diff options
Diffstat (limited to 'package/qtopia4')
-rw-r--r-- | package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch | 6139 |
1 files changed, 6139 insertions, 0 deletions
diff --git a/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch b/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch new file mode 100644 index 000000000..3dcebb7c7 --- /dev/null +++ b/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch @@ -0,0 +1,6139 @@ +diff -Nupr a/include/Qt/qatomic_avr32.h b/include/Qt/qatomic_avr32.h +--- a/include/Qt/qatomic_avr32.h 1970-01-01 01:00:00.000000000 +0100 ++++ b/include/Qt/qatomic_avr32.h 2006-07-27 07:55:09.000000000 +0200 +@@ -0,0 +1 @@ ++#include "../../src/corelib/arch/qatomic_avr32.h" +diff -Nupr a/include/QtCore/qatomic_avr32.h b/include/QtCore/qatomic_avr32.h +--- a/include/QtCore/qatomic_avr32.h 1970-01-01 01:00:00.000000000 +0100 ++++ b/include/QtCore/qatomic_avr32.h 2006-07-27 07:55:28.000000000 +0200 +@@ -0,0 +1 @@ ++#include "../../src/corelib/arch/qatomic_avr32.h" +diff -Nupr a/src/corelib/arch/arch.pri b/src/corelib/arch/arch.pri +--- a/src/corelib/arch/arch.pri 2006-06-30 09:49:44.000000000 +0200 ++++ b/src/corelib/arch/arch.pri 2006-07-26 11:03:43.000000000 +0200 +@@ -13,6 +13,7 @@ mac:HEADERS += arch/qatomic_macosx.h \ + arch/qatomic_generic.h \ + arch/qatomic_powerpc.h \ + arch/qatomic_arm.h \ ++ arch/qatomic_avr32.h \ + arch/qatomic_i386.h \ + arch/qatomic_mips.h \ + arch/qatomic_s390.h \ +diff -Nupr a/src/corelib/arch/avr32/arch.pri b/src/corelib/arch/avr32/arch.pri +--- a/src/corelib/arch/avr32/arch.pri 1970-01-01 01:00:00.000000000 +0100 ++++ b/src/corelib/arch/avr32/arch.pri 2006-07-26 11:02:16.000000000 +0200 +@@ -0,0 +1,5 @@ ++# ++# AVR32 architecture ++# ++SOURCES += $$QT_ARCH_CPP/qatomic.cpp \ ++ $$QT_ARCH_CPP/malloc.c +diff -Nupr a/src/corelib/arch/avr32/malloc.c b/src/corelib/arch/avr32/malloc.c +--- a/src/corelib/arch/avr32/malloc.c 1970-01-01 01:00:00.000000000 +0100 ++++ b/src/corelib/arch/avr32/malloc.c 2006-07-28 10:29:44.000000000 +0200 +@@ -0,0 +1,5819 @@ ++/**************************************************************************** ++** ++** This file is part of the QtCore module of the Qt Toolkit. ++** ++** This file contains third party code which is not governed by the Qt ++** Commercial License Agreement. Please read the license headers below ++** for more information. ++** ++** Further information about Qt licensing is available at: ++** http://www.trolltech.com/products/qt/licensing.html or by ++** contacting info@trolltech.com. ++** ++** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ++** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ++** ++****************************************************************************/ ++ ++/* ---- config.h */ ++#define KDE_MALLOC ++#define KDE_MALLOC_FULL ++#define KDE_MALLOC_AVR32 ++/* ---- */ ++ ++#ifdef KDE_MALLOC ++ ++#ifdef KDE_MALLOC_DEBUG ++#define DEBUG ++#endif ++ ++#define USE_MALLOC_LOCK ++#define INLINE __inline__ ++/*#define INLINE*/ ++#define USE_MEMCPY 0 ++#define MMAP_CLEARS 1 ++ ++/* ++ This is a version (aka dlmalloc) of malloc/free/realloc written by ++ Doug Lea and released to the public domain. Use, modify, and ++ redistribute this code without permission or acknowledgment in any ++ way you wish. Send questions, comments, complaints, performance ++ data, etc to dl@cs.oswego.edu ++ ++* VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) ++ ++ Note: There may be an updated version of this malloc obtainable at ++ ftp://gee.cs.oswego.edu/pub/misc/malloc.c ++ Check before installing! ++ ++* Quickstart ++ ++ This library is all in one file to simplify the most common usage: ++ ftp it, compile it (-O), and link it into another program. All ++ of the compile-time options default to reasonable values for use on ++ most unix platforms. Compile -DWIN32 for reasonable defaults on windows. ++ You might later want to step through various compile-time and dynamic ++ tuning options. ++ ++ For convenience, an include file for code using this malloc is at: ++ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.7.0.h ++ You don't really need this .h file unless you call functions not ++ defined in your system include files. The .h file contains only the ++ excerpts from this file needed for using this malloc on ANSI C/C++ ++ systems, so long as you haven't changed compile-time options about ++ naming and tuning parameters. If you do, then you can create your ++ own malloc.h that does include all settings by cutting at the point ++ indicated below. ++ ++* Why use this malloc? ++ ++ This is not the fastest, most space-conserving, most portable, or ++ most tunable malloc ever written. However it is among the fastest ++ while also being among the most space-conserving, portable and tunable. ++ Consistent balance across these factors results in a good general-purpose ++ allocator for malloc-intensive programs. ++ ++ The main properties of the algorithms are: ++ * For large (>= 512 bytes) requests, it is a pure best-fit allocator, ++ with ties normally decided via FIFO (i.e. least recently used). ++ * For small (<= 64 bytes by default) requests, it is a caching ++ allocator, that maintains pools of quickly recycled chunks. ++ * In between, and for combinations of large and small requests, it does ++ the best it can trying to meet both goals at once. ++ * For very large requests (>= 128KB by default), it relies on system ++ memory mapping facilities, if supported. ++ ++ For a longer but slightly out of date high-level description, see ++ http://gee.cs.oswego.edu/dl/html/malloc.html ++ ++ You may already by default be using a C library containing a malloc ++ that is based on some version of this malloc (for example in ++ linux). You might still want to use the one in this file in order to ++ customize settings or to avoid overheads associated with library ++ versions. ++ ++* Contents, described in more detail in "description of public routines" below. ++ ++ Standard (ANSI/SVID/...) functions: ++ malloc(size_t n); ++ calloc(size_t n_elements, size_t element_size); ++ free(Void_t* p); ++ realloc(Void_t* p, size_t n); ++ memalign(size_t alignment, size_t n); ++ valloc(size_t n); ++ mallinfo() ++ mallopt(int parameter_number, int parameter_value) ++ ++ Additional functions: ++ independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]); ++ independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]); ++ pvalloc(size_t n); ++ cfree(Void_t* p); ++ malloc_trim(size_t pad); ++ malloc_usable_size(Void_t* p); ++ malloc_stats(); ++ ++* Vital statistics: ++ ++ Supported pointer representation: 4 or 8 bytes ++ Supported size_t representation: 4 or 8 bytes ++ Note that size_t is allowed to be 4 bytes even if pointers are 8. ++ You can adjust this by defining INTERNAL_SIZE_T ++ ++ Alignment: 2 * sizeof(size_t) (default) ++ (i.e., 8 byte alignment with 4byte size_t). This suffices for ++ nearly all current machines and C compilers. However, you can ++ define MALLOC_ALIGNMENT to be wider than this if necessary. ++ ++ Minimum overhead per allocated chunk: 4 or 8 bytes ++ Each malloced chunk has a hidden word of overhead holding size ++ and status information. ++ ++ Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) ++ 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) ++ ++ When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte ++ ptrs but 4 byte size) or 24 (for 8/8) additional bytes are ++ needed; 4 (8) for a trailing size field and 8 (16) bytes for ++ free list pointers. Thus, the minimum allocatable size is ++ 16/24/32 bytes. ++ ++ Even a request for zero bytes (i.e., malloc(0)) returns a ++ pointer to something of the minimum allocatable size. ++ ++ The maximum overhead wastage (i.e., number of extra bytes ++ allocated than were requested in malloc) is less than or equal ++ to the minimum size, except for requests >= mmap_threshold that ++ are serviced via mmap(), where the worst case wastage is 2 * ++ sizeof(size_t) bytes plus the remainder from a system page (the ++ minimal mmap unit); typically 4096 or 8192 bytes. ++ ++ Maximum allocated size: 4-byte size_t: 2^32 minus about two pages ++ 8-byte size_t: 2^64 minus about two pages ++ ++ It is assumed that (possibly signed) size_t values suffice to ++ represent chunk sizes. `Possibly signed' is due to the fact ++ that `size_t' may be defined on a system as either a signed or ++ an unsigned type. The ISO C standard says that it must be ++ unsigned, but a few systems are known not to adhere to this. ++ Additionally, even when size_t is unsigned, sbrk (which is by ++ default used to obtain memory from system) accepts signed ++ arguments, and may not be able to handle size_t-wide arguments ++ with negative sign bit. Generally, values that would ++ appear as negative after accounting for overhead and alignment ++ are supported only via mmap(), which does not have this ++ limitation. ++ ++ Requests for sizes outside the allowed range will perform an optional ++ failure action and then return null. (Requests may also ++ also fail because a system is out of memory.) ++ ++ Thread-safety: NOT thread-safe unless USE_MALLOC_LOCK defined ++ ++ When USE_MALLOC_LOCK is defined, wrappers are created to ++ surround every public call with either a pthread mutex or ++ a win32 spinlock (depending on WIN32). This is not ++ especially fast, and can be a major bottleneck. ++ It is designed only to provide minimal protection ++ in concurrent environments, and to provide a basis for ++ extensions. If you are using malloc in a concurrent program, ++ you would be far better off obtaining ptmalloc, which is ++ derived from a version of this malloc, and is well-tuned for ++ concurrent programs. (See http://www.malloc.de) ++ ++ Compliance: I believe it is compliant with the 1997 Single Unix Specification ++ (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably ++ others as well. ++ ++* Synopsis of compile-time options: ++ ++ People have reported using previous versions of this malloc on all ++ versions of Unix, sometimes by tweaking some of the defines ++ below. It has been tested most extensively on Solaris and ++ Linux. It is also reported to work on WIN32 platforms. ++ People also report using it in stand-alone embedded systems. ++ ++ The implementation is in straight, hand-tuned ANSI C. It is not ++ at all modular. (Sorry!) It uses a lot of macros. To be at all ++ usable, this code should be compiled using an optimizing compiler ++ (for example gcc -O3) that can simplify expressions and control ++ paths. (FAQ: some macros import variables as arguments rather than ++ declare locals because people reported that some debuggers ++ otherwise get confused.) ++ ++ OPTION DEFAULT VALUE ++ ++ Compilation Environment options: ++ ++ __STD_C derived from C compiler defines ++ WIN32 NOT defined ++ HAVE_MEMCPY defined ++ USE_MEMCPY 1 if HAVE_MEMCPY is defined ++ HAVE_MMAP defined as 1 ++ MMAP_CLEARS 1 ++ HAVE_MREMAP 0 unless linux defined ++ malloc_getpagesize derived from system #includes, or 4096 if not ++ HAVE_USR_INCLUDE_MALLOC_H NOT defined ++ LACKS_UNISTD_H NOT defined unless WIN32 ++ LACKS_SYS_PARAM_H NOT defined unless WIN32 ++ LACKS_SYS_MMAN_H NOT defined unless WIN32 ++ ++ Changing default word sizes: ++ ++ INTERNAL_SIZE_T size_t ++ MALLOC_ALIGNMENT 2 * sizeof(INTERNAL_SIZE_T) ++ ++ Configuration and functionality options: ++ ++ USE_DL_PREFIX NOT defined ++ USE_PUBLIC_MALLOC_WRAPPERS NOT defined ++ USE_MALLOC_LOCK NOT defined ++ DEBUG NOT defined ++ REALLOC_ZERO_BYTES_FREES NOT defined ++ MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op ++ TRIM_FASTBINS 0 ++ ++ Options for customizing MORECORE: ++ ++ MORECORE sbrk ++ MORECORE_CONTIGUOUS 1 ++ MORECORE_CANNOT_TRIM NOT defined ++ MMAP_AS_MORECORE_SIZE (1024 * 1024) ++ ++ Tuning options that are also dynamically changeable via mallopt: ++ ++ DEFAULT_MXFAST 64 ++ DEFAULT_TRIM_THRESHOLD 128 * 1024 ++ DEFAULT_TOP_PAD 0 ++ DEFAULT_MMAP_THRESHOLD 128 * 1024 ++ DEFAULT_MMAP_MAX 65536 ++ ++ There are several other #defined constants and macros that you ++ probably don't want to touch unless you are extending or adapting malloc. ++*/ ++ ++/* ++ WIN32 sets up defaults for MS environment and compilers. ++ Otherwise defaults are for unix. ++*/ ++ ++/* #define WIN32 */ ++ ++#ifdef WIN32 ++ ++#define WIN32_LEAN_AND_MEAN ++#include <windows.h> ++ ++/* Win32 doesn't supply or need the following headers */ ++#define LACKS_UNISTD_H ++#define LACKS_SYS_PARAM_H ++#define LACKS_SYS_MMAN_H ++ ++/* Use the supplied emulation of sbrk */ ++#define MORECORE sbrk ++#define MORECORE_CONTIGUOUS 1 ++#define MORECORE_FAILURE ((void*)(-1)) ++ ++/* Use the supplied emulation of mmap and munmap */ ++#define HAVE_MMAP 1 ++#define MUNMAP_FAILURE (-1) ++#define MMAP_CLEARS 1 ++ ++/* These values don't really matter in windows mmap emulation */ ++#define MAP_PRIVATE 1 ++#define MAP_ANONYMOUS 2 ++#define PROT_READ 1 ++#define PROT_WRITE 2 ++ ++/* Emulation functions defined at the end of this file */ ++ ++/* If USE_MALLOC_LOCK, use supplied critical-section-based lock functions */ ++#ifdef USE_MALLOC_LOCK ++static int slwait(int *sl); ++static int slrelease(int *sl); ++#endif ++ ++static long getpagesize(void); ++static long getregionsize(void); ++static void *sbrk(long size); ++static void *mmap(void *ptr, long size, long prot, long type, long handle, long arg); ++static long munmap(void *ptr, long size); ++ ++static void vminfo (unsigned long *free, unsigned long *reserved, unsigned long *committed); ++static int cpuinfo (int whole, unsigned long *kernel, unsigned long *user); ++ ++#endif ++ ++/* ++ __STD_C should be nonzero if using ANSI-standard C compiler, a C++ ++ compiler, or a C compiler sufficiently close to ANSI to get away ++ with it. ++*/ ++ ++#ifndef __STD_C ++#if defined(__STDC__) || defined(_cplusplus) ++#define __STD_C 1 ++#else ++#define __STD_C 0 ++#endif ++#endif /*__STD_C*/ ++ ++ ++/* ++ Void_t* is the pointer type that malloc should say it returns ++*/ ++ ++#ifndef Void_t ++#if (__STD_C || defined(WIN32)) ++#define Void_t void ++#else ++#define Void_t char ++#endif ++#endif /*Void_t*/ ++ ++#if __STD_C ++#include <stddef.h> /* for size_t */ ++#else ++#include <sys/types.h> ++#endif ++ ++#ifdef __cplusplus ++extern "C" { ++#endif ++ ++/* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */ ++ ++/* #define LACKS_UNISTD_H */ ++ ++#ifndef LACKS_UNISTD_H ++#include <unistd.h> ++#endif ++ ++/* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */ ++ ++/* #define LACKS_SYS_PARAM_H */ ++ ++ ++#include <stdio.h> /* needed for malloc_stats */ ++#include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */ ++ ++ ++/* ++ Debugging: ++ ++ Because freed chunks may be overwritten with bookkeeping fields, this ++ malloc will often die when freed memory is overwritten by user ++ programs. This can be very effective (albeit in an annoying way) ++ in helping track down dangling pointers. ++ ++ If you compile with -DDEBUG, a number of assertion checks are ++ enabled that will catch more memory errors. You probably won't be ++ able to make much sense of the actual assertion errors, but they ++ should help you locate incorrectly overwritten memory. The ++ checking is fairly extensive, and will slow