw, Val) \
++ Iw = (((Iw) & (~(IW_C_MASK << IW_C_LSB))) | \
++ (((Val) & IW_C_MASK) << IW_C_LSB))
++#define GET_IW_CONTROL_REGNUM(Iw) \
++ (((Iw) >> IW_CONTROL_REGNUM_LSB) & IW_CONTROL_REGNUM_MASK)
++#define SET_IW_CONTROL_REGNUM(Iw, Val) \
++ Iw = (((Iw) & (~(IW_CONTROL_REGNUM_MASK << IW_CONTROL_REGNUM_LSB))) | \
++ (((Val) & IW_CONTROL_REGNUM_MASK) << IW_CONTROL_REGNUM_LSB))
++#define GET_IW_CUSTOM_N(Iw) \
++ (((Iw) >> IW_CUSTOM_N_LSB) & IW_CUSTOM_N_MASK)
++#define SET_IW_CUSTOM_N(Iw, Val) \
++ Iw = (((Iw) & (~(IW_CUSTOM_N_MASK << IW_CUSTOM_N_LSB))) | \
++ (((Val) & IW_CUSTOM_N_MASK) << IW_CUSTOM_N_LSB))
++#define GET_IW_CUSTOM_READRA(Iw) \
++ (((Iw) >> IW_CUSTOM_READRA_LSB) & IW_CUSTOM_READRA_MASK)
++#define SET_IW_CUSTOM_READRA(Iw, Val) \
++ Iw = (((Iw) & (~(IW_CUSTOM_READRA_MASK << IW_CUSTOM_READRA_LSB))) | \
++ (((Val) & IW_CUSTOM_READRA_MASK) << IW_CUSTOM_READRA_LSB))
++#define GET_IW_CUSTOM_READRB(Iw) \
++ (((Iw) >> IW_CUSTOM_READRB_LSB) & IW_CUSTOM_READRB_MASK)
++#define SET_IW_CUSTOM_READRB(Iw, Val) \
++ Iw = (((Iw) & (~(IW_CUSTOM_READRB_MASK << IW_CUSTOM_READRB_LSB))) | \
++ (((Val) & IW_CUSTOM_READRB_MASK) << IW_CUSTOM_READRB_LSB))
++#define GET_IW_CUSTOM_WRITERC(Iw) \
++ (((Iw) >> IW_CUSTOM_WRITERC_LSB) & IW_CUSTOM_WRITERC_MASK)
++#define SET_IW_CUSTOM_WRITERC(Iw, Val) \
++ Iw = (((Iw) & (~(IW_CUSTOM_WRITERC_MASK << IW_CUSTOM_WRITERC_LSB))) | \
++ (((Val) & IW_CUSTOM_WRITERC_MASK) << IW_CUSTOM_WRITERC_LSB))
++#define GET_IW_IMM16(Iw) \
++ (((Iw) >> IW_IMM16_LSB) & IW_IMM16_MASK)
++#define SET_IW_IMM16(Iw, Val) \
++ Iw = (((Iw) & (~(IW_IMM16_MASK << IW_IMM16_LSB))) | \
++ (((Val) & IW_IMM16_MASK) << IW_IMM16_LSB))
++#define GET_IW_IMM26(Iw) \
++ (((Iw) >> IW_IMM26_LSB) & IW_IMM26_MASK)
++#define SET_IW_IMM26(Iw, Val) \
++ Iw = (((Iw) & (~(IW_IMM26_MASK << IW_IMM26_LSB))) | \
++ (((Val) & IW_IMM26_MASK) << IW_IMM26_LSB))
++#define GET_IW_MEMSZ(Iw) \
++ (((Iw) >> IW_MEMSZ_LSB) & IW_MEMSZ_MASK)
++#define SET_IW_MEMSZ(Iw, Val) \
++ Iw = (((Iw) & (~(IW_MEMSZ_MASK << IW_MEMSZ_LSB))) | \
++ (((Val) & IW_MEMSZ_MASK) << IW_MEMSZ_LSB))
++#define GET_IW_OP(Iw) \
++ (((Iw) >> IW_OP_LSB) & IW_OP_MASK)
++#define SET_IW_OP(Iw, Val) \
++ Iw = (((Iw) & (~(IW_OP_MASK << IW_OP_LSB))) | \
++ (((Val) & IW_OP_MASK) << IW_OP_LSB))
++#define GET_IW_OPX(Iw) \
++ (((Iw) >> IW_OPX_LSB) & IW_OPX_MASK)
++#define SET_IW_OPX(Iw, Val) \
++ Iw = (((Iw) & (~(IW_OPX_MASK << IW_OPX_LSB))) | \
++ (((Val) & IW_OPX_MASK) << IW_OPX_LSB))
++#define GET_IW_SHIFT_IMM5(Iw) \
++ (((Iw) >> IW_SHIFT_IMM5_LSB) & IW_SHIFT_IMM5_MASK)
++#define SET_IW_SHIFT_IMM5(Iw, Val) \
++ Iw = (((Iw) & (~(IW_SHIFT_IMM5_MASK << IW_SHIFT_IMM5_LSB))) | \
++ (((Val) & IW_SHIFT_IMM5_MASK) << IW_SHIFT_IMM5_LSB))
++#define GET_IW_TRAP_BREAK_IMM5(Iw) \
++ (((Iw) >> IW_TRAP_BREAK_IMM5_LSB) & IW_TRAP_BREAK_IMM5_MASK)
++#define SET_IW_TRAP_BREAK_IMM5(Iw, Val) \
++ Iw = (((Iw) & (~(IW_TRAP_BREAK_IMM5_MASK << IW_TRAP_BREAK_IMM5_LSB))) | \
++ (((Val) & IW_TRAP_BREAK_IMM5_MASK) << IW_TRAP_BREAK_IMM5_LSB))
++
++/* Macros to extract control register fields */
++#define GET_BSTATUS_REG_MMU(Reg) \
++ (((Reg) >> BSTATUS_REG_MMU_LSB) & BSTATUS_REG_MMU_MASK)
++#define SET_BSTATUS_REG_MMU(Reg, Val) \
++ Reg = (((Reg) & (~(BSTATUS_REG_MMU_MASK << BSTATUS_REG_MMU_LSB))) | \
++ (((Val) & BSTATUS_REG_MMU_MASK) << BSTATUS_REG_MMU_LSB))
++#define GET_BSTATUS_REG_NO_MMU(Reg) \
++ (((Reg) >> BSTATUS_REG_NO_MMU_LSB) & BSTATUS_REG_NO_MMU_MASK)
++#define SET_BSTATUS_REG_NO_MMU(Reg, Val) \
++ Reg = (((Reg) & (~(BSTATUS_REG_NO_MMU_MASK << BSTATUS_REG_NO_MMU_LSB))) | \
++ (((Val) & BSTATUS_REG_NO_MMU_MASK) << BSTATUS_REG_NO_MMU_LSB))
++#define GET_ESTATUS_REG_MMU(Reg) \
++ (((Reg) >> ESTATUS_REG_MMU_LSB) & ESTATUS_REG_MMU_MASK)
++#define SET_ESTATUS_REG_MMU(Reg, Val) \
++ Reg = (((Reg) & (~(ESTATUS_REG_MMU_MASK << ESTATUS_REG_MMU_LSB))) | \
++ (((Val) & ESTATUS_REG_MMU_MASK) << ESTATUS_REG_MMU_LSB))
++#define GET_ESTATUS_REG_NO_MMU(Reg) \
++ (((Reg) >> ESTATUS_REG_NO_MMU_LSB) & ESTATUS_REG_NO_MMU_MASK)
++#define SET_ESTATUS_REG_NO_MMU(Reg, Val) \
++ Reg = (((Reg) & (~(ESTATUS_REG_NO_MMU_MASK << ESTATUS_REG_NO_MMU_LSB))) | \
++ (((Val) & ESTATUS_REG_NO_MMU_MASK) << ESTATUS_REG_NO_MMU_LSB))
++#define GET_EXCEPTION_REG_MEA(Reg) \
++ (((Reg) >> EXCEPTION_REG_MEA_LSB) & EXCEPTION_REG_MEA_MASK)
++#define SET_EXCEPTION_REG_MEA(Reg, Val) \
++ Reg = (((Reg) & (~(EXCEPTION_REG_MEA_MASK << EXCEPTION_REG_MEA_LSB))) | \
++ (((Val) & EXCEPTION_REG_MEA_MASK) << EXCEPTION_REG_MEA_LSB))
++#define GET_EXCEPTION_REG_MEE(Reg) \
++ (((Reg) >> EXCEPTION_REG_MEE_LSB) & EXCEPTION_REG_MEE_MASK)
++#define SET_EXCEPTION_REG_MEE(Reg, Val) \
++ Reg = (((Reg) & (~(EXCEPTION_REG_MEE_MASK << EXCEPTION_REG_MEE_LSB))) | \
++ (((Val) & EXCEPTION_REG_MEE_MASK) << EXCEPTION_REG_MEE_LSB))
++#define GET_PTEADDR_REG_PTBASE(Reg) \
++ (((Reg) >> PTEADDR_REG_PTBASE_LSB) & PTEADDR_REG_PTBASE_MASK)
++#define SET_PTEADDR_REG_PTBASE(Reg, Val) \
++ Reg = (((Reg) & (~(PTEADDR_REG_PTBASE_MASK << PTEADDR_REG_PTBASE_LSB))) | \
++ (((Val) & PTEADDR_REG_PTBASE_MASK) << PTEADDR_REG_PTBASE_LSB))
++#define GET_PTEADDR_REG_RSV(Reg) \
++ (((Reg) >> PTEADDR_REG_RSV_LSB) & PTEADDR_REG_RSV_MASK)
++#define SET_PTEADDR_REG_RSV(Reg, Val) \
++ Reg = (((Reg) & (~(PTEADDR_REG_RSV_MASK << PTEADDR_REG_RSV_LSB))) | \
++ (((Val) & PTEADDR_REG_RSV_MASK) << PTEADDR_REG_RSV_LSB))
++#define GET_PTEADDR_REG_VPN(Reg) \
++ (((Reg) >> PTEADDR_REG_VPN_LSB) & PTEADDR_REG_VPN_MASK)
++#define SET_PTEADDR_REG_VPN(Reg, Val) \
++ Reg = (((Reg) & (~(PTEADDR_REG_VPN_MASK << PTEADDR_REG_VPN_LSB))) | \
++ (((Val) & PTEADDR_REG_VPN_MASK) << PTEADDR_REG_VPN_LSB))
++#define GET_SIM_REG_PERF_CNT_CLR(Reg) \
++ (((Reg) >> SIM_REG_PERF_CNT_CLR_LSB) & SIM_REG_PERF_CNT_CLR_MASK)
++#define SET_SIM_REG_PERF_CNT_CLR(Reg, Val) \
++ Reg = (((Reg) & (~(SIM_REG_PERF_CNT_CLR_MASK << SIM_REG_PERF_CNT_CLR_LSB))) | \
++ (((Val) & SIM_REG_PERF_CNT_CLR_MASK) << SIM_REG_PERF_CNT_CLR_LSB))
++#define GET_SIM_REG_PERF_CNT_EN(Reg) \
++ (((Reg) >> SIM_REG_PERF_CNT_EN_LSB) & SIM_REG_PERF_CNT_EN_MASK)
++#define SET_SIM_REG_PERF_CNT_EN(Reg, Val) \
++ Reg = (((Reg) & (~(SIM_REG_PERF_CNT_EN_MASK << SIM_REG_PERF_CNT_EN_LSB))) | \
++ (((Val) & SIM_REG_PERF_CNT_EN_MASK) << SIM_REG_PERF_CNT_EN_LSB))
++#define GET_SIM_REG_SHOW_DTLB(Reg) \
++ (((Reg) >> SIM_REG_SHOW_DTLB_LSB) & SIM_REG_SHOW_DTLB_MASK)
++#define SET_SIM_REG_SHOW_DTLB(Reg, Val) \
++ Reg = (((Reg) & (~(SIM_REG_SHOW_DTLB_MASK << SIM_REG_SHOW_DTLB_LSB))) | \
++ (((Val) & SIM_REG_SHOW_DTLB_MASK) << SIM_REG_SHOW_DTLB_LSB))
++#define GET_SIM_REG_SHOW_ITLB(Reg) \
++ (((Reg) >> SIM_REG_SHOW_ITLB_LSB) & SIM_REG_SHOW_ITLB_MASK)
++#define SET_SIM_REG_SHOW_ITLB(Reg, Val) \
++ Reg = (((Reg) & (~(SIM_REG_SHOW_ITLB_MASK << SIM_REG_SHOW_ITLB_LSB))) | \
++ (((Val) & SIM_REG_SHOW_ITLB_MASK) << SIM_REG_SHOW_ITLB_LSB))
++#define GET_SIM_REG_SHOW_MMU_REGS(Reg) \
++ (((Reg) >> SIM_REG_SHOW_MMU_REGS_LSB) & SIM_REG_SHOW_MMU_REGS_MASK)
++#define SET_SIM_REG_SHOW_MMU_REGS(Reg, Val) \
++ Reg = (((Reg) & (~(SIM_REG_SHOW_MMU_REGS_MASK << SIM_REG_SHOW_MMU_REGS_LSB))) | \
++ (((Val) & SIM_REG_SHOW_MMU_REGS_MASK) << SIM_REG_SHOW_MMU_REGS_LSB))
++#define GET_SIM_REG_STOP(Reg) \
++ (((Reg) >> SIM_REG_STOP_LSB) & SIM_REG_STOP_MASK)
++#define SET_SIM_REG_STOP(Reg, Val) \
++ Reg = (((Reg) & (~(SIM_REG_STOP_MASK << SIM_REG_STOP_LSB))) | \
++ (((Val) & SIM_REG_STOP_MASK) << SIM_REG_STOP_LSB))
++#define GET_STATUS_REG_EH(Reg) \
++ (((Reg) >> STATUS_REG_EH_LSB) & STATUS_REG_EH_MASK)
++#define SET_STATUS_REG_EH(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_EH_MASK << STATUS_REG_EH_LSB))) | \
++ (((Val) & STATUS_REG_EH_MASK) << STATUS_REG_EH_LSB))
++#define GET_STATUS_REG_MMU(Reg) \
++ (((Reg) >> STATUS_REG_MMU_LSB) & STATUS_REG_MMU_MASK)
++#define SET_STATUS_REG_MMU(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_MMU_MASK << STATUS_REG_MMU_LSB))) | \
++ (((Val) & STATUS_REG_MMU_MASK) << STATUS_REG_MMU_LSB))
++#define GET_STATUS_REG_MMU_RSV(Reg) \
++ (((Reg) >> STATUS_REG_MMU_RSV_LSB) & STATUS_REG_MMU_RSV_MASK)
++#define SET_STATUS_REG_MMU_RSV(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_MMU_RSV_MASK << STATUS_REG_MMU_RSV_LSB))) | \
++ (((Val) & STATUS_REG_MMU_RSV_MASK) << STATUS_REG_MMU_RSV_LSB))
++#define GET_STATUS_REG_NO_MMU(Reg) \
++ (((Reg) >> STATUS_REG_NO_MMU_LSB) & STATUS_REG_NO_MMU_MASK)
++#define SET_STATUS_REG_NO_MMU(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_NO_MMU_MASK << STATUS_REG_NO_MMU_LSB))) | \
++ (((Val) & STATUS_REG_NO_MMU_MASK) << STATUS_REG_NO_MMU_LSB))
++#define GET_STATUS_REG_NO_MMU_RSV(Reg) \
++ (((Reg) >> STATUS_REG_NO_MMU_RSV_LSB) & STATUS_REG_NO_MMU_RSV_MASK)
++#define SET_STATUS_REG_NO_MMU_RSV(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_NO_MMU_RSV_MASK << STATUS_REG_NO_MMU_RSV_LSB))) | \
++ (((Val) & STATUS_REG_NO_MMU_RSV_MASK) << STATUS_REG_NO_MMU_RSV_LSB))
++#define GET_STATUS_REG_PIE(Reg) \
++ (((Reg) >> STATUS_REG_PIE_LSB) & STATUS_REG_PIE_MASK)
++#define SET_STATUS_REG_PIE(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_PIE_MASK << STATUS_REG_PIE_LSB))) | \
++ (((Val) & STATUS_REG_PIE_MASK) << STATUS_REG_PIE_LSB))
++#define GET_STATUS_REG_U(Reg) \
++ (((Reg) >> STATUS_REG_U_LSB) & STATUS_REG_U_MASK)
++#define SET_STATUS_REG_U(Reg, Val) \
++ Reg = (((Reg) & (~(STATUS_REG_U_MASK << STATUS_REG_U_LSB))) | \
++ (((Val) & STATUS_REG_U_MASK) << STATUS_REG_U_LSB))
++#define GET_TLBACC_REG_C(Reg) \
++ (((Reg) >> TLBACC_REG_C_LSB) & TLBACC_REG_C_MASK)
++#define SET_TLBACC_REG_C(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_C_MASK << TLBACC_REG_C_LSB))) | \
++ (((Val) & TLBACC_REG_C_MASK) << TLBACC_REG_C_LSB))
++#define GET_TLBACC_REG_G(Reg) \
++ (((Reg) >> TLBACC_REG_G_LSB) & TLBACC_REG_G_MASK)
++#define SET_TLBACC_REG_G(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_G_MASK << TLBACC_REG_G_LSB))) | \
++ (((Val) & TLBACC_REG_G_MASK) << TLBACC_REG_G_LSB))
++#define GET_TLBACC_REG_IG(Reg) \
++ (((Reg) >> TLBACC_REG_IG_LSB) & TLBACC_REG_IG_MASK)
++#define SET_TLBACC_REG_IG(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_IG_MASK << TLBACC_REG_IG_LSB))) | \
++ (((Val) & TLBACC_REG_IG_MASK) << TLBACC_REG_IG_LSB))
++#define GET_TLBACC_REG_PFN(Reg) \
++ (((Reg) >> TLBACC_REG_PFN_LSB) & TLBACC_REG_PFN_MASK)
++#define SET_TLBACC_REG_PFN(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_PFN_MASK << TLBACC_REG_PFN_LSB))) | \
++ (((Val) & TLBACC_REG_PFN_MASK) << TLBACC_REG_PFN_LSB))
++#define GET_TLBACC_REG_R(Reg) \
++ (((Reg) >> TLBACC_REG_R_LSB) & TLBACC_REG_R_MASK)
++#define SET_TLBACC_REG_R(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_R_MASK << TLBACC_REG_R_LSB))) | \
++ (((Val) & TLBACC_REG_R_MASK) << TLBACC_REG_R_LSB))
++#define GET_TLBACC_REG_W(Reg) \
++ (((Reg) >> TLBACC_REG_W_LSB) & TLBACC_REG_W_MASK)
++#define SET_TLBACC_REG_W(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_W_MASK << TLBACC_REG_W_LSB))) | \
++ (((Val) & TLBACC_REG_W_MASK) << TLBACC_REG_W_LSB))
++#define GET_TLBACC_REG_X(Reg) \
++ (((Reg) >> TLBACC_REG_X_LSB) & TLBACC_REG_X_MASK)
++#define SET_TLBACC_REG_X(Reg, Val) \
++ Reg = (((Reg) & (~(TLBACC_REG_X_MASK << TLBACC_REG_X_LSB))) | \
++ (((Val) & TLBACC_REG_X_MASK) << TLBACC_REG_X_LSB))
++#define GET_TLBMISC_REG_BAD(Reg) \
++ (((Reg) >> TLBMISC_REG_BAD_LSB) & TLBMISC_REG_BAD_MASK)
++#define SET_TLBMISC_REG_BAD(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_BAD_MASK << TLBMISC_REG_BAD_LSB))) | \
++ (((Val) & TLBMISC_REG_BAD_MASK) << TLBMISC_REG_BAD_LSB))
++#define GET_TLBMISC_REG_D(Reg) \
++ (((Reg) >> TLBMISC_REG_D_LSB) & TLBMISC_REG_D_MASK)
++#define SET_TLBMISC_REG_D(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_D_MASK << TLBMISC_REG_D_LSB))) | \
++ (((Val) & TLBMISC_REG_D_MASK) << TLBMISC_REG_D_LSB))
++#define GET_TLBMISC_REG_DBL(Reg) \
++ (((Reg) >> TLBMISC_REG_DBL_LSB) & TLBMISC_REG_DBL_MASK)
++#define SET_TLBMISC_REG_DBL(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_DBL_MASK << TLBMISC_REG_DBL_LSB))) | \
++ (((Val) & TLBMISC_REG_DBL_MASK) << TLBMISC_REG_DBL_LSB))
++#define GET_TLBMISC_REG_PERM(Reg) \
++ (((Reg) >> TLBMISC_REG_PERM_LSB) & TLBMISC_REG_PERM_MASK)
++#define SET_TLBMISC_REG_PERM(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_PERM_MASK << TLBMISC_REG_PERM_LSB))) | \
++ (((Val) & TLBMISC_REG_PERM_MASK) << TLBMISC_REG_PERM_LSB))
++#define GET_TLBMISC_REG_PID(Reg) \
++ (((Reg) >> TLBMISC_REG_PID_LSB) & TLBMISC_REG_PID_MASK)
++#define SET_TLBMISC_REG_PID(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_PID_MASK << TLBMISC_REG_PID_LSB))) | \
++ (((Val) & TLBMISC_REG_PID_MASK) << TLBMISC_REG_PID_LSB))
++#define GET_TLBMISC_REG_RD(Reg) \
++ (((Reg) >> TLBMISC_REG_RD_LSB) & TLBMISC_REG_RD_MASK)
++#define SET_TLBMISC_REG_RD(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_RD_MASK << TLBMISC_REG_RD_LSB))) | \
++ (((Val) & TLBMISC_REG_RD_MASK) << TLBMISC_REG_RD_LSB))
++#define GET_TLBMISC_REG_RSV0(Reg) \
++ (((Reg) >> TLBMISC_REG_RSV0_LSB) & TLBMISC_REG_RSV0_MASK)
++#define SET_TLBMISC_REG_RSV0(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_RSV0_MASK << TLBMISC_REG_RSV0_LSB))) | \
++ (((Val) & TLBMISC_REG_RSV0_MASK) << TLBMISC_REG_RSV0_LSB))
++#define GET_TLBMISC_REG_RSV1(Reg) \
++ (((Reg) >> TLBMISC_REG_RSV1_LSB) & TLBMISC_REG_RSV1_MASK)
++#define SET_TLBMISC_REG_RSV1(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_RSV1_MASK << TLBMISC_REG_RSV1_LSB))) | \
++ (((Val) & TLBMISC_REG_RSV1_MASK) << TLBMISC_REG_RSV1_LSB))
++#define GET_TLBMISC_REG_WAY(Reg) \
++ (((Reg) >> TLBMISC_REG_WAY_LSB) & TLBMISC_REG_WAY_MASK)
++#define SET_TLBMISC_REG_WAY(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_WAY_MASK << TLBMISC_REG_WAY_LSB))) | \
++ (((Val) & TLBMISC_REG_WAY_MASK) << TLBMISC_REG_WAY_LSB))
++#define GET_TLBMISC_REG_WE(Reg) \
++ (((Reg) >> TLBMISC_REG_WE_LSB) & TLBMISC_REG_WE_MASK)
++#define SET_TLBMISC_REG_WE(Reg, Val) \
++ Reg = (((Reg) & (~(TLBMISC_REG_WE_MASK << TLBMISC_REG_WE_LSB))) | \
++ (((Val) & TLBMISC_REG_WE_MASK) << TLBMISC_REG_WE_LSB))
++
++/* Macros to extract MMU fields */
++#define GET_MMU_ADDR_BYPASS_TLB_CACHEABLE(Addr) \
++ (((Addr) >> MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB) & MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK)
++#define SET_MMU_ADDR_BYPASS_TLB_CACHEABLE(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK << MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB))) | \
++ (((Val) & MMU_ADDR_BYPASS_TLB_CACHEABLE_MASK) << MMU_ADDR_BYPASS_TLB_CACHEABLE_LSB))
++#define GET_MMU_ADDR_BYPASS_TLB(Addr) \
++ (((Addr) >> MMU_ADDR_BYPASS_TLB_LSB) & MMU_ADDR_BYPASS_TLB_MASK)
++#define SET_MMU_ADDR_BYPASS_TLB(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_BYPASS_TLB_MASK << MMU_ADDR_BYPASS_TLB_LSB))) | \
++ (((Val) & MMU_ADDR_BYPASS_TLB_MASK) << MMU_ADDR_BYPASS_TLB_LSB))
++#define GET_MMU_ADDR_BYPASS_TLB_PADDR(Addr) \
++ (((Addr) >> MMU_ADDR_BYPASS_TLB_PADDR_LSB) & MMU_ADDR_BYPASS_TLB_PADDR_MASK)
++#define SET_MMU_ADDR_BYPASS_TLB_PADDR(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_BYPASS_TLB_PADDR_MASK << MMU_ADDR_BYPASS_TLB_PADDR_LSB))) | \
++ (((Val) & MMU_ADDR_BYPASS_TLB_PADDR_MASK) << MMU_ADDR_BYPASS_TLB_PADDR_LSB))
++#define GET_MMU_ADDR_IO_REGION(Addr) \
++ (((Addr) >> MMU_ADDR_IO_REGION_LSB) & MMU_ADDR_IO_REGION_MASK)
++#define SET_MMU_ADDR_IO_REGION(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_IO_REGION_MASK << MMU_ADDR_IO_REGION_LSB))) | \
++ (((Val) & MMU_ADDR_IO_REGION_MASK) << MMU_ADDR_IO_REGION_LSB))
++#define GET_MMU_ADDR_KERNEL_MMU_REGION(Addr) \
++ (((Addr) >> MMU_ADDR_KERNEL_MMU_REGION_LSB) & MMU_ADDR_KERNEL_MMU_REGION_MASK)
++#define SET_MMU_ADDR_KERNEL_MMU_REGION(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_KERNEL_MMU_REGION_MASK << MMU_ADDR_KERNEL_MMU_REGION_LSB))) | \
++ (((Val) & MMU_ADDR_KERNEL_MMU_REGION_MASK) << MMU_ADDR_KERNEL_MMU_REGION_LSB))
++#define GET_MMU_ADDR_KERNEL_REGION(Addr) \
++ (((Addr) >> MMU_ADDR_KERNEL_REGION_LSB) & MMU_ADDR_KERNEL_REGION_MASK)
++#define SET_MMU_ADDR_KERNEL_REGION(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_KERNEL_REGION_MASK << MMU_ADDR_KERNEL_REGION_LSB))) | \
++ (((Val) & MMU_ADDR_KERNEL_REGION_MASK) << MMU_ADDR_KERNEL_REGION_LSB))
++#define GET_MMU_ADDR_PAGE_OFFSET(Addr) \
++ (((Addr) >> MMU_ADDR_PAGE_OFFSET_LSB) & MMU_ADDR_PAGE_OFFSET_MASK)
++#define SET_MMU_ADDR_PAGE_OFFSET(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_PAGE_OFFSET_MASK << MMU_ADDR_PAGE_OFFSET_LSB))) | \
++ (((Val) & MMU_ADDR_PAGE_OFFSET_MASK) << MMU_ADDR_PAGE_OFFSET_LSB))
++#define GET_MMU_ADDR_PFN(Addr) \
++ (((Addr) >> MMU_ADDR_PFN_LSB) & MMU_ADDR_PFN_MASK)
++#define SET_MMU_ADDR_PFN(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_PFN_MASK << MMU_ADDR_PFN_LSB))) | \
++ (((Val) & MMU_ADDR_PFN_MASK) << MMU_ADDR_PFN_LSB))
++#define GET_MMU_ADDR_USER_REGION(Addr) \
++ (((Addr) >> MMU_ADDR_USER_REGION_LSB) & MMU_ADDR_USER_REGION_MASK)
++#define SET_MMU_ADDR_USER_REGION(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_USER_REGION_MASK << MMU_ADDR_USER_REGION_LSB))) | \
++ (((Val) & MMU_ADDR_USER_REGION_MASK) << MMU_ADDR_USER_REGION_LSB))
++#define GET_MMU_ADDR_VPN(Addr) \
++ (((Addr) >> MMU_ADDR_VPN_LSB) & MMU_ADDR_VPN_MASK)
++#define SET_MMU_ADDR_VPN(Addr, Val) \
++ Addr = (((Addr) & (~(MMU_ADDR_VPN_MASK << MMU_ADDR_VPN_LSB))) | \
++ (((Val) & MMU_ADDR_VPN_MASK) << MMU_ADDR_VPN_LSB))
++
++/* OP instruction values */
++#define OP_ADDI 4
++#define OP_ANDHI 44
++#define OP_ANDI 12
++#define OP_BEQ 38
++#define OP_BGE 14
++#define OP_BGEU 46
++#define OP_BLT 22
++#define OP_BLTU 54
++#define OP_BNE 30
++#define OP_BR 6
++#define OP_CALL 0
++#define OP_CMPEQI 32
++#define OP_CMPGEI 8
++#define OP_CMPGEUI 40
++#define OP_CMPLTI 16
++#define OP_CMPLTUI 48
++#define OP_CMPNEI 24
++#define OP_CUSTOM 50
++#define OP_FLUSHD 59
++#define OP_FLUSHDA 27
++#define OP_INITD 51
++#define OP_JMPI 1
++#define OP_LDB 7
++#define OP_LDBIO 39
++#define OP_LDBU 3
++#define OP_LDBUIO 35
++#define OP_LDH 15
++#define OP_LDHIO 47
++#define OP_LDHU 11
++#define OP_LDHUIO 43
++#define OP_LDW 23
++#define OP_LDWIO 55
++#define OP_MULI 36
++#define OP_OPX 58
++#define OP_ORHI 52
++#define OP_ORI 20
++#define OP_STB 5
++#define OP_STBIO 37
++#define OP_STH 13
++#define OP_STHIO 45
++#define OP_STW 21
++#define OP_STWIO 53
++#define OP_XORHI 60
++#define OP_XORI 28
++
++/* OPX instruction values */
++#define OPX_ADD 49
++#define OPX_AND 14
++#define OPX_BREAK 52
++#define OPX_BRET 9
++#define OPX_CALLR 29
++#define OPX_CMPEQ 32
++#define OPX_CMPGE 8
++#define OPX_CMPGEU 40
++#define OPX_CMPLT 16
++#define OPX_CMPLTU 48
++#define OPX_CMPNE 24
++#define OPX_CRST 62
++#define OPX_DIV 37
++#define OPX_DIVU 36
++#define OPX_ERET 1
++#define OPX_FLUSHI 12
++#define OPX_FLUSHP 4
++#define OPX_HBREAK 53
++#define OPX_INITI 41
++#define OPX_INTR 61
++#define OPX_JMP 13
++#define OPX_MUL 39
++#define OPX_MULXSS 31
++#define OPX_MULXSU 23
++#define OPX_MULXUU 7
++#define OPX_NEXTPC 28
++#define OPX_NOR 6
++#define OPX_OR 22
++#define OPX_RDCTL 38
++#define OPX_RET 5
++#define OPX_ROL 3
++#define OPX_ROLI 2
++#define OPX_ROR 11
++#define OPX_SLL 19
++#define OPX_SLLI 18
++#define OPX_SRA 59
++#define OPX_SRAI 58
++#define OPX_SRL 27
++#define OPX_SRLI 26
++#define OPX_SUB 57
++#define OPX_SYNC 54
++#define OPX_TRAP 45
++#define OPX_WRCTL 46
++#define OPX_XOR 30
++
++/* Macros to detect sub-opcode instructions */
++#define IS_OPX_INST(Iw) (GET_IW_OP(Iw) == OP_OPX)
++#define IS_CUSTOM_INST(Iw) (GET_IW_OP(Iw) == OP_CUSTOM)
++
++/* Instruction property macros */
++#define IW_PROP_RESERVED_OP(Iw) (0)
++
++#define IW_PROP_RESERVED_OPX(Iw) (0)
++
++#define IW_PROP_RESERVED(Iw) (0)
++
++#define IW_PROP_SUPERVISOR_ONLY(Iw) ( \
++ (op_prop_supervisor_only[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_supervisor_only[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_supervisor_only[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_supervisor_only[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_INITI_FLUSHI(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_INITI) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_FLUSHI) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_FLUSH_PIPE(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_flush_pipe[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_flush_pipe[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_JMP_INDIRECT_NON_TRAP(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_jmp_indirect_non_trap[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_jmp_indirect_non_trap[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_JMP_INDIRECT(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_jmp_indirect[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_jmp_indirect[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_JMP_DIRECT(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_CALL)) || \
++ ((GET_IW_OP((Iw)) == OP_JMPI)) \
++ ) \
++ \
++)
++
++#define IW_PROP_MUL_LSW(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_MULI)) || \
++ ((GET_IW_OPX((Iw)) == OPX_MUL) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_MULX(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_mulx[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_mulx[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_MUL(Iw) ( \
++ (op_prop_mul[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_mul[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_mul[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_mul[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_DIV_UNSIGNED(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_DIVU) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_DIV_SIGNED(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_DIV) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_DIV(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_DIVU) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_DIV) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_UNIMPLEMENTED(Iw) (0)
++
++#define IW_PROP_IMPLICIT_DST_RETADDR(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_CALL)) \
++ ) \
++ \
++)
++
++#define IW_PROP_IMPLICIT_DST_ERETADDR(Iw) (0)
++
++#define IW_PROP_EXCEPTION(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_TRAP) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_INTR) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_BREAK(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_BREAK) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_HBREAK) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_CRST(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_CRST) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_WR_CTL_REG(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_wr_ctl_reg[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_wr_ctl_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_UNCOND_CTI_NON_BR(Iw) ( \