down execution ++ noticeably. Calling malloc_stats or mallinfo with DEBUG set will ++ attempt to check every non-mmapped allocated and free chunk in the ++ course of computing the summmaries. (By nature, mmapped regions ++ cannot be checked very much automatically.) ++ ++ Setting DEBUG may also be helpful if you are trying to modify ++ this code. The assertions in the check routines spell out in more ++ detail the assumptions and invariants underlying the algorithms. ++ ++ Setting DEBUG does NOT provide an automated mechanism for checking ++ that all accesses to malloced memory stay within their ++ bounds. However, there are several add-ons and adaptations of this ++ or other mallocs available that do this. ++*/ ++ ++#ifdef DEBUG ++#include <assert.h> ++#else ++#define assert(x) ((void)0) ++#endif ++ ++ ++/* ++ INTERNAL_SIZE_T is the word-size used for internal bookkeeping ++ of chunk sizes. ++ ++ The default version is the same as size_t. ++ ++ While not strictly necessary, it is best to define this as an ++ unsigned type, even if size_t is a signed type. This may avoid some ++ artificial size limitations on some systems. ++ ++ On a 64-bit machine, you may be able to reduce malloc overhead by ++ defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the ++ expense of not being able to handle more than 2^32 of malloced ++ space. If this limitation is acceptable, you are encouraged to set ++ this unless you are on a platform requiring 16byte alignments. In ++ this case the alignment requirements turn out to negate any ++ potential advantages of decreasing size_t word size. ++ ++ Implementors: Beware of the possible combinations of: ++ - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits, ++ and might be the same width as int or as long ++ - size_t might have different width and signedness as INTERNAL_SIZE_T ++ - int and long might be 32 or 64 bits, and might be the same width ++ To deal with this, most comparisons and difference computations ++ among INTERNAL_SIZE_Ts should cast them to unsigned long, being ++ aware of the fact that casting an unsigned int to a wider long does ++ not sign-extend. (This also makes checking for negative numbers ++ awkward.) Some of these casts result in harmless compiler warnings ++ on some systems. ++*/ ++ ++#ifndef INTERNAL_SIZE_T ++#define INTERNAL_SIZE_T size_t ++#endif ++ ++/* The corresponding word size */ ++#define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) ++ ++ ++/* ++ MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks. ++ It must be a power of two at least 2 * SIZE_SZ, even on machines ++ for which smaller alignments would suffice. It may be defined as ++ larger than this though. Note however that code and data structures ++ are optimized for the case of 8-byte alignment. ++*/ ++ ++ ++#ifndef MALLOC_ALIGNMENT ++#define MALLOC_ALIGNMENT (2 * SIZE_SZ) ++#endif ++ ++/* The corresponding bit mask value */ ++#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) ++ ++ ++ ++/* ++ REALLOC_ZERO_BYTES_FREES should be set if a call to ++ realloc with zero bytes should be the same as a call to free. ++ Some people think it should. Otherwise, since this malloc ++ returns a unique pointer for malloc(0), so does realloc(p, 0). ++*/ ++ ++/* #define REALLOC_ZERO_BYTES_FREES */ ++ ++/* ++ TRIM_FASTBINS controls whether free() of a very small chunk can ++ immediately lead to trimming. Setting to true (1) can reduce memory ++ footprint, but will almost always slow down programs that use a lot ++ of small chunks. ++ ++ Define this only if you are willing to give up some speed to more ++ aggressively reduce system-level memory footprint when releasing ++ memory in programs that use many small chunks. You can get ++ essentially the same effect by setting MXFAST to 0, but this can ++ lead to even greater slowdowns in programs using many small chunks. ++ TRIM_FASTBINS is an in-between compile-time option, that disables ++ only those chunks bordering topmost memory from being placed in ++ fastbins. ++*/ ++ ++#ifndef TRIM_FASTBINS ++#define TRIM_FASTBINS 0 ++#endif ++ ++ ++/* ++ USE_DL_PREFIX will prefix all public routines with the string 'dl'. ++ This is necessary when you only want to use this malloc in one part ++ of a program, using your regular system malloc elsewhere. ++*/ ++ ++/* #define USE_DL_PREFIX */ ++ ++ ++/* ++ USE_MALLOC_LOCK causes wrapper functions to surround each ++ callable routine with pthread mutex lock/unlock. ++ ++ USE_MALLOC_LOCK forces USE_PUBLIC_MALLOC_WRAPPERS to be defined ++*/ ++ ++ ++/* #define USE_MALLOC_LOCK */ ++ ++ ++/* ++ If USE_PUBLIC_MALLOC_WRAPPERS is defined, every public routine is ++ actually a wrapper function that first calls MALLOC_PREACTION, then ++ calls the internal routine, and follows it with ++ MALLOC_POSTACTION. This is needed for locking, but you can also use ++ this, without USE_MALLOC_LOCK, for purposes of interception, ++ instrumentation, etc. It is a sad fact that using wrappers often ++ noticeably degrades performance of malloc-intensive programs. ++*/ ++ ++#ifdef USE_MALLOC_LOCK ++#define USE_PUBLIC_MALLOC_WRAPPERS ++#else ++/* #define USE_PUBLIC_MALLOC_WRAPPERS */ ++#endif ++ ++ ++/* ++ Two-phase name translation. ++ All of the actual routines are given mangled names. ++ When wrappers are used, they become the public callable versions. ++ When DL_PREFIX is used, the callable names are prefixed. ++*/ ++ ++#ifndef USE_PUBLIC_MALLOC_WRAPPERS ++#define cALLOc public_cALLOc ++#define fREe public_fREe ++#define cFREe public_cFREe ++#define mALLOc public_mALLOc ++#define mEMALIGn public_mEMALIGn ++#define rEALLOc public_rEALLOc ++#define vALLOc public_vALLOc ++#define pVALLOc public_pVALLOc ++#define mALLINFo public_mALLINFo ++#define mALLOPt public_mALLOPt ++#define mTRIm public_mTRIm ++#define mSTATs public_mSTATs ++#define mUSABLe public_mUSABLe ++#define iCALLOc public_iCALLOc ++#define iCOMALLOc public_iCOMALLOc ++#endif ++ ++#ifdef USE_DL_PREFIX ++#define public_cALLOc dlcalloc ++#define public_fREe dlfree ++#define public_cFREe dlcfree ++#define public_mALLOc dlmalloc ++#define public_mEMALIGn dlmemalign ++#define public_rEALLOc dlrealloc ++#define public_vALLOc dlvalloc ++#define public_pVALLOc dlpvalloc ++#define public_mALLINFo dlmallinfo ++#define public_mALLOPt dlmallopt ++#define public_mTRIm dlmalloc_trim ++#define public_mSTATs dlmalloc_stats ++#define public_mUSABLe dlmalloc_usable_size ++#define public_iCALLOc dlindependent_calloc ++#define public_iCOMALLOc dlindependent_comalloc ++#else /* USE_DL_PREFIX */ ++#define public_cALLOc calloc ++#define public_fREe free ++#define public_cFREe cfree ++#define public_mALLOc malloc ++#define public_mEMALIGn memalign ++#define public_rEALLOc realloc ++#define public_vALLOc valloc ++#define public_pVALLOc pvalloc ++#define public_mALLINFo mallinfo ++#define public_mALLOPt mallopt ++#define public_mTRIm malloc_trim ++#define public_mSTATs malloc_stats ++#define public_mUSABLe malloc_usable_size ++#define public_iCALLOc independent_calloc ++#define public_iCOMALLOc independent_comalloc ++#endif /* USE_DL_PREFIX */ ++ ++ ++/* ++ HAVE_MEMCPY should be defined if you are not otherwise using ++ ANSI STD C, but still have memcpy and memset in your C library ++ and want to use them in calloc and realloc. Otherwise simple ++ macro versions are defined below. ++ ++ USE_MEMCPY should be defined as 1 if you actually want to ++ have memset and memcpy called. People report that the macro ++ versions are faster than libc versions on some systems. ++ ++ Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks ++ (of <= 36 bytes) are manually unrolled in realloc