++ (op_prop_uncond_cti_non_br[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_uncond_cti_non_br[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_uncond_cti_non_br[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_uncond_cti_non_br[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_RETADDR(Iw) ( \
++ (op_prop_retaddr[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_retaddr[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_retaddr[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_retaddr[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SHIFT_LEFT(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_SLLI) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_SLL) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_SHIFT_LOGICAL(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_shift_logical[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_shift_logical[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_ROT_LEFT(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_ROLI) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_ROL) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_SHIFT_ROT_LEFT(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_shift_rot_left[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_shift_rot_left[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SHIFT_RIGHT_LOGICAL(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_SRLI) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_SRL) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_SHIFT_RIGHT_ARITH(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_SRAI) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_SRA) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_SHIFT_RIGHT(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_shift_right[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_shift_right[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_ROT_RIGHT(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_ROR) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_SHIFT_ROT_RIGHT(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_shift_rot_right[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_shift_rot_right[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SHIFT_ROT(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_shift_rot[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_shift_rot[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SHIFT_ROT_IMM(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_shift_rot_imm[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_shift_rot_imm[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_ROTATE(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_rotate[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_rotate[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOGIC_REG(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_logic_reg[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_logic_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOGIC_HI_IMM16(Iw) ( \
++ (op_prop_logic_hi_imm16[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_logic_hi_imm16[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOGIC_LO_IMM16(Iw) ( \
++ (op_prop_logic_lo_imm16[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_logic_lo_imm16[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOGIC_IMM16(Iw) ( \
++ (op_prop_logic_imm16[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_logic_imm16[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOGIC(Iw) ( \
++ (op_prop_logic[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_logic[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_logic[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_logic[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_UNSIGNED_LO_IMM16(Iw) ( \
++ (op_prop_unsigned_lo_imm16[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_unsigned_lo_imm16[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_unsigned_lo_imm16[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_unsigned_lo_imm16[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_ARITH_IMM16(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_ADDI)) || \
++ ((GET_IW_OP((Iw)) == OP_MULI)) \
++ ) \
++ \
++)
++
++#define IW_PROP_CMP_IMM16(Iw) ( \
++ (op_prop_cmp_imm16[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp_imm16[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_JMPI(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_JMPI)) \
++ ) \
++ \
++)
++
++#define IW_PROP_CMP_IMM16_WITH_CALL_JMPI(Iw) ( \
++ (op_prop_cmp_imm16_with_call_jmpi[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp_imm16_with_call_jmpi[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_CMP_REG(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_cmp_reg[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_cmp_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SRC_IMM5(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_src_imm5[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_src_imm5[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_CMP_WITH_LT(Iw) ( \
++ (op_prop_cmp_with_lt[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_cmp_with_lt[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp_with_lt[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_cmp_with_lt[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_CMP_WITH_EQ(Iw) ( \
++ (op_prop_cmp_with_eq[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_cmp_with_eq[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp_with_eq[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_cmp_with_eq[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_CMP_WITH_GE(Iw) ( \
++ (op_prop_cmp_with_ge[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_cmp_with_ge[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp_with_ge[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_cmp_with_ge[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_CMP_WITH_NE(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_CMPNEI)) || \
++ ((GET_IW_OPX((Iw)) == OPX_CMPNE) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_CMP_ALU_SIGNED(Iw) ( \
++ (op_prop_cmp_alu_signed[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_cmp_alu_signed[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp_alu_signed[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_cmp_alu_signed[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_CMP(Iw) ( \
++ (op_prop_cmp[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_cmp[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_cmp[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_cmp[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_BR_WITH_LT(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_BLT)) || \
++ ((GET_IW_OP((Iw)) == OP_BLTU)) \
++ ) \
++ \
++)
++
++#define IW_PROP_BR_WITH_GE(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_BGE)) || \
++ ((GET_IW_OP((Iw)) == OP_BGEU)) \
++ ) \
++ \
++)
++
++#define IW_PROP_BR_WITH_EQ(Iw) ( \
++ (op_prop_br_with_eq[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_br_with_eq[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_BR_WITH_NE(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_BNE)) \
++ ) \
++ \
++)
++
++#define IW_PROP_BR_ALU_SIGNED(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_BGE)) || \
++ ((GET_IW_OP((Iw)) == OP_BLT)) \
++ ) \
++ \
++)
++
++#define IW_PROP_BR_COND(Iw) ( \
++ (op_prop_br_cond[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_br_cond[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_BR_UNCOND(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_BR)) \
++ ) \
++ \
++)
++
++#define IW_PROP_BR(Iw) ( \
++ (op_prop_br[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_br[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_ALU_SUB(Iw) ( \
++ (op_prop_alu_sub[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_alu_sub[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_alu_sub[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_alu_sub[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_FORCE_XOR(Iw) ( \
++ (op_prop_force_xor[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_force_xor[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_force_xor[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_force_xor[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD8(Iw) ( \
++ (op_prop_load8[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load8[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD16(Iw) ( \
++ (op_prop_load16[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load16[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD32(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_LDW)) || \
++ ((GET_IW_OP((Iw)) == OP_LDWIO)) \
++ ) \
++ \
++)
++
++#define IW_PROP_LOAD_SIGNED(Iw) ( \
++ (op_prop_load_signed[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load_signed[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD_UNSIGNED(Iw) ( \
++ (op_prop_load_unsigned[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load_unsigned[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD(Iw) ( \
++ (op_prop_load[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD_INITD_FLUSHD_FLUSHDA(Iw) ( \
++ (op_prop_load_initd_flushd_flushda[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load_initd_flushd_flushda[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD_NON_IO(Iw) ( \
++ (op_prop_load_non_io[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load_non_io[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_STORE8(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_STB)) || \
++ ((GET_IW_OP((Iw)) == OP_STBIO)) \
++ ) \
++ \
++)
++
++#define IW_PROP_STORE16(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_STH)) || \
++ ((GET_IW_OP((Iw)) == OP_STHIO)) \
++ ) \
++ \
++)
++
++#define IW_PROP_STORE32(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_STW)) || \
++ ((GET_IW_OP((Iw)) == OP_STWIO)) \
++ ) \
++ \
++)
++
++#define IW_PROP_STORE(Iw) ( \
++ (op_prop_store[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_store[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_STORE_NON_IO(Iw) ( \
++ (op_prop_store_non_io[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_store_non_io[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_MEM(Iw) ( \
++ (op_prop_mem[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_mem[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_INITD(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_INITD)) \
++ ) \
++ \
++)
++
++#define IW_PROP_FLUSHD(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_FLUSHD)) \
++ ) \
++ \
++)
++
++#define IW_PROP_INITD_FLUSHD(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_INITD)) || \
++ ((GET_IW_OP((Iw)) == OP_FLUSHD)) \
++ ) \
++ \
++)
++
++#define IW_PROP_FLUSHDA(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_FLUSHDA)) \
++ ) \
++ \
++)
++
++#define IW_PROP_FLUSHD_FLUSHDA(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_FLUSHD)) || \
++ ((GET_IW_OP((Iw)) == OP_FLUSHDA)) \
++ ) \
++ \
++)
++
++#define IW_PROP_INITD_FLUSHD_FLUSHDA(Iw) ( \
++ (op_prop_initd_flushd_flushda[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_initd_flushd_flushda[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_LOAD_IO(Iw) ( \
++ (op_prop_load_io[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_load_io[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_STORE_IO(Iw) ( \
++ (op_prop_store_io[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_store_io[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_MEM_IO(Iw) ( \
++ (op_prop_mem_io[GET_IW_OP(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_mem_io[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_ARITH(Iw) ( \
++ (op_prop_arith[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_arith[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_arith[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_arith[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_A_NOT_SRC(Iw) ( \
++ ( \
++ ((GET_IW_OP((Iw)) == OP_CALL)) || \
++ ((GET_IW_OP((Iw)) == OP_JMPI)) \
++ ) \
++ || (IS_CUSTOM_INST(Iw) && !GET_IW_CUSTOM_READRA(Iw)) \
++)
++
++#define IW_PROP_B_NOT_SRC(Iw) ( \
++ (op_prop_b_not_src[GET_IW_OP(Iw)]) \
++ || (IS_CUSTOM_INST(Iw) && !GET_IW_CUSTOM_READRB(Iw)))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_b_not_src[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_IGNORE_DST(Iw) ( \
++ (op_prop_ignore_dst[GET_IW_OP(Iw)]) \
++ || (IS_CUSTOM_INST(Iw) && !GET_IW_CUSTOM_WRITERC(Iw)))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_ignore_dst[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SRC2_CHOOSE_IMM(Iw) ( \
++ (op_prop_src2_choose_imm[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_src2_choose_imm[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_src2_choose_imm[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_src2_choose_imm[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_WRCTL_INST(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_WRCTL) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_RDCTL_INST(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_RDCTL) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_MUL_SRC1_SIGNED(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_MULXSS) && IS_OPX_INST(Iw)) || \
++ ((GET_IW_OPX((Iw)) == OPX_MULXSU) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_MUL_SRC2_SIGNED(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_MULXSS) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_MUL_SHIFT_SRC1_SIGNED(Iw) ( \
++ (IS_OPX_INST(Iw) && opx_prop_mul_shift_src1_signed[GET_IW_OPX(Iw)]))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_mul_shift_src1_signed[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_MUL_SHIFT_SRC2_SIGNED(Iw) ( \
++ ( \
++ ((GET_IW_OPX((Iw)) == OPX_MULXSS) && IS_OPX_INST(Iw)) \
++ ) \
++ \
++)
++
++#define IW_PROP_DONT_DISPLAY_DST_REG(Iw) ( \
++ (op_prop_dont_display_dst_reg[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_dont_display_dst_reg[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_dont_display_dst_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_dont_display_dst_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_DONT_DISPLAY_SRC1_REG(Iw) ( \
++ (op_prop_dont_display_src1_reg[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_dont_display_src1_reg[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_dont_display_src1_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_dont_display_src1_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_DONT_DISPLAY_SRC2_REG(Iw) ( \
++ (op_prop_dont_display_src2_reg[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_dont_display_src2_reg[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_dont_display_src2_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_dont_display_src2_reg[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SRC1_NO_X(Iw) ( \
++ (op_prop_src1_no_x[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_src1_no_x[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_src1_no_x[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_src1_no_x[64];
++#endif /* ALT_ASM_SRC */
++
++#define IW_PROP_SRC2_NO_X(Iw) ( \
++ (op_prop_src2_no_x[GET_IW_OP(Iw)] || \
++ (IS_OPX_INST(Iw) && opx_prop_src2_no_x[GET_IW_OPX(Iw)])))
++
++#ifndef ALT_ASM_SRC
++extern unsigned char op_prop_src2_no_x[64];
++#endif /* ALT_ASM_SRC */
++
++#ifndef ALT_ASM_SRC
++extern unsigned char opx_prop_src2_no_x[64];
++#endif /* ALT_ASM_SRC */
++
++/* Instruction types */
++#define INST_TYPE_OP 0
++#define INST_TYPE_OPX 1
++
++/* Canonical instruction codes independent of encoding */
++#define CALL_INST_CODE 0
++#define JMPI_INST_CODE 1
++#define LDBU_INST_CODE 2
++#define ADDI_INST_CODE 3
++#define STB_INST_CODE 4
++#define BR_INST_CODE 5
++#define LDB_INST_CODE 6
++#define CMPGEI_INST_CODE 7
++#define LDHU_INST_CODE 8
++#define ANDI_INST_CODE 9
++#define STH_INST_CODE 10
++#define BGE_INST_CODE 11
++#define LDH_INST_CODE 12
++#define CMPLTI_INST_CODE 13
++#define ORI_INST_CODE 14
++#define STW_INST_CODE 15
++#define BLT_INST_CODE 16
++#define LDW_INST_CODE 17
++#define CMPNEI_INST_CODE 18
++#define FLUSHDA_INST_CODE 19
++#define XORI_INST_CODE 20
++#define BNE_INST_CODE 21
++#define CMPEQI_INST_CODE 22
++#define LDBUIO_INST_CODE 23
++#define MULI_INST_CODE 24
++#define STBIO_INST_CODE 25
++#define BEQ_INST_CODE 26
++#define LDBIO_INST_CODE 27
++#define CMPGEUI_INST_CODE 28
++#define LDHUIO_INST_CODE 29
++#define ANDHI_INST_CODE 30
++#define STHIO_INST_CODE 31
++#define BGEU_INST_CODE 32
++#define LDHIO_INST_CODE 33
++#define CMPLTUI_INST_CODE 34
++#define CUSTOM_INST_CODE 35
++#define INITD_INST_CODE 36
++#define ORHI_INST_CODE 37
++#define STWIO_INST_CODE 38
++#define BLTU_INST_CODE 39
++#define LDWIO_INST_CODE 40
++#define FLUSHD_INST_CODE 41
++#define XORHI_INST_CODE 42
++#define ERET_INST_CODE 43
++#define ROLI_INST_CODE 44
++#define ROL_INST_CODE 45
++#define FLUSHP_INST_CODE 46
++#define RET_INST_CODE 47
++#define NOR_INST_CODE 48
++#define MULXUU_INST_CODE 49
++#define CMPGE_INST_CODE 50
++#define BRET_INST_CODE 51
++#define ROR_INST_CODE 52
++#define FLUSHI_INST_CODE 53
++#define JMP_INST_CODE 54
++#define AND_INST_CODE 55
++#define CMPLT_INST_CODE 56
++#define SLLI_INST_CODE 57
++#define SLL_INST_CODE 58
++#define OR_INST_CODE 59
++#define MULXSU_INST_CODE 60
++#define CMPNE_INST_CODE 61
++#define SRLI_INST_CODE 62
++#define SRL_INST_CODE 63
++#define NEXTPC_INST_CODE 64
++#define CALLR_INST_CODE 65
++#define XOR_INST_CODE 66
++#define MULXSS_INST_CODE 67
++#define CMPEQ_INST_CODE 68
++#define DIVU_INST_CODE 69
++#define DIV_INST_CODE 70
++#define RDCTL_INST_CODE 71
++#define MUL_INST_CODE 72
++#define CMPGEU_INST_CODE 73
++#define INITI_INST_CODE 74
++#define TRAP_INST_CODE 75
++#define WRCTL_INST_CODE 76
++#define CMPLTU_INST_CODE 77
++#define ADD_INST_CODE 78
++#define BREAK_INST_CODE 79
++#define HBREAK_INST_CODE 80
++#define SYNC_INST_CODE 81
++#define SUB_INST_CODE 82
++#define SRAI_INST_CODE 83
++#define SRA_INST_CODE 84
++#define INTR_INST_CODE 85
++#define CRST_INST_CODE 86
++#define RSV_INST_CODE 87
++#define NUM_NIOS2_INST_CODES 88
++
++#ifndef ALT_ASM_SRC
++/* Instruction information entry */
++typedef struct {
++ const char* name; /* Assembly-language instruction name */
++ int instType; /* INST_TYPE_OP or INST_TYPE_OPX */
++ unsigned opcode; /* Value of instruction word OP/OPX field */
++} Nios2InstInfo;
++
++extern Nios2InstInfo nios2InstInfo[NUM_NIOS2_INST_CODES];
++#endif /* ALT_ASM_SRC */
++
++/* Returns the instruction code given the 32-bit instruction word */
++#define GET_INST_CODE(Iw) \
++ (IS_OPX_INST(Iw) ? opxToInstCode[GET_IW_OPX(Iw)] : opToInstCode[GET_IW_OP(Iw)])
++
++#ifndef ALT_ASM_SRC
++extern int opToInstCode[64];
++extern int opxToInstCode[64];
++#endif /* ALT_ASM_SRC */
++
++/*
++ * MMU Memory Region Macros
++ */
++#define USER_REGION_MIN_VADDR 0x00000000
++#define USER_REGION_MAX_VADDR 0x7fffffff
++#define KERNEL_MMU_REGION_MIN_VADDR 0x80000000
++#define KERNEL_MMU_REGION_MAX_VADDR 0xbfffffff
++#define KERNEL_REGION_MIN_VADDR 0xc0000000
++#define KERNEL_REGION_MAX_VADDR 0xdfffffff
++#define IO_REGION_MIN_VADDR 0xe0000000
++#define IO_REGION_MAX_VADDR 0xffffffff
++
++#define MMU_PAGE_SIZE (0x1 << (MMU_ADDR_PAGE_OFFSET_SZ))
++
++#define isMmuUserRegion(Vaddr) \
++ (GET_MMU_ADDR_USER_REGION(Vaddr) == MMU_ADDR_USER_REGION)
++#define isMmuKernelMmuRegion(Vaddr) \
++ (GET_MMU_ADDR_KERNEL_MMU_REGION(Vaddr) == MMU_ADDR_KERNEL_MMU_REGION)
++#define isMmuKernelRegion(Vaddr) \
++ (GET_MMU_ADDR_KERNEL_REGION(Vaddr) == MMU_ADDR_KERNEL_REGION)
++#define isMmuIORegion(Vaddr) \
++ (GET_MMU_ADDR_IO_REGION(Vaddr) == MMU_ADDR_IO_REGION)
++
++/* Does this virtual address bypass the TLB? */
++#define vaddrBypassTlb(Vaddr) \
++ (GET_MMU_ADDR_BYPASS_TLB(Vaddr) == MMU_ADDR_BYPASS_TLB)
++
++/* If TLB is bypassed, is the address cacheable or uncachable. */
++#define vaddrBypassTlbCacheable(Vaddr) \
++ (GET_MMU_ADDR_BYPASS_TLB_CACHEABLE(Vaddr) == MMU_ADDR_BYPASS_TLB_CACHEABLE)
++
++/*
++ * Compute physical address for regions that bypass the TLB.
++ * Just need to clear some top bits.
++ */
++#define bypassTlbVaddrToPaddr(Vaddr) \
++ ((Vaddr) & (MMU_ADDR_BYPASS_TLB_PADDR_MASK << MMU_ADDR_BYPASS_TLB_PADDR_LSB))
++
++/*
++ * Will the physical address fit in the Kernel/IO region virtual address space?
++ */
++#define fitsInKernelRegion(Paddr) \
++ (GET_MMU_ADDR_KERNEL_REGION(Paddr) == 0)
++#define fitsInIORegion(Paddr) \
++ (GET_MMU_ADDR_IO_REGION(Paddr) == 0)
++
++/* Convert a physical address to a Kernel/IO region virtual address. */
++#define paddrToKernelRegionVaddr(Paddr) \
++ ((Paddr) | (MMU_ADDR_KERNEL_REGION << MMU_ADDR_KERNEL_REGION_LSB))
++#define paddrToIORegionVaddr(Paddr) \
++ ((Paddr) | (MMU_ADDR_IO_REGION << MMU_ADDR_IO_REGION_LSB))
++
++/*
++ * Convert a virtual address to a Kernel/IO region virtual address.
++ * Uses bypassTlbVaddrToPaddr to clear top bits.
++ */
++#define vaddrToKernelRegionVaddr(Vaddr) \
++ paddrToKernelRegionVaddr(bypassTlbVaddrToPaddr(Vaddr))
++#define vaddrToIORegionVaddr(Vaddr) \
++ paddrToIORegionVaddr(bypassTlbVaddrToPaddr(Vaddr))
++
++/* Convert between VPN/PFN and virtual/physical addresses. */
++#define vpnToVaddr(Vpn) ((Vpn) << MMU_ADDR_VPN_LSB)
++#define pfnToPaddr(Pfn) ((Pfn) << MMU_ADDR_PFN_LSB)
++#define vaddrToVpn(Vaddr) GET_MMU_ADDR_VPN(Vaddr)
++#define paddrToPfn(Paddr) GET_MMU_ADDR_PFN(Paddr)
++
++/* Bitwise OR with a KERNEL region address to make it an IO region address */
++#define KERNEL_TO_IO_REGION 0x20000000
++
++#endif /* _NIOS2_ISA_H_ */
+diff --git a/include/opcode/nios2.h b/include/opcode/nios2.h
+new file mode 100644
+index 0000000..992bb80
+--- /dev/null
++++ b/include/opcode/nios2.h
+@@ -0,0 +1,361 @@
++/* nios2.h. Altera New Jersey opcode list for GAS, the GNU assembler.
++
++ Copyright (C) 2003
++ by Nigel Gray (ngray@altera.com).
++
++This file is part of GDB, GAS, and the GNU binutils.
++
++GDB, GAS, and the GNU binutils are free software; you can redistribute
++them and/or modify them under the terms of the GNU General Public
++License as published by the Free Software Foundation; either version
++1, or (at your option) any later version.
++
++GDB, GAS, and the GNU binutils are distributed in the hope that they
++will be useful, but WITHOUT ANY WARRANTY; without even the implied
++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
++the GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with this file; see the file COPYING. If not, write to the Free
++Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#ifndef _NIOS2_H_
++#define _NIOS2_H_
++
++
++/****************************************************************************
++ * This file contains structures, bit masks and shift counts used
++ * by the GNU toolchain to define the New Jersey instruction set and
++ * access various opcode fields.