and calloc. ++*/ ++ ++/* If it's available it's defined in config.h. */ ++/* #define HAVE_MEMCPY */ ++ ++#ifndef USE_MEMCPY ++#ifdef HAVE_MEMCPY ++#define USE_MEMCPY 1 ++#else ++#define USE_MEMCPY 0 ++#endif ++#endif ++ ++ ++#if (__STD_C || defined(HAVE_MEMCPY)) ++ ++#ifdef WIN32 ++/* On Win32 memset and memcpy are already declared in windows.h */ ++#else ++#if __STD_C ++void* memset(void*, int, size_t); ++void* memcpy(void*, const void*, size_t); ++#else ++Void_t* memset(); ++Void_t* memcpy(); ++#endif ++#endif ++#endif ++ ++/* ++ MALLOC_FAILURE_ACTION is the action to take before "return 0" when ++ malloc fails to be able to return memory, either because memory is ++ exhausted or because of illegal arguments. ++ ++ By default, sets errno if running on STD_C platform, else does nothing. ++*/ ++ ++#ifndef MALLOC_FAILURE_ACTION ++#if __STD_C ++#define MALLOC_FAILURE_ACTION \ ++ errno = ENOMEM; ++ ++#else ++#define MALLOC_FAILURE_ACTION ++#endif ++#endif ++ ++/* ++ MORECORE-related declarations. By default, rely on sbrk ++*/ ++ ++ ++#ifdef LACKS_UNISTD_H ++#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) ++#if __STD_C ++extern Void_t* sbrk(ptrdiff_t); ++#else ++extern Void_t* sbrk(); ++#endif ++#endif ++#endif ++ ++/* ++ MORECORE is the name of the routine to call to obtain more memory ++ from the system. See below for general guidance on writing ++ alternative MORECORE functions, as well as a version for WIN32 and a ++ sample version for pre-OSX macos. ++*/ ++ ++#ifndef MORECORE ++#define MORECORE sbrk ++#endif ++ ++/* ++ MORECORE_FAILURE is the value returned upon failure of MORECORE ++ as well as mmap. Since it cannot be an otherwise valid memory address, ++ and must reflect values of standard sys calls, you probably ought not ++ try to redefine it. ++*/ ++ ++#ifndef MORECORE_FAILURE ++#define MORECORE_FAILURE (-1) ++#endif ++ ++/* ++ If MORECORE_CONTIGUOUS is true, take advantage of fact that ++ consecutive calls to MORECORE with positive arguments always return ++ contiguous increasing addresses. This is true of unix sbrk. Even ++ if not defined, when regions happen to be contiguous, malloc will ++ permit allocations spanning regions obtained from different ++ calls. But defining this when applicable enables some stronger ++ consistency checks and space efficiencies. ++*/ ++ ++#ifndef MORECORE_CONTIGUOUS ++#define MORECORE_CONTIGUOUS 1 ++#endif ++ ++/* ++ Define MORECORE_CANNOT_TRIM if your version of MORECORE ++ cannot release space back to the system when given negative ++ arguments. This is generally necessary only if you are using ++ a hand-crafted MORECORE function that cannot handle negative arguments. ++*/ ++ ++/* #define MORECORE_CANNOT_TRIM */ ++ ++ ++/* ++ Define HAVE_MMAP as true to optionally make malloc() use mmap() to ++ allocate very large blocks. These will be returned to the ++ operating system immediately after a free(). Also, if mmap ++ is available, it is used as a backup strategy in cases where ++ MORECORE fails to provide space from system. ++ ++ This malloc is best tuned to work with mmap for large requests. ++ If you do not have mmap, operations involving very large chunks (1MB ++ or so) may be slower than you'd like. ++*/ ++ ++#ifndef HAVE_MMAP ++#define HAVE_MMAP 1 ++#endif ++ ++#if HAVE_MMAP ++/* ++ Standard unix mmap using /dev/zero clears memory so calloc doesn't ++ need to. ++*/ ++ ++#ifndef MMAP_CLEARS ++#define MMAP_CLEARS 1 ++#endif ++ ++#else /* no mmap */ ++#ifndef MMAP_CLEARS ++#define MMAP_CLEARS 0 ++#endif ++#endif ++ ++ ++/* ++ MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if ++ sbrk fails, and mmap is used as a backup (which is done only if ++ HAVE_MMAP). The value must be a multiple of page size. This ++ backup strategy generally applies only when systems have "holes" in ++ address space, so sbrk cannot perform contiguous expansion, but ++ there is still space available on system. On systems for which ++ this is known to be useful (i.e. most linux kernels), this occurs ++ only when programs allocate huge amounts of memory. Between this, ++ and the fact that mmap regions tend to be limited, the size should ++ be large, to avoid too many mmap calls and thus avoid running out ++ of kernel resources. ++*/ ++ ++#ifndef MMAP_AS_MORECORE_SIZE ++#define MMAP_AS_MORECORE_SIZE (1024 * 1024) ++#endif ++ ++/* ++ Define HAVE_MREMAP to make realloc() use mremap() to re-allocate ++ large blocks. This is currently only possible on Linux with ++ kernel versions newer than 1.3.77. ++*/ ++ ++#ifndef HAVE_MREMAP ++#if defined(linux) || defined(__linux__) || defined(__linux) ++#define HAVE_MREMAP 1 ++#else ++#define HAVE_MREMAP 0 ++#endif ++ ++#endif /* HAVE_MMAP */ ++ ++ ++/* ++ The system page size. To the extent possible, this malloc manages ++ memory from the system in page-size units. Note that this value is ++ cached during initialization into a field of malloc_state. So even ++ if malloc_getpagesize is a function, it is only called once. ++ ++ The following mechanics for getpagesize were adapted from bsd/gnu ++ getpagesize.h. If none of the system-probes here apply, a value of ++ 4096 is used, which should be OK: If they don't apply, then using ++ the actual value probably doesn't impact performance. ++*/ ++ ++ ++#ifndef malloc_getpagesize ++ ++#ifndef LACKS_UNISTD_H ++# include <unistd.h> ++#endif ++ ++# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ ++# ifndef _SC_PAGE_SIZE ++# define _SC_PAGE_SIZE _SC_PAGESIZE ++# endif ++# endif ++ ++# ifdef _SC_PAGE_SIZE ++# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) ++# else ++# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) ++ extern size_t getpagesize(); ++# define malloc_getpagesize getpagesize() ++# else ++# ifdef WIN32 /* use supplied emulation of getpagesize */ ++# define malloc_getpagesize getpagesize() ++# else ++# ifndef LACKS_SYS_PARAM_H ++# include <sys/param.h> ++# endif ++# ifdef EXEC_PAGESIZE ++# define malloc_getpagesize EXEC_PAGESIZE ++# else ++# ifdef NBPG ++# ifndef CLSIZE ++# define malloc_getpagesize NBPG ++# else ++# define malloc_getpagesize (NBPG * CLSIZE) ++# endif ++# else ++# ifdef NBPC ++# define malloc_getpagesize NBPC ++# else ++# ifdef PAGESIZE ++# define malloc_getpagesize PAGESIZE ++# else /* just guess */ ++# define malloc_getpagesize (4096) ++# endif ++# endif ++# endif ++# endif ++# endif ++# endif ++# endif ++#endif ++ ++/* ++ This version of malloc supports the standard SVID/XPG mallinfo ++ routine that returns a struct containing usage properties and ++ statistics. It should work on any SVID/XPG compliant system that has ++ a /usr/include/malloc.h defining struct mallinfo. (If you'd like to ++ install such a thing yourself, cut out the preliminary declarations ++ as described above and below and save them in a malloc.h file. But ++ there's no compelling reason to bother to do this.) ++ ++ The main declaration needed is the mallinfo struct that is returned ++ (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a ++ bunch of field that are not even meaningful in this version of ++ malloc. These fields are are instead filled by mallinfo() with ++ other numbers that might be of interest. ++ ++ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a ++ /usr/include/malloc.h file that includes a declaration of struct ++ mallinfo. If so, it is included; else an SVID2/XPG2 compliant ++ version is declared below. These must be precisely the same for ++ mallinfo() to work. The original SVID version of this struct, ++ defined on most systems with mallinfo, declares all fields as ++ ints. But some others define as unsigned long. If your system ++ defines the fields using a type of different width than listed here, ++ you must #include your system version and #define ++ HAVE_USR_INCLUDE_MALLOC_H. ++*/ ++ ++/* #define HAVE_USR_INCLUDE_MALLOC_H */ ++ ++/*#ifdef HAVE_USR_INCLUDE_MALLOC_H*/ ++#if 0 ++#include "/usr/include/malloc.h" ++#else ++ ++/* SVID2/XPG mallinfo structure */ ++ ++struct mallinfo { ++ int arena; /* non-mmapped space allocated from system */ ++ int ordblks; /* number of free chunks */ ++ int smblks; /* number of fastbin blocks */ ++ int hblks; /* number of mmapped regions */ ++ int hblkhd; /* space in mmapped regions */ ++ int usmblks; /* maximum total allocated space */ ++ int fsmblks; /* space available in freed fastbin blocks */ ++ int uordblks; /* total allocated space */ ++ int fordblks; /* total free space */ ++ int keepcost; /* top-most, releasable (via malloc_trim) space */ ++}; ++ ++/* ++ SVID/XPG defines four standard parameter numbers for mallopt, ++ normally defined in malloc.h. Only one of these (M_MXFAST) is used ++ in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply, ++ so setting them has no effect. But this malloc also supports other ++ options in mallopt described below. ++*/ ++#endif ++ ++ ++/* ---------- description of public routines ------------ */ ++ ++/* ++ malloc(size_t n) ++ Returns a pointer to a newly allocated chunk of at least n bytes, or null ++ if no space is available. Additionally, on failure, errno is ++ set to ENOMEM on ANSI C systems. ++ ++ If n is zero, malloc returns a minumum-sized chunk. (The minimum ++ size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit ++ systems.) On most systems, size_t is an unsigned type, so calls ++ with negative arguments are interpreted as requests for huge amounts ++ of space, which will often fail. The maximum supported value of n ++ differs across systems, but is in all cases less than the maximum ++ representable value of a size_t. ++*/ ++#if __STD_C ++Void_t* public_mALLOc(size_t); ++#else ++Void_t* public_mALLOc(); ++#endif ++ ++/* ++ free(Void_t* p) ++ Releases the chunk of memory pointed to by p, that had been previously ++ allocated using malloc or a related routine such as realloc. ++ It has no effect if p is null. It can have arbitrary (i.e., bad!) ++ effects if p has already been freed. ++ ++ Unless disabled (using mallopt), freeing very large spaces will ++ when possible, automatically trigger operations that give ++ back unused memory to the system, thus reducing program footprint. ++*/ ++#if __STD_C ++void public_fREe(Void_t*); ++#else ++void public_fREe(); ++#endif ++ ++/* ++ calloc(size_t n_elements, size_t element_size); ++ Returns a pointer to n_elements * element_size bytes, with all locations ++ set to zero. ++*/ ++#if __STD_C ++Void_t* public_cALLOc(size_t, size_t); ++#else ++Void_t* public_cALLOc(); ++#endif ++ ++/* ++ realloc(Void_t* p, size_t n) ++ Returns a pointer to a chunk of size n that contains the same data ++ as does chunk p up to the minimum of (n, p's size) bytes, or null ++ if no space is available. ++ ++ The returned pointer may or may not be the same as p. The algorithm ++ prefers extending p when possible, otherwise it employs the ++ equivalent of a malloc-copy-free sequence. ++ ++ If p is null, realloc is equivalent to malloc. ++ ++ If space is not available, realloc returns null, errno is set (if on ++ ANSI) and p is NOT freed. ++ ++ if n is for fewer bytes than already held by p, the newly unused ++ space is lopped off and freed if possible. Unless the #define ++ REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of ++ zero (re)allocates a minimum-sized chunk. ++ ++ Large chunks that were internally obtained via mmap will always ++ be reallocated using malloc-copy-free sequences unless ++ the system supports MREMAP (currently only linux). ++ ++ The old unix realloc convention of allowing the last-free'd chunk ++ to be used as an argument to realloc is not supported. ++*/ ++#if __STD_C ++Void_t* public_rEALLOc(Void_t*, size_t); ++#else ++Void_t* public_rEALLOc(); ++#endif ++ ++/* ++ memalign(size_t alignment, size_t n); ++ Returns a pointer to a newly allocated chunk of n bytes, aligned ++ in accord with the alignment argument. ++ ++ The alignment argument should be a power of two. If the argument is ++ not a power of two, the nearest greater power is used. ++ 8-byte alignment is guaranteed by normal malloc calls, so don't ++ bother calling memalign with an argument of 8 or less. ++ ++ Overreliance on memalign is a sure way to fragment space. ++*/ ++#if __STD_C ++Void_t* public_mEMALIGn(size_t, size_t); ++#else ++Void_t* public_mEMALIGn(); ++#endif ++ ++/* ++ valloc(size_t n); ++ Equivalent to memalign(pagesize, n), where pagesize is the page ++ size of the system. If the pagesize is unknown, 4096 is used. ++*/ ++#if __STD_C ++Void_t* public_vALLOc(size_t); ++#else ++Void_t* public_vALLOc(); ++#endif ++ ++ ++ ++/* ++ mallopt(int parameter_number, int parameter_value) ++ Sets tunable parameters The format is to provide a ++ (parameter-number, parameter-value) pair. mallopt then sets the ++ corresponding parameter to the argument value if it can (i.e., so ++ long as the value is meaningful), and returns 1 if successful else ++ 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, ++ normally defined in malloc.h. Only one of these (M_MXFAST) is used ++ in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply, ++ so setting them has no effect. But this malloc also supports four ++ other options in mallopt. See below for details. Briefly, supported ++ parameters are as follows (listed defaults are for "typical" ++ configurations). ++ ++ Symbol param # default allowed param values ++ M_MXFAST 1 64 0-80 (0 disables fastbins) ++ M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming) ++ M_TOP_PAD -2 0 any ++ M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support) ++ M_MMAP_MAX -4 65536 any (0 disables use of mmap) ++*/ ++#if __STD_C ++int public_mALLOPt(int, int); ++#else ++int public_mALLOPt(); ++#endif ++ ++ ++/* ++ mallinfo() ++ Returns (by copy) a struct containing various summary statistics: ++ ++ arena: current total non-mmapped bytes allocated from system ++ ordblks: the number of free chunks ++ smblks: the number of fastbin blocks (i.e., small chunks that ++ have been freed but not use resused or consolidated) ++ hblks: current number of mmapped regions ++ hblkhd: total bytes held in mmapped regions ++ usmblks: the maximum total allocated space. This will be greater ++ than current total if trimming has occurred. ++ fsmblks: total bytes held in fastbin blocks ++ uordblks: current total allocated space (normal or mmapped) ++ fordblks: total free space ++ keepcost: the maximum number of bytes that could ideally be released ++ back to system via malloc_trim. ("ideally" means that ++ it ignores page restrictions etc.) ++ ++ Because these fields are ints, but internal bookkeeping may ++ be kept as longs, the reported values may wrap around zero and ++ thus be inaccurate. ++*/ ++#if __STD_C ++struct mallinfo public_mALLINFo(void); ++#else ++struct mallinfo public_mALLINFo(); ++#endif ++ ++/* ++ independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]); ++ ++ independent_calloc is similar to calloc, but instead of returning a ++ single cleared space, it returns an array of pointers to n_elements ++ independent elements that can hold contents of size elem_size, each ++ of which starts out cleared, and can be independently freed, ++ realloc'ed etc. The elements are guaranteed to be adjacently ++ allocated (this is not guaranteed to occur with multiple callocs or ++ mallocs), which