++ ****************************************************************************/
++
++enum overflow_type
++{
++ call_target_overflow = 0,
++ branch_target_overflow,
++ address_offset_overflow,
++ signed_immed16_overflow,
++ unsigned_immed16_overflow,
++ unsigned_immed5_overflow,
++ custom_opcode_overflow,
++ no_overflow
++};
++
++/*---------------------------------------------------------------------------
++ This structure holds information for a particular instruction
++ ---------------------------------------------------------------------------*/
++
++/* match When assembling, this
++ opcode is modified by the arguments to produce the actual opcode
++ that is used. If pinfo is INSN_MACRO, then this is 0. */
++
++/* mask If pinfo is not INSN_MACRO, then this is a bit mask for the
++ relevant portions of the opcode when disassembling. If the
++ actual opcode anded with the match field equals the opcode field,
++ then we have found the correct instruction. If pinfo is
++ INSN_MACRO, then this field is the macro identifier. */
++
++/* For a macro, this is INSN_MACRO. Otherwise, it is a collection
++ of bits describing the instruction, notably any relevant hazard
++ information. */
++
++struct nios2_opcode
++{
++ const char *name; /* The name of the instruction. */
++ const char *args; /* A string describing the arguments for this instruction. */
++ const char *args_test; /* Like args, but with an extra argument for the expected opcode */
++ unsigned long num_args; /* the number of arguments the instruction takes */
++ unsigned long match; /* The basic opcode for the instruction. */
++ unsigned long mask; /* mask for the opcode field of the instruction */
++ unsigned long pinfo; /* is this a real instruction or instruction macro */
++ enum overflow_type overflow_msg; /* msg template used to generate informative message when fixup overflows */
++};
++
++/* This value is used in the nios2_opcode.pinfo field to indicate that the instruction
++ is a macro or pseudo-op. This requires special treatment by the assembler, and is
++ used by the disassembler to determine whether to check for a nop */
++#define NIOS2_INSN_MACRO 0x80000000
++#define NIOS2_INSN_MACRO_MOV 0x80000001
++#define NIOS2_INSN_MACRO_MOVI 0x80000002
++#define NIOS2_INSN_MACRO_MOVIA 0x80000004
++
++#define NIOS2_INSN_RELAXABLE 0x40000000
++#define NIOS2_INSN_UBRANCH 0x00000010
++#define NIOS2_INSN_CBRANCH 0x00000020
++#define NIOS2_INSN_CALL 0x00000040
++
++#define NIOS2_INSN_ADDI 0x00000080
++#define NIOS2_INSN_ANDI 0x00000100
++#define NIOS2_INSN_ORI 0x00000200
++#define NIOS2_INSN_XORI 0x00000400
++
++
++
++/* Associates a register name ($6) with a 5-bit index (eg 6) */
++struct nios2_reg
++{
++ const char *name;
++ const int index;
++};
++
++
++/* -------------------------------------------------------------------------
++ Bitfield masks for New Jersey instructions
++ -------------------------------------------------------------------------*/
++
++/* These are bit masks and shift counts to use to access the various
++ fields of an instruction. */
++
++/* Macros for getting and setting an instruction field */
++#define GET_INSN_FIELD(X, i) ((i) & OP_MASK_##X) >> OP_SH_##X
++#define SET_INSN_FIELD(X, i, j) (i) = ((i) &~ (OP_MASK_##X)) | ((j) << OP_SH_##X)
++
++
++/*
++ We include the auto-generated file nios2-isa.h and define the mask
++ and shifts below in terms of those in nios2-isa.h. This ensures
++ that the binutils and hardware are always in sync
++*/
++
++#include "nios2-isa.h"
++
++#define OP_MASK_OP (IW_OP_MASK << IW_OP_LSB)
++#define OP_SH_OP IW_OP_LSB
++
++
++/* Masks and shifts for I-type instructions */
++
++#define OP_MASK_IOP (IW_OP_MASK << IW_OP_LSB)
++#define OP_SH_IOP IW_OP_LSB
++
++#define OP_MASK_IMM16 (IW_IMM16_MASK << IW_IMM16_LSB)
++#define OP_SH_IMM16 IW_IMM16_LSB
++
++#define OP_MASK_IRD (IW_B_MASK << IW_B_LSB) // the same as T for I-type
++#define OP_SH_IRD IW_B_LSB
++
++#define OP_MASK_IRT (IW_B_MASK << IW_B_LSB)
++#define OP_SH_IRT IW_B_LSB
++
++#define OP_MASK_IRS (IW_A_MASK << IW_A_LSB)
++#define OP_SH_IRS IW_A_LSB
++
++/* Masks and shifts for R-type instructions */
++
++#define OP_MASK_ROP (IW_OP_MASK << IW_OP_LSB)
++#define OP_SH_ROP IW_OP_LSB
++
++#define OP_MASK_ROPX (IW_OPX_MASK << IW_OPX_LSB)
++#define OP_SH_ROPX IW_OPX_LSB
++
++#define OP_MASK_RRD (IW_C_MASK << IW_C_LSB)
++#define OP_SH_RRD IW_C_LSB
++
++#define OP_MASK_RRT (IW_B_MASK << IW_B_LSB)
++#define OP_SH_RRT IW_B_LSB
++
++#define OP_MASK_RRS (IW_A_MASK << IW_A_LSB)
++#define OP_SH_RRS IW_A_LSB
++
++/* Masks and shifts for J-type instructions */
++
++#define OP_MASK_JOP (IW_OP_MASK << IW_OP_LSB)
++#define OP_SH_JOP IW_OP_LSB
++
++#define OP_MASK_IMM26 (IW_IMM26_MASK << IW_IMM26_LSB)
++#define OP_SH_IMM26 IW_IMM26_LSB
++
++/* Masks and shifts for CTL instructions */
++
++#define OP_MASK_RCTL 0x000007c0
++#define OP_SH_RCTL 6
++
++/* break instruction imm5 field */
++#define OP_MASK_TRAP_IMM5 0x000007c0
++#define OP_SH_TRAP_IMM5 6
++
++/* instruction imm5 field */
++#define OP_MASK_IMM5 (IW_SHIFT_IMM5_MASK << IW_SHIFT_IMM5_LSB)
++#define OP_SH_IMM5 IW_SHIFT_IMM5_LSB
++
++/* cache operation fields (type j,i(s)) */
++#define OP_MASK_CACHE_OPX (IW_B_MASK << IW_B_LSB)
++#define OP_SH_CACHE_OPX IW_B_LSB
++#define OP_MASK_CACHE_RRS (IW_A_MASK << IW_A_LSB)
++#define OP_SH_CACHE_RRS IW_A_LSB
++
++/* custom instruction masks */
++#define OP_MASK_CUSTOM_A 0x00010000
++#define OP_SH_CUSTOM_A 16
++
++#define OP_MASK_CUSTOM_B 0x00008000
++#define OP_SH_CUSTOM_B 15
++
++#define OP_MASK_CUSTOM_C 0x00004000
++#define OP_SH_CUSTOM_C 14
++
++#define OP_MASK_CUSTOM_N 0x00003fc0
++#define OP_SH_CUSTOM_N 6
++#define OP_MAX_CUSTOM_N 255
++
++/*
++ The following macros define the opcode matches for each
++ instruction
++ code & OP_MASK_INST == OP_MATCH_INST
++ */
++
++/* OP instruction matches */
++#define OP_MATCH_ADDI OP_ADDI
++#define OP_MATCH_ANDHI OP_ANDHI
++#define OP_MATCH_ANDI OP_ANDI
++#define OP_MATCH_BEQ OP_BEQ
++#define OP_MATCH_BGE OP_BGE
++#define OP_MATCH_BGEU OP_BGEU
++#define OP_MATCH_BLT OP_BLT
++#define OP_MATCH_BLTU OP_BLTU
++#define OP_MATCH_BNE OP_BNE
++#define OP_MATCH_BR OP_BR
++#define OP_MATCH_FLUSHD OP_FLUSHD
++#define OP_MATCH_FLUSHDA OP_FLUSHDA
++#define OP_MATCH_INITD OP_INITD
++#define OP_MATCH_CALL OP_CALL
++#define OP_MATCH_CMPEQI OP_CMPEQI
++#define OP_MATCH_CMPGEI OP_CMPGEI
++#define OP_MATCH_CMPGEUI OP_CMPGEUI
++#define OP_MATCH_CMPLTI OP_CMPLTI
++#define OP_MATCH_CMPLTUI OP_CMPLTUI
++#define OP_MATCH_CMPNEI OP_CMPNEI
++#define OP_MATCH_JMPI OP_JMPI
++#define OP_MATCH_LDB OP_LDB
++#define OP_MATCH_LDBIO OP_LDBIO
++#define OP_MATCH_LDBU OP_LDBU
++#define OP_MATCH_LDBUIO OP_LDBUIO
++#define OP_MATCH_LDH OP_LDH
++#define OP_MATCH_LDHIO OP_LDHIO
++#define OP_MATCH_LDHU OP_LDHU
++#define OP_MATCH_LDHUIO OP_LDHUIO
++#define OP_MATCH_LDW OP_LDW
++#define OP_MATCH_LDWIO OP_LDWIO
++#define OP_MATCH_MULI OP_MULI
++#define OP_MATCH_OPX OP_OPX
++#define OP_MATCH_ORHI OP_ORHI
++#define OP_MATCH_ORI OP_ORI
++#define OP_MATCH_STB OP_STB
++#define OP_MATCH_STBIO OP_STBIO
++#define OP_MATCH_STH OP_STH
++#define OP_MATCH_STHIO OP_STHIO
++#define OP_MATCH_STW OP_STW
++#define OP_MATCH_STWIO OP_STWIO
++#define OP_MATCH_CUSTOM OP_CUSTOM
++#define OP_MATCH_XORHI OP_XORHI
++#define OP_MATCH_XORI OP_XORI
++#define OP_MATCH_OPX OP_OPX
++
++
++
++/* OPX instruction values */
++#define OP_MATCH_ADD ((OPX_ADD << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_AND ((OPX_AND << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_BREAK ((0x1e << 17) | (OPX_BREAK << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_BRET ((0xf0000000) | (OPX_BRET << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CALLR ((0x1f << 17) | (OPX_CALLR << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CMPEQ ((OPX_CMPEQ << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CMPGE ((OPX_CMPGE << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CMPGEU ((OPX_CMPGEU << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CMPLT ((OPX_CMPLT << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CMPLTU ((OPX_CMPLTU << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_CMPNE ((OPX_CMPNE << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_DIV ((OPX_DIV << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_DIVU ((OPX_DIVU << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_JMP ((OPX_JMP << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_MUL ((OPX_MUL << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_MULXSS ((OPX_MULXSS << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_MULXSU ((OPX_MULXSU << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_MULXUU ((OPX_MULXUU << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_NEXTPC ((OPX_NEXTPC << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_NOR ((OPX_NOR << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_OR ((OPX_OR << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_RDCTL ((OPX_RDCTL << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_RET ((0xf8000000) | (OPX_RET << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_ROL ((OPX_ROL << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_ROLI ((OPX_ROLI << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_ROR ((OPX_ROR << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SLL ((OPX_SLL << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SLLI ((OPX_SLLI << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SRA ((OPX_SRA << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SRAI ((OPX_SRAI << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SRL ((OPX_SRL << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SRLI ((OPX_SRLI << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SUB ((OPX_SUB << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_SYNC ((OPX_SYNC << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_TRAP ((0x1d << 17) | (OPX_TRAP << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_ERET ((0xe8000000) | (OPX_ERET << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_WRCTL ((OPX_WRCTL << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_XOR ((OPX_XOR << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_FLUSHI ((OPX_FLUSHI << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_FLUSHP ((OPX_FLUSHP << IW_OPX_LSB) | (OP_OPX))
++#define OP_MATCH_INITI ((OPX_INITI << IW_OPX_LSB) | (OP_OPX))
++
++/*
++ Some unusual op masks
++*/
++#define OP_MASK_BREAK ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP) & 0xfffff03f)
++#define OP_MASK_CALLR ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_JMP ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_SYNC ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_TRAP ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP) & 0xfffff83f)
++#define OP_MASK_WRCTL ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP)) /*& 0xfffff83f */
++#define OP_MASK_NEXTPC ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_FLUSHI ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_INITI ((OP_MASK_RRT | OP_MASK_RRD | OP_MASK_ROPX | OP_MASK_OP))
++
++#define OP_MASK_ROLI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_SLLI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_SRAI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_SRLI ((OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP))
++#define OP_MASK_RDCTL ((OP_MASK_RRS | OP_MASK_RRT | OP_MASK_ROPX | OP_MASK_OP)) /*& 0xfffff83f */
++
++#ifndef OP_MASK
++#define OP_MASK 0xffffffff
++#endif
++
++/* These are the data structures we use to hold the instruction information */
++
++extern const struct nios2_opcode nios2_builtin_opcodes[];
++extern const int bfd_nios2_num_builtin_opcodes;
++extern struct nios2_opcode *nios2_opcodes;
++extern int bfd_nios2_num_opcodes;
++
++/* These are the data structures used to hold the operand parsing information */
++//extern const struct nios2_arg_parser nios2_arg_parsers[];
++//extern struct nios2_arg_parser* nios2_arg_parsers;
++//extern const int nios2_num_builtin_arg_parsers;
++//extern int nios2_num_arg_parsers;
++
++/* These are the data structures used to hold the register information */
++extern const struct nios2_reg nios2_builtin_regs[];
++extern struct nios2_reg *nios2_regs;
++extern const int nios2_num_builtin_regs;
++extern int nios2_num_regs;
++
++/* Machine-independent macro for number of opcodes */
++
++#define NUMOPCODES bfd_nios2_num_opcodes
++#define NUMREGISTERS nios2_num_regs;
++
++/* these are used in disassembly to get the correct register names */
++#define NUMREGNAMES 32
++#define NUMCTLREGNAMES 32
++#define CTLREGBASE 42
++#define COPROCREGBASE 83
++#define NUMCOPROCREGNAMES 32
++
++
++/* this is made extern so that the assembler can use it to find out
++ what instruction caused an error */
++extern const struct nios2_opcode *nios2_find_opcode_hash (unsigned long);
++
++/* overflow message strings used in the assembler */
++extern char *overflow_msgs[];
++
++#endif // _NIOS2_H
+diff --git a/opcodes/Makefile.am b/opcodes/Makefile.am
+index ebd252f..a7ca06b 100644
+--- a/opcodes/Makefile.am
++++ b/opcodes/Makefile.am
+@@ -146,6 +146,13 @@ CFILES = \
+ mt-dis.c \
+ mt-ibld.c \
+ mt-opc.c \
++ nios2-opc.c \
++ nios2-dis.c \
++ ms1-asm.c \
++ ms1-desc.c \
++ ms1-dis.c \
++ ms1-ibld.c \
++ ms1-opc.c \
+ ns32k-dis.c \
+ openrisc-asm.c \
+ openrisc-desc.c \
+@@ -281,6 +288,8 @@ ALL_MACHINES = \
+ mt-dis.lo \
+ mt-ibld.lo \
+ mt-opc.lo \
++ nios2-opc.lo \
++ nios2-dis.lo \
+ ns32k-dis.lo \
+ openrisc-asm.lo \
+ openrisc-desc.lo \
+@@ -980,6 +989,13 @@ mt-opc.lo: mt-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \
+ mt-desc.h $(INCDIR)/opcode/cgen-bitset.h $(INCDIR)/opcode/cgen.h \
+ $(INCDIR)/symcat.h $(INCDIR)/opcode/cgen-bitset.h mt-opc.h \
+ $(INCDIR)/libiberty.h $(INCDIR)/ansidecl.h $(INCDIR)/safe-ctype.h
++nios2-opc.lo: nios2-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \
++ $(INCDIR)/opcode/nios2.h
++nios2-dis.lo: nios2-dis.c sysdep.h config.h $(INCDIR)/ansidecl.h \
++ $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/symcat.h $(INCDIR)/opcode/nios2.h \
++ opintl.h $(BFDDIR)/elf-bfd.h $(INCDIR)/elf/common.h \
++ $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \
++ $(INCDIR)/elf/nios2.h $(INCDIR)/elf/reloc-macros.h
+ ns32k-dis.lo: ns32k-dis.c $(BFD_H) $(INCDIR)/ansidecl.h \
+ $(INCDIR)/symcat.h sysdep.h config.h $(INCDIR)/ansidecl.h \
+ $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/opcode/ns32k.h \
+diff --git a/opcodes/Makefile.in b/opcodes/Makefile.in
+index 85003e6..9e3baae 100644
+--- a/opcodes/Makefile.in
++++ b/opcodes/Makefile.in
+@@ -360,6 +360,8 @@ CFILES = \
+ mt-dis.c \
+ mt-ibld.c \
+ mt-opc.c \
++ nios2-opc.c \
++ nios2-dis.c \
+ ns32k-dis.c \
+ openrisc-asm.c \
+ openrisc-desc.c \
+@@ -495,6 +497,8 @@ ALL_MACHINES = \
+ mt-dis.lo \
+ mt-ibld.lo \
+ mt-opc.lo \
++ nios2-opc.lo \
++ nios2-dis.lo \
+ ns32k-dis.lo \
+ openrisc-asm.lo \
+ openrisc-desc.lo \
+@@ -1517,6 +1521,13 @@ mt-opc.lo: mt-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \
+ mt-desc.h $(INCDIR)/opcode/cgen-bitset.h $(INCDIR)/opcode/cgen.h \
+ $(INCDIR)/symcat.h $(INCDIR)/opcode/cgen-bitset.h mt-opc.h \
+ $(INCDIR)/libiberty.h $(INCDIR)/ansidecl.h $(INCDIR)/safe-ctype.h
++nios2-opc.lo: nios2-opc.c sysdep.h config.h $(INCDIR)/ansidecl.h \
++ $(INCDIR)/opcode/nios2.h
++nios2-dis.lo: nios2-dis.c sysdep.h config.h $(INCDIR)/ansidecl.h \
++ $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/symcat.h $(INCDIR)/opcode/nios2.h \
++ opintl.h $(BFDDIR)/elf-bfd.h $(INCDIR)/elf/common.h \
++ $(INCDIR)/elf/internal.h $(INCDIR)/elf/external.h $(INCDIR)/bfdlink.h \
++ $(INCDIR)/elf/nios2.h $(INCDIR)/elf/reloc-macros.h
+ ns32k-dis.lo: ns32k-dis.c $(BFD_H) $(INCDIR)/ansidecl.h \
+ $(INCDIR)/symcat.h sysdep.h config.h $(INCDIR)/ansidecl.h \
+ $(INCDIR)/dis-asm.h $(BFD_H) $(INCDIR)/opcode/ns32k.h \
+diff --git a/opcodes/configure b/opcodes/configure
+index 8e3e27e..a28cc46 100755
+--- a/opcodes/configure
++++ b/opcodes/configure
+@@ -6561,6 +6561,7 @@ if test x${all_targets} = xfalse ; then
+ bfd_mn10300_arch) ta="$ta m10300-dis.lo m10300-opc.lo" ;;
+ bfd_mt_arch) ta="$ta mt-asm.lo mt-desc.lo mt-dis.lo mt-ibld.lo mt-opc.lo" using_cgen=yes ;;
+ bfd_msp430_arch) ta="$ta msp430-dis.lo" ;;
++ bfd_nios2_arch) ta="$ta nios2-opc.lo nios2-dis.lo" ;;
+ bfd_ns32k_arch) ta="$ta ns32k-dis.lo" ;;
+ bfd_openrisc_arch) ta="$ta openrisc-asm.lo openrisc-desc.lo openrisc-dis.lo openrisc-ibld.lo openrisc-opc.lo" using_cgen=yes ;;
+ bfd_or32_arch) ta="$ta or32-dis.lo or32-opc.lo" using_cgen=yes ;;
+diff --git a/opcodes/configure.in b/opcodes/configure.in
+index d937784..c9df814 100644
+--- a/opcodes/configure.in
++++ b/opcodes/configure.in
+@@ -190,6 +190,7 @@ if test x${all_targets} = xfalse ; then
+ bfd_mn10300_arch) ta="$ta m10300-dis.lo m10300-opc.lo" ;;
+ bfd_mt_arch) ta="$ta mt-asm.lo mt-desc.lo mt-dis.lo mt-ibld.lo mt-opc.lo" using_cgen=yes ;;
+ bfd_msp430_arch) ta="$ta msp430-dis.lo" ;;
++ bfd_nios2_arch) ta="$ta nios2-opc.lo nios2-dis.lo" ;;
+ bfd_ns32k_arch) ta="$ta ns32k-dis.lo" ;;
+ bfd_openrisc_arch) ta="$ta openrisc-asm.lo openrisc-desc.lo openrisc-dis.lo openrisc-ibld.lo openrisc-opc.lo" using_cgen=yes ;;
+ bfd_or32_arch) ta="$ta or32-dis.lo or32-opc.lo" using_cgen=yes ;;
+diff --git a/opcodes/disassemble.c b/opcodes/disassemble.c
+index ca28f56..dfacbb9 100644
+--- a/opcodes/disassemble.c
++++ b/opcodes/disassemble.c
+@@ -80,6 +80,7 @@
+ #define ARCH_xtensa
+ #define ARCH_z80
+ #define ARCH_z8k
++#define ARCH_nios2
+ #define INCLUDE_SHMEDIA
+ #endif
+
+@@ -424,6 +425,14 @@ disassembler (abfd)
+ disassemble = print_insn_iq2000;
+ break;
+ #endif
++#ifdef ARCH_nios2
++ case bfd_arch_nios2:
++ if (bfd_big_endian (abfd))
++ disassemble = print_insn_big_nios2;
++ else
++ disassemble = print_insn_little_nios2;
++ break;
++#endif
+ #ifdef ARCH_m32c
+ case bfd_arch_m32c:
+ disassemble = print_insn_m32c;
+diff --git a/opcodes/nios2-dis.c b/opcodes/nios2-dis.c
+new file mode 100644
+index 0000000..ac9eb0d
+--- /dev/null
++++ b/opcodes/nios2-dis.c
+@@ -0,0 +1,462 @@
++/* nios2-dis.c -- Altera New Jersey disassemble routines.
++
++ Copyright (C) 2003
++ by Nigel Gray (ngray@altera.com).
++
++This file is part of GDB, GAS, and the GNU binutils.
++
++GDB, GAS, and the GNU binutils are free software; you can redistribute
++them and/or modify them under the terms of the GNU General Public
++License as published by the Free Software Foundation; either version
++1, or (at your option) any later version.
++
++GDB, GAS, and the GNU binutils are distributed in the hope that they
++will be useful, but WITHOUT ANY WARRANTY; without even the implied
++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
++the GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with this file; see the file COPYING. If not, write to the Free
++Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#include <stdlib.h>
++#include <assert.h>
++#include <string.h>
++#include "dis-asm.h"
++#include "opcode/nios2.h"
++
++/* No symbol table is available when this code runs out in an embedded
++ system as when it is used for disassembler support in a monitor. */
++
++#if !defined(EMBEDDED_ENV)
++#define SYMTAB_AVAILABLE 1
++#include "elf-bfd.h"
++#include "elf/nios2.h"
++#endif
++
++/* length of New Jersey instruction in bytes */
++#define INSNLEN 4
++
++/* helper function prototypes */
++static int nios2_disassemble (bfd_vma, unsigned long, disassemble_info *);
++static void nios2_init_opcode_hash (void);
++
++
++static int nios2_print_insn_arg (const char *argptr, unsigned long opcode,
++ bfd_vma address, disassemble_info * info);
++
++
++/* print_insn_nios2 is the main disassemble function for New Jersey.