may also improve cache locality in some ++ applications. ++ ++ The "chunks" argument is optional (i.e., may be null, which is ++ probably the most typical usage). If it is null, the returned array ++ is itself dynamically allocated and should also be freed when it is ++ no longer needed. Otherwise, the chunks array must be of at least ++ n_elements in length. It is filled in with the pointers to the ++ chunks. ++ ++ In either case, independent_calloc returns this pointer array, or ++ null if the allocation failed. If n_elements is zero and "chunks" ++ is null, it returns a chunk representing an array with zero elements ++ (which should be freed if not wanted). ++ ++ Each element must be individually freed when it is no longer ++ needed. If you'd like to instead be able to free all at once, you ++ should instead use regular calloc and assign pointers into this ++ space to represent elements. (In this case though, you cannot ++ independently free elements.) ++ ++ independent_calloc simplifies and speeds up implementations of many ++ kinds of pools. It may also be useful when constructing large data ++ structures that initially have a fixed number of fixed-sized nodes, ++ but the number is not known at compile time, and some of the nodes ++ may later need to be freed. For example: ++ ++ struct Node { int item; struct Node* next; }; ++ ++ struct Node* build_list() { ++ struct Node** pool; ++ int n = read_number_of_nodes_needed(); ++ if (n <= 0) return 0; ++ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); ++ if (pool == 0) die(); ++ // organize into a linked list... ++ struct Node* first = pool[0]; ++ for (i = 0; i < n-1; ++i) ++ pool[i]->next = pool[i+1]; ++ free(pool); // Can now free the array (or not, if it is needed later) ++ return first; ++ } ++*/ ++#if __STD_C ++Void_t** public_iCALLOc(size_t, size_t, Void_t**); ++#else ++Void_t** public_iCALLOc(); ++#endif ++ ++/* ++ independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]); ++ ++ independent_comalloc allocates, all at once, a set of n_elements ++ chunks with sizes indicated in the "sizes" array. It returns ++ an array of pointers to these elements, each of which can be ++ independently freed, realloc'ed etc. The elements are guaranteed to ++ be adjacently allocated (this is not guaranteed to occur with ++ multiple callocs or mallocs), which may also improve cache locality ++ in some applications. ++ ++ The "chunks" argument is optional (i.e., may be null). If it is null ++ the returned array is itself dynamically allocated and should also ++ be freed when it is no longer needed. Otherwise, the chunks array ++ must be of at least n_elements in length. It is filled in with the ++ pointers to the chunks. ++ ++ In either case, independent_comalloc returns this pointer array, or ++ null if the allocation failed. If n_elements is zero and chunks is ++ null, it returns a chunk representing an array with zero elements ++ (which should be freed if not wanted). ++ ++ Each element must be individually freed when it is no longer ++ needed. If you'd like to instead be able to free all at once, you ++ should instead use a single regular malloc, and assign pointers at ++ particular offsets in the aggregate space. (In this case though, you ++ cannot independently free elements.) ++ ++ independent_comallac differs from independent_calloc in that each ++ element may have a different size, and also that it does not ++ automatically clear elements. ++ ++ independent_comalloc can be used to speed up allocation in cases ++ where several structs or objects must always be allocated at the ++ same time. For example: ++ ++ struct Head { ... } ++ struct Foot { ... } ++ ++ void send_message(char* msg) { ++ int msglen = strlen(msg); ++ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; ++ void* chunks[3]; ++ if (independent_comalloc(3, sizes, chunks) == 0) ++ die(); ++ struct Head* head = (struct Head*)(chunks[0]); ++ char* body = (char*)(chunks[1]); ++ struct Foot* foot = (struct Foot*)(chunks[2]); ++ // ... ++ } ++ ++ In general though, independent_comalloc is worth using only for ++ larger values of n_elements. For small values, you probably won't ++ detect enough difference from series of malloc calls to bother. ++ ++ Overuse of independent_comalloc can increase overall memory usage, ++ since it cannot reuse existing noncontiguous small chunks that ++ might be available for some of the elements. ++*/ ++#if __STD_C ++Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**); ++#else ++Void_t** public_iCOMALLOc(); ++#endif ++ ++ ++/* ++ pvalloc(size_t n); ++ Equivalent to valloc(minimum-page-that-holds(n)), that is, ++ round up n to nearest pagesize. ++ */ ++#if __STD_C ++Void_t* public_pVALLOc(size_t); ++#else ++Void_t* public_pVALLOc(); ++#endif ++ ++/* ++ cfree(Void_t* p); ++ Equivalent to free(p). ++ ++ cfree is needed/defined on some systems that pair it with calloc, ++ for odd historical reasons (such as: cfree is used in example ++ code in the first edition of K&R). ++*/ ++#if __STD_C ++void public_cFREe(Void_t*); ++#else ++void public_cFREe(); ++#endif ++ ++/* ++ malloc_trim(size_t pad); ++ ++ If possible, gives memory back to the system (via negative ++ arguments to sbrk) if there is unused memory at the `high' end of ++ the malloc pool. You can call this after freeing large blocks of ++ memory to potentially reduce the system-level memory requirements ++ of a program. However, it cannot guarantee to reduce memory. Under ++ some allocation patterns, some large free blocks of memory will be ++ locked between two used chunks, so they cannot be given back to ++ the system. ++ ++ The `pad' argument to malloc_trim represents the amount of free ++ trailing space to leave untrimmed. If this argument is zero, ++ only the minimum amount of memory to maintain internal data ++ structures will be left (one page or less). Non-zero arguments ++ can be supplied to maintain enough trailing space to service ++ future expected allocations without having to re-obtain memory ++ from the system. ++ ++ Malloc_trim returns 1 if it actually released any memory, else 0. ++ On systems that do not support "negative sbrks", it will always ++ rreturn 0. ++*/ ++#if __STD_C ++int public_mTRIm(size_t); ++#else ++int public_mTRIm(); ++#endif ++ ++/* ++ malloc_usable_size(Void_t* p); ++ ++ Returns the number of bytes you can actually use in ++ an allocated chunk, which may be more than you requested (although ++ often not) due to alignment and minimum size constraints. ++ You can use this many bytes without worrying about ++ overwriting other allocated objects. This is not a particularly great ++ programming practice. malloc_usable_size can be more useful in ++ debugging and assertions, for example: ++ ++ p = malloc(n); ++ assert(malloc_usable_size(p) >= 256); ++ ++*/ ++#if __STD_C ++size_t public_mUSABLe(Void_t*); ++#else ++size_t public_mUSABLe(); ++#endif ++ ++/* ++ malloc_stats(); ++ Prints on stderr the amount of space obtained from the system (both ++ via sbrk and mmap), the maximum amount (which may be more than ++ current if malloc_trim and/or munmap got called), and the current ++ number of bytes allocated via malloc (or realloc, etc) but not yet ++ freed. Note that this is the number of bytes allocated, not the ++ number requested. It will be larger than the number requested ++ because of alignment and bookkeeping overhead. Because it includes ++ alignment wastage as being in use, this figure may be greater than ++ zero even when no user-level chunks are allocated. ++ ++ The reported current and maximum system memory can be inaccurate if ++ a program makes