++ The function diassembler(abfd) (source in disassemble.c) returns a
++ pointer to this either print_insn_big_nios2 or
++ print_insn_little_nios2, which in turn call this function, when the
++ bfd machine type is New Jersey. print_insn_nios2 reads the
++ instruction word at the address given, and prints the disassembled
++ instruction on the stream info->stream using info->fprintf_func. */
++
++static int
++print_insn_nios2 (bfd_vma address, disassemble_info * info,
++ enum bfd_endian endianness)
++{
++ /* buffer into which the instruction bytes are written */
++ bfd_byte buffer[INSNLEN];
++ /* used to indicate return status from function calls */
++ int status;
++
++ assert (info != NULL);
++
++ status = (*info->read_memory_func) (address, buffer, INSNLEN, info);
++ if (status == 0)
++ {
++ unsigned long insn;
++ if (endianness == BFD_ENDIAN_BIG)
++ insn = (unsigned long) bfd_getb32 (buffer);
++ else
++ insn = (unsigned long) bfd_getl32 (buffer);
++ status = nios2_disassemble (address, insn, info);
++ }
++ else
++ {
++ (*info->memory_error_func) (status, address, info);
++ status = -1;
++ }
++ return status;
++}
++
++int
++print_insn_big_nios2 (bfd_vma address, disassemble_info * info)
++{
++ return print_insn_nios2 (address, info, BFD_ENDIAN_BIG);
++}
++
++int
++print_insn_little_nios2 (bfd_vma address, disassemble_info * info)
++{
++ return print_insn_nios2 (address, info, BFD_ENDIAN_LITTLE);
++}
++
++/* Data structures used by the opcode hash table */
++
++typedef struct _nios2_opcode_hash
++{
++ const struct nios2_opcode *opcode;
++ struct _nios2_opcode_hash *next;
++} nios2_opcode_hash;
++
++static bfd_boolean nios2_hash_init = 0;
++static nios2_opcode_hash *nios2_hash[(OP_MASK_OP) + 1];
++
++/* separate hash table for pseudo-ops */
++static nios2_opcode_hash *nios2_ps_hash[(OP_MASK_OP) + 1];
++
++/* Function to initialize the opcode hash table */
++
++void
++nios2_init_opcode_hash ()
++{
++ unsigned int i;
++ register const struct nios2_opcode *op;
++ nios2_opcode_hash *tmp_hash;
++
++ for (i = 0; i <= OP_MASK_OP; ++i)
++ {
++ nios2_hash[0] = NULL;
++ }
++ for (i = 0; i <= OP_MASK_OP; i++)
++ {
++ for (op = nios2_opcodes; op < &nios2_opcodes[NUMOPCODES]; op++)
++ {
++ if ((op->pinfo & NIOS2_INSN_MACRO) == NIOS2_INSN_MACRO)
++ {
++ if (i == ((op->match >> OP_SH_OP) & OP_MASK_OP) &&
++ (op->
++ pinfo & (NIOS2_INSN_MACRO_MOV | NIOS2_INSN_MACRO_MOVI) &
++ 0x7fffffff) != 0)
++ {
++ tmp_hash = nios2_ps_hash[i];
++ if (tmp_hash == NULL)
++ {
++ tmp_hash =
++ (nios2_opcode_hash *)
++ malloc (sizeof (nios2_opcode_hash));
++ nios2_ps_hash[i] = tmp_hash;
++ }
++ else
++ {
++ while (tmp_hash->next != NULL)
++ tmp_hash = tmp_hash->next;
++ tmp_hash->next =
++ (nios2_opcode_hash *)
++ malloc (sizeof (nios2_opcode_hash));
++ tmp_hash = tmp_hash->next;
++ }
++ if (tmp_hash == NULL)
++ {
++ fprintf (stderr,
++ "error allocating memory...broken disassembler\n");
++ abort ();
++ }
++ tmp_hash->opcode = op;
++ tmp_hash->next = NULL;
++ }
++ }
++ else if (i == ((op->match >> OP_SH_OP) & OP_MASK_OP))
++ {
++ tmp_hash = nios2_hash[i];
++ if (tmp_hash == NULL)
++ {
++ tmp_hash =
++ (nios2_opcode_hash *) malloc (sizeof (nios2_opcode_hash));
++ nios2_hash[i] = tmp_hash;
++ }
++ else
++ {
++ while (tmp_hash->next != NULL)
++ tmp_hash = tmp_hash->next;
++ tmp_hash->next =
++ (nios2_opcode_hash *) malloc (sizeof (nios2_opcode_hash));
++ tmp_hash = tmp_hash->next;
++ }
++ if (tmp_hash == NULL)
++ {
++ fprintf (stderr,
++ "error allocating memory...broken disassembler\n");
++ abort ();
++ }
++ tmp_hash->opcode = op;
++ tmp_hash->next = NULL;
++ }
++ }
++ }
++ nios2_hash_init = 1;
++#ifdef DEBUG_HASHTABLE
++ for (i = 0; i <= OP_MASK_OP; ++i)
++ {
++ printf ("index: 0x%02X ops: ", i);
++ tmp_hash = nios2_hash[i];
++ if (tmp_hash != NULL)
++ {
++ while (tmp_hash != NULL)
++ {
++ printf ("%s ", tmp_hash->opcode->name);
++ tmp_hash = tmp_hash->next;
++ }
++ }
++ printf ("\n");
++ }
++
++ for (i = 0; i <= OP_MASK_OP; ++i)
++ {
++ printf ("index: 0x%02X ops: ", i);
++ tmp_hash = nios2_ps_hash[i];
++ if (tmp_hash != NULL)
++ {
++ while (tmp_hash != NULL)
++ {
++ printf ("%s ", tmp_hash->opcode->name);
++ tmp_hash = tmp_hash->next;
++ }
++ }
++ printf ("\n");
++ }
++#endif
++}
++
++/* Function which returns a pointer to an nios2_opcode struct for
++ a given instruction opcode, or NULL if there is an error */
++
++const struct nios2_opcode *
++nios2_find_opcode_hash (unsigned long opcode)
++{
++ nios2_opcode_hash *entry;
++
++ /* Build a hash table to shorten the search time. */
++ if (!nios2_hash_init)
++ {
++ nios2_init_opcode_hash ();
++ }
++
++ /* first look in the pseudo-op hashtable */
++ entry = nios2_ps_hash[(opcode >> OP_SH_OP) & OP_MASK_OP];
++
++ /* look for a match and if we get one, this is the instruction we decode */
++ while (entry != NULL)
++ {
++ if ((entry->opcode->match) == (opcode & entry->opcode->mask))
++ return entry->opcode;
++ else
++ entry = entry->next;
++ }
++
++ /* if we haven't yet returned, then we need to look in the main
++ hashtable */
++ entry = nios2_hash[(opcode >> OP_SH_OP) & OP_MASK_OP];
++
++ if (entry == NULL)
++ return NULL;
++
++
++ while (entry != NULL)
++ {
++ if ((entry->opcode->match) == (opcode & entry->opcode->mask))
++ return entry->opcode;
++ else
++ entry = entry->next;
++ }
++
++ return NULL;
++}
++
++/* nios2_disassemble does all the work of disassembling a New Jersey
++ instruction opcode */
++
++int
++nios2_disassemble (bfd_vma address, unsigned long opcode,
++ disassemble_info * info)
++{
++ const struct nios2_opcode *op;
++ const char *argstr;
++
++ info->bytes_per_line = INSNLEN;
++ info->bytes_per_chunk = INSNLEN;
++ info->display_endian = info->endian;
++ info->insn_info_valid = 1;
++ info->branch_delay_insns = 0;
++ info->data_size = 0;
++ info->insn_type = dis_nonbranch;
++ info->target = 0;
++ info->target2 = 0;
++
++ /* Find the major opcode and use this to disassemble
++ the instruction and its arguments */
++ op = nios2_find_opcode_hash (opcode);
++
++ if (op != NULL)
++ {
++ bfd_boolean is_nop = FALSE;
++ if (op->pinfo == NIOS2_INSN_MACRO_MOV)
++ {
++ /* check for mov r0, r0 and if it is
++ change to nop */
++ int dst, src;
++ dst = GET_INSN_FIELD (RRD, opcode);
++ src = GET_INSN_FIELD (RRS, opcode);
++ if (dst == 0 && src == 0)
++ {
++ (*info->fprintf_func) (info->stream, "nop");
++ is_nop = TRUE;
++ }
++ else
++ {
++ (*info->fprintf_func) (info->stream, "%s", op->name);
++ }
++ }
++ else
++ {
++ (*info->fprintf_func) (info->stream, "%s", op->name);
++ }
++
++ if (!is_nop)
++ {
++ argstr = op->args;
++ if (argstr != NULL && *argstr != '\0')
++ {
++ (*info->fprintf_func) (info->stream, "\t");
++ while (*argstr != '\0')
++ {
++ nios2_print_insn_arg (argstr, opcode, address, info);
++ ++argstr;
++ }
++ }
++ }
++ }
++ else
++ {
++ /* Handle undefined instructions. */
++ info->insn_type = dis_noninsn;
++ (*info->fprintf_func) (info->stream, "0x%x", (unsigned int) opcode);
++ }
++ // this tells the caller how far to advance the program counter
++ return INSNLEN;
++}
++
++/* The function nios2_print_insn_arg uses the character pointed
++ to by argptr to determine how it print the next token or separator
++ character in the arguments to an instruction */
++int
++nios2_print_insn_arg (const char *argptr,
++ unsigned long opcode, bfd_vma address,
++ disassemble_info * info)
++{
++ unsigned long i = 0;
++ unsigned long reg_base;
++
++ assert (argptr != NULL);
++ assert (info != NULL);
++
++ switch (*argptr)
++ {
++ case ',':
++ case '(':
++ case ')':
++ (*info->fprintf_func) (info->stream, "%c", *argptr);
++ break;
++ case 'd':
++ i = GET_INSN_FIELD (RRD, opcode);
++
++ if (GET_INSN_FIELD (OP, opcode) == OP_MATCH_CUSTOM
++ && GET_INSN_FIELD (CUSTOM_C, opcode) == 0)
++ reg_base = COPROCREGBASE;
++ else
++ reg_base = 0;
++
++ if (i < NUMREGNAMES)
++ (*info->fprintf_func) (info->stream, "%s",
++ nios2_regs[i + reg_base].name);
++ else
++ (*info->fprintf_func) (info->stream, "unknown");
++ break;
++ case 's':
++ i = GET_INSN_FIELD (RRS, opcode);
++
++ if (GET_INSN_FIELD (OP, opcode) == OP_MATCH_CUSTOM
++ && GET_INSN_FIELD (CUSTOM_A, opcode) == 0)
++ reg_base = COPROCREGBASE;
++ else
++ reg_base = 0;
++
++ if (i < NUMREGNAMES)
++ (*info->fprintf_func) (info->stream, "%s",
++ nios2_regs[i + reg_base].name);
++ else
++ (*info->fprintf_func) (info->stream, "unknown");
++ break;
++ case 't':
++ i = GET_INSN_FIELD (RRT, opcode);
++
++ if (GET_INSN_FIELD (OP, opcode) == OP_MATCH_CUSTOM
++ && GET_INSN_FIELD (CUSTOM_B, opcode) == 0)
++ reg_base = COPROCREGBASE;
++ else
++ reg_base = 0;
++
++ if (i < NUMREGNAMES)
++ (*info->fprintf_func) (info->stream, "%s",
++ nios2_regs[i + reg_base].name);
++ else
++ (*info->fprintf_func) (info->stream, "unknown");
++ break;
++ case 'i':
++ /* 16-bit signed immediate */
++ i = (signed) (GET_INSN_FIELD (IMM16, opcode) << 16) >> 16;
++ (*info->fprintf_func) (info->stream, "%d", (int) i);
++ break;
++ case 'u':
++ /* 16-bit unsigned immediate */
++ i = GET_INSN_FIELD (IMM16, opcode);
++ (*info->fprintf_func) (info->stream, "%d", (int) i);
++ break;
++ case 'o':
++ /* 16-bit signed immediate address offset */
++ i = (signed) (GET_INSN_FIELD (IMM16, opcode) << 16) >> 16;
++ address = address + 4 + i; /* NG changed to byte offset 1/9/03 */
++ (*info->print_address_func) (address, info);
++ break;
++ case 'p':
++ /* 5-bit unsigned immediate */
++ i = GET_INSN_FIELD (CACHE_OPX, opcode);
++ (*info->fprintf_func) (info->stream, "%d", (int) i);
++ break;
++ case 'j':
++ /* 5-bit unsigned immediate */
++ i = GET_INSN_FIELD (IMM5, opcode);
++ (*info->fprintf_func) (info->stream, "%d", (int) i);
++ break;
++ case 'l':
++ /* 8-bit unsigned immediate */
++ /* FIXME - not yet implemented */
++ i = GET_INSN_FIELD (CUSTOM_N, opcode);
++ (*info->fprintf_func) (info->stream, "%u", (int) i);
++ break;
++ case 'm':
++ /* 26-bit unsigned immediate */
++ i = GET_INSN_FIELD (IMM26, opcode);
++ /* this translates to an address because its only used in call instructions */
++ address = (address & 0xf0000000) | (i << 2);
++ (*info->print_address_func) (address, info);
++ break;
++ case 'c':
++ i = GET_INSN_FIELD (IMM5, opcode); /* ctrl register index */
++ (*info->fprintf_func) (info->stream, "%s",
++ nios2_regs[CTLREGBASE + i].name);
++ break;
++ case 'b':
++ i = GET_INSN_FIELD (IMM5, opcode);
++ (*info->fprintf_func) (info->stream, "%d", (int) i);
++ break;
++ default:
++ (*info->fprintf_func) (info->stream, "unknown");
++ break;
++ }
++ return 0;
++}
+diff --git a/opcodes/nios2-opc.c b/opcodes/nios2-opc.c
+new file mode 100644
+index 0000000..c860207
+--- /dev/null
++++ b/opcodes/nios2-opc.c
+@@ -0,0 +1,320 @@
++/* nios2-opc.c -- Altera New Jersey opcode list.
++
++ Copyright (C) 2003
++ by Nigel Gray (ngray@altera.com).
++
++This file is part of GDB, GAS, and the GNU binutils.
++
++GDB, GAS, and the GNU binutils are free software; you can redistribute
++them and/or modify them under the terms of the GNU General Public
++License as published by the Free Software Foundation; either version
++1, or (at your option) any later version.
++
++GDB, GAS, and the GNU binutils are distributed in the hope that they
++will be useful, but WITHOUT ANY WARRANTY; without even the implied
++warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
++the GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with this file; see the file COPYING. If not, write to the Free
++Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#include <stdio.h>
++#include "opcode/nios2.h"
++
++/* Register string table */
++
++const struct nios2_reg nios2_builtin_regs[] = {
++ {"zero", 0},
++ {"at", 1}, // assembler temporary
++ {"r2", 2},
++ {"r3", 3},
++ {"r4", 4},
++ {"r5", 5},
++ {"r6", 6},
++ {"r7", 7},
++ {"r8", 8},
++ {"r9", 9},
++ {"r10", 10},
++ {"r11", 11},
++ {"r12", 12},
++ {"r13", 13},
++ {"r14", 14},
++ {"r15", 15},
++ {"r16", 16},
++ {"r17", 17},
++ {"r18", 18},
++ {"r19", 19},
++ {"r20", 20},
++ {"r21", 21},
++ {"r22", 22},
++ {"r23", 23},
++ {"et", 24},
++ {"bt", 25},
++ {"gp", 26}, /* global pointer */
++ {"sp", 27}, /* stack pointer */
++ {"fp", 28}, /* frame pointer */
++ {"ea", 29}, /* exception return address */
++ {"ba", 30}, /* breakpoint return address */
++ {"ra", 31}, /* return address */
++
++ /* alternative names for special registers */
++ {"r0", 0},
++ {"r1", 1},
++ {"r24", 24},
++ {"r25", 25},
++ {"r26", 26},
++ {"r27", 27},
++ {"r28", 28},
++ {"r29", 29},
++ {"r30", 30},
++ {"r31", 31},
++
++ /* control register names */
++ {"status", 0},
++ {"estatus", 1},
++ {"bstatus", 2},
++ {"ienable", 3},
++ {"ipending", 4},
++ {"cpuid", 5},
++ {"ctl6", 6},
++ {"ctl7", 7},
++ {"pteaddr", 8},
++ {"tlbacc", 9},
++ {"tlbmisc", 10},
++ {"fstatus", 11},
++ {"ctl12", 12},
++ {"ctl13", 13},
++ {"ctl14", 14},
++ {"ctl15", 15},
++ {"ctl16", 16},
++ {"ctl17", 17},
++ {"ctl18", 18},
++ {"ctl19", 19},
++ {"ctl20", 20},
++ {"ctl21", 21},
++ {"ctl22", 22},
++ {"ctl23", 23},
++ {"ctl24", 24},
++ {"ctl25", 25},
++ {"ctl26", 26},
++ {"ctl27", 27},
++ {"ctl28", 28},
++ {"ctl29", 29},
++ {"ctl30", 30},
++ {"ctl31", 31},
++
++ /* alternative names for special control registers */
++ {"ctl0", 0},
++ {"ctl1", 1},
++ {"ctl2", 2},
++ {"ctl3", 3},
++ {"ctl4", 4},
++ {"ctl5", 5},
++ {"ctl8", 8},
++ {"ctl9", 9},
++ {"ctl10", 10},
++ {"ctl11", 11},
++
++ /* coprocessor register names */
++ {"c0", 0},
++ {"c1", 1},
++ {"c2", 2},
++ {"c3", 3},
++ {"c4", 4},
++ {"c5", 5},
++ {"c6", 6},
++ {"c7", 7},
++ {"c8", 8},
++ {"c9", 9},
++ {"c10", 10},
++ {"c11", 11},
++ {"c12", 12},
++ {"c13", 13},
++ {"c14", 14},
++ {"c15", 15},
++ {"c16", 16},
++ {"c17", 17},
++ {"c18", 18},
++ {"c19", 19},
++ {"c20", 20},
++ {"c21", 21},
++ {"c22", 22},
++ {"c23", 23},
++ {"c24", 24},
++ {"c25", 25},
++ {"c26", 26},
++ {"c27", 27},
++ {"c28", 28},
++ {"c29", 29},
++ {"c30", 30},
++ {"c31", 31},
++};
++
++#define NIOS2_NUM_REGS \
++ ((sizeof nios2_builtin_regs) / (sizeof (nios2_builtin_regs[0])))
++const int nios2_num_builtin_regs = NIOS2_NUM_REGS;
++
++/* const removed from the following to allow for dynamic extensions to the
++ * built-in instruction set. */
++struct nios2_reg *nios2_regs = (struct nios2_reg *) nios2_builtin_regs;
++int nios2_num_regs = NIOS2_NUM_REGS;
++#undef NIOS2_NUM_REGS
++
++/* overflow message string templates */
++
++char *overflow_msgs[] = {
++ "call target address 0x%08x out of range 0x%08x to 0x%08x",
++ "branch offset %d out of range %d to %d",
++ "%s offset %d out of range %d to %d",
++ "immediate value %d out of range %d to %d",
++ "immediate value %u out of range %u to %u",
++ "immediate value %u out of range %u to %u",
++ "custom instruction opcode %u out of range %u to %u",
++};
++
++
++
++/*--------------------------------------------------------------------------------
++ This is the opcode table used by the New Jersey GNU as, disassembler and GDB
++ --------------------------------------------------------------------------------*/
++
++/*
++ The following letters can appear in the args field of the nios2_opcode
++ structure:
++
++ c - a 5-bit control register index or break opcode
++ d - a 5-bit destination register index
++ s - a 5-bit left source register index
++ t - a 5-bit right source register index
++ i - a 16-bit signed immediate
++ u - a 16-bit unsigned immediate
++
++ j - a 5-bit unsigned immediate
++ k - a 6-bit unsigned immediate
++ l - an 8-bit unsigned immediate
++ m - a 26-bit unsigned immediate
++*/
++
++/* *INDENT-OFF* */
++/* FIXME: Re-format for GNU standards */
++const struct nios2_opcode nios2_builtin_opcodes[] =
++{
++ /* name, args, args_test num_args, match, mask, pinfo */
++ {"add", "d,s,t", "d,s,t,E", 3, OP_MATCH_ADD, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"addi", "t,s,i", "t,s,i,E", 3, OP_MATCH_ADDI, OP_MASK_IOP, NIOS2_INSN_ADDI, signed_immed16_overflow },
++ {"subi", "t,s,i", "t,s,i,E", 3, OP_MATCH_ADDI, OP_MASK_IOP, NIOS2_INSN_MACRO, signed_immed16_overflow },
++ {"and", "d,s,t", "d,s,t,E", 3, OP_MATCH_AND, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"andhi", "t,s,u", "t,s,u,E", 3, OP_MATCH_ANDHI, OP_MASK_IOP, 0, unsigned_immed16_overflow },
++ {"andi", "t,s,u", "t,s,u,E", 3, OP_MATCH_ANDI, OP_MASK_IOP, NIOS2_INSN_ANDI, unsigned_immed16_overflow },
++ {"beq", "s,t,o", "s,t,o,E", 3, OP_MATCH_BEQ, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bge", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGE, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bgeu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGEU, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bgt", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLT, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bgtu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLTU, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"ble", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGE, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bleu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BGEU, OP_MASK_IOP, NIOS2_INSN_MACRO|NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"blt", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLT, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bltu", "s,t,o", "s,t,o,E", 3, OP_MATCH_BLTU, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"bne", "s,t,o", "s,t,o,E", 3, OP_MATCH_BNE, OP_MASK_IOP, NIOS2_INSN_CBRANCH, branch_target_overflow },
++ {"br", "o", "o,E", 1, OP_MATCH_BR, OP_MASK_IOP, NIOS2_INSN_UBRANCH, branch_target_overflow },
++ {"break", "b", "b,E", 1, OP_MATCH_BREAK, OP_MASK_BREAK, 0, no_overflow },
++ {"bret", "", "E", 0, OP_MATCH_BRET, OP_MASK, 0, no_overflow },
++ {"flushd", "i(s)", "i(s)E", 2, OP_MATCH_FLUSHD, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"flushda", "i(s)", "i(s)E", 2, OP_MATCH_FLUSHDA, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"flushi", "s", "s,E", 1, OP_MATCH_FLUSHI, OP_MASK_FLUSHI, 0, no_overflow },
++ {"flushp", "", "E", 0, OP_MATCH_FLUSHP, OP_MASK, 0, no_overflow },
++ {"initd", "i(s)", "i(s)E", 2, OP_MATCH_INITD, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"initi", "s", "s,E", 1, OP_MATCH_INITI, OP_MASK_INITI, 0, no_overflow },
++ {"call", "m", "m,E", 1, OP_MATCH_CALL, OP_MASK_IOP, NIOS2_INSN_CALL, call_target_overflow },
++ {"callr", "s", "s,E", 1, OP_MATCH_CALLR, OP_MASK_CALLR, 0, no_overflow },
++ {"cmpeq", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPEQ, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"cmpeqi", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPEQI, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"cmpge", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGE, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"cmpgei", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPGEI, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"cmpgeu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGEU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"cmpgeui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPGEUI, OP_MASK_IOP, 0, unsigned_immed16_overflow },
++ {"cmpgt", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLT, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow },
++ {"cmpgti", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPGEI, OP_MASK_IOP, NIOS2_INSN_MACRO, signed_immed16_overflow },
++ {"cmpgtu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLTU, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow },
++ {"cmpgtui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPGEUI, OP_MASK_IOP, NIOS2_INSN_MACRO, unsigned_immed16_overflow },
++ {"cmple", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGE, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow },
++ {"cmplei", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPLTI, OP_MASK_IOP, NIOS2_INSN_MACRO, signed_immed16_overflow },
++ {"cmpleu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPGEU, OP_MASK_ROPX | OP_MASK_ROP, NIOS2_INSN_MACRO, no_overflow },
++ {"cmpleui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPLTUI, OP_MASK_IOP, NIOS2_INSN_MACRO, unsigned_immed16_overflow },
++ {"cmplt", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLT, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"cmplti", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPLTI, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"cmpltu", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPLTU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"cmpltui", "t,s,u", "t,s,u,E", 3, OP_MATCH_CMPLTUI, OP_MASK_IOP, 0, unsigned_immed16_overflow },
++ {"cmpne", "d,s,t", "d,s,t,E", 3, OP_MATCH_CMPNE, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"cmpnei", "t,s,i", "t,s,i,E", 3, OP_MATCH_CMPNEI, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"div", "d,s,t", "d,s,t,E", 3, OP_MATCH_DIV, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"divu", "d,s,t", "d,s,t,E", 3, OP_MATCH_DIVU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"jmp", "s", "s,E", 1, OP_MATCH_JMP, OP_MASK_JMP, 0, no_overflow },
++ {"jmpi", "m", "m,E", 1, OP_MATCH_JMPI, OP_MASK_IOP, 0, no_overflow },
++ {"ldb", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDB, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldbio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDBIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldbu", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDBU, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldbuio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDBUIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldh", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDH, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldhio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDHIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldhu", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDHU, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldhuio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDHUIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldw", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDW, OP_MASK_IOP, 0, address_offset_overflow },
++ {"ldwio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_LDWIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"mov", "d,s", "d,s,E", 2, OP_MATCH_ADD, OP_MASK_RRT|OP_MASK_ROPX|OP_MASK_ROP, NIOS2_INSN_MACRO_MOV, no_overflow },
++ {"movhi", "t,u", "t,u,E", 2, OP_MATCH_ORHI, OP_MASK_IRS|OP_MASK_IOP, NIOS2_INSN_MACRO_MOVI, unsigned_immed16_overflow },
++ {"movui", "t,u", "t,u,E", 2, OP_MATCH_ORI, OP_MASK_IRS|OP_MASK_IOP, NIOS2_INSN_MACRO_MOVI, unsigned_immed16_overflow },
++ {"movi", "t,i", "t,i,E", 2, OP_MATCH_ADDI, OP_MASK_IRS|OP_MASK_IOP, NIOS2_INSN_MACRO_MOVI, signed_immed16_overflow },
++ /* movia expands to two instructions so there is no mask or match */
++ {"movia", "t,o", "t,o,E", 2, OP_MATCH_ORHI, OP_MASK_IOP, NIOS2_INSN_MACRO_MOVIA, no_overflow },
++ {"mul", "d,s,t", "d,s,t,E", 3, OP_MATCH_MUL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"muli", "t,s,i", "t,s,i,E", 3, OP_MATCH_MULI, OP_MASK_IOP, 0, signed_immed16_overflow },
++ {"mulxss", "d,s,t", "d,s,t,E", 3, OP_MATCH_MULXSS, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"mulxsu", "d,s,t", "d,s,t,E", 3, OP_MATCH_MULXSU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"mulxuu", "d,s,t", "d,s,t,E", 3, OP_MATCH_MULXUU, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"nextpc", "d", "d,E", 1, OP_MATCH_NEXTPC, OP_MASK_NEXTPC, 0, no_overflow },
++ {"nop", "", "E", 0, OP_MATCH_ADD, OP_MASK, NIOS2_INSN_MACRO_MOV, no_overflow },
++ {"nor", "d,s,t", "d,s,t,E", 3, OP_MATCH_NOR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"or", "d,s,t", "d,s,t,E", 3, OP_MATCH_OR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"orhi", "t,s,u", "t,s,u,E", 3, OP_MATCH_ORHI, OP_MASK_IOP, 0, unsigned_immed16_overflow },
++ {"ori", "t,s,u", "t,s,u,E", 3, OP_MATCH_ORI, OP_MASK_IOP, NIOS2_INSN_ORI, unsigned_immed16_overflow },
++ {"rdctl", "d,c", "d,c,E", 2, OP_MATCH_RDCTL, OP_MASK_RDCTL, 0, no_overflow },
++ {"ret", "", "E", 0, OP_MATCH_RET, OP_MASK, 0, no_overflow },
++ {"rol", "d,s,t", "d,s,t,E", 3, OP_MATCH_ROL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"roli", "d,s,j", "d,s,j,E", 3, OP_MATCH_ROLI, OP_MASK_ROLI, 0, unsigned_immed5_overflow },
++ {"ror", "d,s,t", "d,s,t,E", 3, OP_MATCH_ROR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"sll", "d,s,t", "d,s,t,E", 3, OP_MATCH_SLL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"slli", "d,s,j", "d,s,j,E", 3, OP_MATCH_SLLI, OP_MASK_SLLI, 0, unsigned_immed5_overflow },
++ {"sra", "d,s,t", "d,s,t,E", 3, OP_MATCH_SRA, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"srai", "d,s,j", "d,s,j,E", 3, OP_MATCH_SRAI, OP_MASK_SRAI, 0, unsigned_immed5_overflow },
++ {"srl", "d,s,t", "d,s,t,E", 3, OP_MATCH_SRL, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"srli", "d,s,j", "d,s,j,E", 3, OP_MATCH_SRLI, OP_MASK_SRLI, 0, unsigned_immed5_overflow },
++ {"stb", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STB, OP_MASK_IOP, 0, address_offset_overflow },
++ {"stbio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STBIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"sth", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STH, OP_MASK_IOP, 0, address_offset_overflow },
++ {"sthio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STHIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"stw", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STW, OP_MASK_IOP, 0, address_offset_overflow },
++ {"stwio", "t,i(s)", "t,i(s)E", 3, OP_MATCH_STWIO, OP_MASK_IOP, 0, address_offset_overflow },
++ {"sub", "d,s,t", "d,s,t,E", 3, OP_MATCH_SUB, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"sync", "", "E", 0, OP_MATCH_SYNC, OP_MASK_SYNC, 0, no_overflow },
++ {"trap", "", "E", 0, OP_MATCH_TRAP, OP_MASK_TRAP, 0, no_overflow },
++ {"eret", "", "E", 0, OP_MATCH_ERET, OP_MASK, 0, no_overflow },
++ {"custom", "l,d,s,t", "l,d,s,t,E", 4, OP_MATCH_CUSTOM, OP_MASK_ROP, 0, custom_opcode_overflow },
++ {"wrctl", "c,s", "c,s,E", 2, OP_MATCH_WRCTL, OP_MASK_WRCTL, 0, no_overflow },
++ {"xor", "d,s,t", "d,s,t,E", 3, OP_MATCH_XOR, OP_MASK_ROPX | OP_MASK_ROP, 0, no_overflow },
++ {"xorhi", "t,s,u", "t,s,u,E", 3, OP_MATCH_XORHI, OP_MASK_IOP, 0, unsigned_immed16_overflow },
++ {"xori", "t,s,u", "t,s,u,E", 3, OP_MATCH_XORI, OP_MASK_IOP, NIOS2_INSN_XORI, unsigned_immed16_overflow }
++};
++/* *INDENT-ON* */
++
++#define NIOS2_NUM_OPCODES \
++ ((sizeof nios2_builtin_opcodes) / (sizeof (nios2_builtin_opcodes[0])))
++const int bfd_nios2_num_builtin_opcodes = NIOS2_NUM_OPCODES;
++
++/* const removed from the following to allow for dynamic extensions to the
++ * built-in instruction set. */
++struct nios2_opcode *nios2_opcodes =
++ (struct nios2_opcode *) nios2_builtin_opcodes;
++int bfd_nios2_num_opcodes = NIOS2_NUM_OPCODES;
++#undef NIOS2_NUM_OPCODES