other calls to system memory allocation functions ++ (normally sbrk) outside of malloc. ++ ++ malloc_stats prints only the most commonly interesting statistics. ++ More information can be obtained by calling mallinfo. ++ ++*/ ++#if __STD_C ++void public_mSTATs(); ++#else ++void public_mSTATs(); ++#endif ++ ++/* mallopt tuning options */ ++ ++/* ++ M_MXFAST is the maximum request size used for "fastbins", special bins ++ that hold returned chunks without consolidating their spaces. This ++ enables future requests for chunks of the same size to be handled ++ very quickly, but can increase fragmentation, and thus increase the ++ overall memory footprint of a program. ++ ++ This malloc manages fastbins very conservatively yet still ++ efficiently, so fragmentation is rarely a problem for values less ++ than or equal to the default. The maximum supported value of MXFAST ++ is 80. You wouldn't want it any higher than this anyway. Fastbins ++ are designed especially for use with many small structs, objects or ++ strings -- the default handles structs/objects/arrays with sizes up ++ to 8 4byte fields, or small strings representing words, tokens, ++ etc. Using fastbins for larger objects normally worsens ++ fragmentation without improving speed. ++ ++ M_MXFAST is set in REQUEST size units. It is internally used in ++ chunksize units, which adds padding and alignment. You can reduce ++ M_MXFAST to 0 to disable all use of fastbins. This causes the malloc ++ algorithm to be a closer approximation of fifo-best-fit in all cases, ++ not just for larger requests, but will generally cause it to be ++ slower. ++*/ ++ ++ ++/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */ ++#ifndef M_MXFAST ++#define M_MXFAST 1 ++#endif ++ ++#ifndef DEFAULT_MXFAST ++#define DEFAULT_MXFAST 64 ++#endif ++ ++ ++/* ++ M_TRIM_THRESHOLD is the maximum amount of unused top-most memory ++ to keep before releasing via malloc_trim in free(). ++ ++ Automatic trimming is mainly useful in long-lived programs. ++ Because trimming via sbrk can be slow on some systems, and can ++ sometimes be wasteful (in cases where programs immediately ++ afterward allocate more large chunks) the value should be high ++ enough so that your overall system performance would improve by ++ releasing this much memory. ++ ++ The trim threshold and the mmap control parameters (see below) ++ can be traded off with one another. Trimming and mmapping are ++ two different ways of releasing unused memory back to the ++ system. Between these two, it is often possible to keep ++ system-level demands of a long-lived program down to a bare ++ minimum. For example, in one test suite of sessions measuring ++ the XF86 X server on Linux, using a trim threshold of 128K and a ++ mmap threshold of 192K led to near-minimal long term resource ++ consumption. ++ ++ If you are using this malloc in a long-lived program, it should ++ pay to experiment with these values. As a rough guide, you ++ might set to a value close to the average size of a process ++ (program) running on your system. Releasing this much memory ++ would allow such a process to run in memory. Generally, it's ++ worth it to tune for trimming rather tham memory mapping when a ++ program undergoes phases where several large chunks are ++ allocated and released in ways that can reuse each other's ++ storage, perhaps mixed with phases where there are no such ++ chunks at all. And in well-behaved long-lived programs, ++ controlling release of large blocks via trimming versus mapping ++ is usually faster. ++ ++ However, in most programs, these parameters serve mainly as ++ protection against the system-level effects of carrying around ++ massive amounts of unneeded memory. Since frequent calls to ++ sbrk, mmap, and munmap otherwise degrade performance, the default ++ parameters are set to relatively high values that serve only as ++ safeguards. ++ ++ The trim value It must be greater than page size to have any useful ++ effect. To disable trimming completely, you can set to ++ (unsigned long)(-1) ++ ++ Trim settings interact with fastbin (MXFAST) settings: Unless ++ TRIM_FASTBINS is defined, automatic trimming never takes place upon ++ freeing a chunk with size less than or equal to MXFAST. Trimming is ++ instead delayed until subsequent freeing of larger chunks. However, ++ you can still force an attempted trim by calling malloc_trim. ++ ++ Also, trimming is not generally possible in cases where ++ the main arena is obtained via mmap. ++ ++ Note that the trick some people use of mallocing a huge space and ++ then freeing it at program startup, in an attempt to reserve system ++ memory, doesn't have the intended effect under automatic trimming, ++ since that memory will immediately be returned to the system. ++*/ ++ ++#define M_TRIM_THRESHOLD -1 ++ ++#ifndef DEFAULT_TRIM_THRESHOLD ++#define DEFAULT_TRIM_THRESHOLD (128 * 1024) ++#endif ++ ++/* ++ M_TOP_PAD is the amount of extra `padding' space to allocate or ++ retain whenever sbrk is called. It is used in two ways internally: ++ ++ * When sbrk is called to extend the top of the arena to satisfy ++ a new malloc request, this much padding is added to the sbrk ++ request. ++ ++ * When malloc_trim is called automatically from free(), ++ it is used as the `pad' argument. ++ ++ In both cases, the actual amount of padding is rounded ++ so that the end of the arena is always a system page boundary. ++ ++ The main reason for using padding is to avoid calling sbrk so ++ often. Having even a small pad greatly reduces the likelihood ++ that nearly every malloc request during program start-up (or ++ after trimming) will invoke sbrk, which needlessly wastes ++ time. ++ ++ Automatic rounding-up to page-size units is normally sufficient ++ to avoid measurable overhead, so the default is 0. However, in ++ systems where sbrk is relatively slow, it can pay to increase ++ this value, at the expense of carrying around more memory than ++ the program needs. ++*/ ++ ++#define M_TOP_PAD -2 ++ ++#ifndef DEFAULT_TOP_PAD ++#define DEFAULT_TOP_PAD (0) ++#endif ++ ++/* ++ M_MMAP_THRESHOLD is the request size threshold for using mmap() ++ to service a request. Requests of at least this size that cannot ++ be allocated using already-existing space will be serviced via mmap. ++ (If enough normal freed space already exists it is used instead.) ++ ++ Using mmap segregates relatively large chunks of memory so that ++ they can be individually obtained and released from the host ++ system. A request serviced through mmap is never reused by any ++ other request (at least not directly; the system may just so ++ happen to remap successive requests to the same locations). ++ ++ Segregating space in this way has the benefits that: ++ ++ 1. Mmapped space can ALWAYS be individually released back ++ to the system, which helps keep the system level memory ++ demands of a long-lived program low. ++ 2. Mapped memory can never become `locked' between ++ other chunks, as can happen with normally allocated chunks, which ++ means that even trimming via malloc_trim would not release them. ++ 3. On some systems with "holes" in address spaces, mmap can obtain ++ memory that sbrk cannot. ++ ++ However, it has the disadvantages that: ++ ++ 1. The space cannot be reclaimed, consolidated, and then ++ used to service later requests, as happens with normal chunks. ++ 2. It can lead to more wastage because of mmap page alignment ++ requirements ++ 3. It causes malloc performance to be more dependent on host ++ system memory management support routines which may vary in ++ implementation quality and may impose arbitrary ++ limitations. Generally, servicing a request via normal ++ malloc steps is faster than going through a system's mmap. ++ ++ The advantages of mmap nearly always outweigh disadvantages for ++ "large" chunks, but the value of "large" varies across systems. The ++ default is an empirically derived value that works well in most ++ systems. ++*/ ++ ++#define M_MMAP_THRESHOLD -3 ++ ++#ifndef DEFAULT_MMAP_THRESHOLD ++#define DEFAULT_MMAP_THRESHOLD (128 * 1024) ++#endif ++ ++/* ++ M_MMAP_MAX is the maximum number of requests to simultaneously ++ service using mmap. This parameter exists because ++. Some systems have a limited number of internal tables for ++ use by mmap, and using more than a few of them may degrade ++ performance. ++ ++ The default is set to a value that serves only as a safeguard. ++ Setting to 0 disables use of mmap for servicing large requests. If ++ HAVE_MMAP is not set, the default value is 0, and attempts to set it ++ to non-zero values in mallopt will fail. ++*/ ++ ++#define M_MMAP_MAX -4 ++ ++#ifndef DEFAULT_MMAP_MAX ++#if HAVE_MMAP ++#define DEFAULT_MMAP_MAX (65536) ++#else ++#define DEFAULT_MMAP_MAX (0) ++#endif ++#endif ++ ++#ifdef __cplusplus ++}; /* end of extern "C" */ ++#endif ++ ++/* ++ ======================================================================== ++ To make a fully customizable malloc.h header file, cut everything ++ above this line, put into file malloc.h, edit to suit, and #include it ++ on the next line, as well as in programs that use this malloc. ++ ======================================================================== ++*/ ++ ++/* #include "malloc.h" */ ++ ++/* --------------------- public wrappers ---------------------- */ ++ ++#ifdef USE_PUBLIC_MALLOC_WRAPPERS ++ ++/* Declare all routines as internal */ ++#if __STD_C ++static Void_t* mALLOc(size_t); ++static void fREe(Void_t*); ++static Void_t* rEALLOc(Void_t*, size_t); ++static Void_t* mEMALIGn(size_t, size_t); ++static Void_t* vALLOc(size_t); ++static Void_t* pVALLOc(size_t); ++static Void_t* cALLOc(size_t, size_t); ++static Void_t** iCALLOc(size_t, size_t, Void_t**); ++static Void_t** iCOMALLOc(size_t, size_t*, Void_t**); ++static void cFREe(Void_t*); ++static int mTRIm(size_t); ++static size_t mUSABLe(Void_t*); ++static void mSTATs(); ++static int mALLOPt(int, int); ++static struct mallinfo mALLINFo(void); ++#else ++static Void_t* mALLOc(); ++static void fREe(); ++static Void_t* rEALLOc(); ++static Void_t* mEMALIGn(); ++static Void_t* vALLOc(); ++static Void_t* pVALLOc(); ++static Void_t* cALLOc(); ++static Void_t** iCALLOc(); ++static Void_t** iCOMALLOc(); ++static void cFREe(); ++static int mTRIm(); ++static size_t mUSABLe(); ++static void mSTATs(); ++static int mALLOPt(); ++static struct mallinfo mALLINFo(); ++#endif ++ ++/* ++ MALLOC_PREACTION and MALLOC_POSTACTION should be ++ defined to return 0 on success, and nonzero on failure. ++ The return value of MALLOC_POSTACTION is currently ignored ++ in wrapper functions since there is no reasonable default ++ action to take on failure. ++*/ ++ ++ ++#ifdef USE_MALLOC_LOCK ++ ++#ifdef WIN32 ++ ++static int mALLOC_MUTEx; ++#define MALLOC_PREACTION slwait(&mALLOC_MUTEx) ++#define MALLOC_POSTACTION slrelease(&mALLOC_MUTEx) ++ ++#else ++ ++#if 0 ++#include <pthread.h> ++ ++static pthread_mutex_t mALLOC_MUTEx = PTHREAD_MUTEX_INITIALIZER; ++ ++#define MALLOC_PREACTION pthread_mutex_lock(&mALLOC_MUTEx) ++#define MALLOC_POSTACTION pthread_mutex_unlock(&mALLOC_MUTEx) ++ ++#else ++ ++#ifdef KDE_MALLOC_X86 ++#include "x86.h" ++#elif defined(KDE_MALLOC_AVR32) ++ ++#include <sched.h> ++#include <time.h> ++ ++static __inline__ int q_atomic_swp(volatile unsigned int *ptr, ++ unsigned int newval) ++{ ++ register int ret; ++ asm volatile("xchg %0,%1,%2" ++ : "=&r"(ret) ++ : "r"(ptr), "r"(newval) ++ : "memory", "cc"); ++ return ret; ++} ++ ++typedef struct { ++ volatile unsigned int lock; ++ int pad0_; ++} mutex_t; ++ ++#define MUTEX_INITIALIZER { 0, 0 } ++ ++static __inline__ int lock(mutex_t *m) { ++ int cnt = 0; ++ struct timespec tm; ++ ++ for(;;) { ++ if (q_atomic_swp(&m->lock, 1) == 0) ++ return 0; ++#ifdef _POSIX_PRIORITY_SCHEDULING ++ if(cnt < 50) { ++ sched_yield(); ++ cnt++; ++ } else ++#endif ++ { ++ tm.tv_sec = 0; ++ tm.tv_nsec = 2000001; ++ nanosleep(&tm, NULL); ++ cnt = 0; ++ } ++ } ++} ++ ++static __inline__ int unlock(mutex_t *m) { ++ m->lock = 0; ++ return 0; ++} ++ ++#else ++#error Unknown spinlock implementation ++#endif ++ ++static mutex_t spinlock = MUTEX_INITIALIZER; ++ ++#define MALLOC_PREACTION lock( &spinlock ) ++#define MALLOC_POSTACTION unlock( &spinlock ) ++ ++#endif ++ ++#endif /* USE_MALLOC_LOCK */ ++ ++#else ++ ++/* Substitute anything you like for these */ ++ ++#define MALLOC_PREACTION (0) ++#define MALLOC_POSTACTION (0) ++ ++#endif ++ ++#if 0 ++Void_t* public_mALLOc(size_t bytes) { ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = mALLOc(bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++void public_fREe(Void_t* m) { ++ if (MALLOC_PREACTION != 0) { ++ return; ++ } ++ fREe(m); ++ if (MALLOC_POSTACTION != 0) { ++ } ++} ++ ++Void_t* public_rEALLOc(Void_t* m, size_t bytes) { ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = rEALLOc(m, bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++Void_t* public_mEMALIGn(size_t alignment, size_t bytes) { ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = mEMALIGn(alignment, bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++Void_t* public_vALLOc(size_t bytes) { ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = vALLOc(bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++Void_t* public_pVALLOc(size_t bytes) { ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = pVALLOc(bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++Void_t* public_cALLOc(size_t n, size_t elem_size) { ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = cALLOc(n, elem_size); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++ ++Void_t** public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks) { ++ Void_t** m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = iCALLOc(n, elem_size, chunks); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++Void_t** public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks) { ++ Void_t** m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = iCOMALLOc(n, sizes, chunks); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++void public_cFREe(Void_t* m) { ++ if (MALLOC_PREACTION != 0) { ++ return; ++ } ++ cFREe(m); ++ if (MALLOC_POSTACTION != 0) { ++ } ++} ++ ++int public_mTRIm(size_t s) { ++ int result; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ result = mTRIm(s); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return result; ++} ++ ++size_t public_mUSABLe(Void_t* m) { ++ size_t result; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ result = mUSABLe(m); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return result; ++} ++ ++void public_mSTATs() { ++ if (MALLOC_PREACTION != 0) { ++ return; ++ } ++ mSTATs(); ++ if (MALLOC_POSTACTION != 0) { ++ } ++} ++ ++struct mallinfo public_mALLINFo() { ++ struct mallinfo m; ++ if (MALLOC_PREACTION != 0) { ++ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ++ return nm; ++ } ++ m = mALLINFo(); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++} ++ ++int public_mALLOPt(int p, int v) { ++ int result; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ result = mALLOPt(p, v); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return result; ++} ++#endif ++ ++#endif ++ ++ ++ ++/* ------------- Optional versions of memcopy ---------------- */ ++ ++ ++#if USE_MEMCPY ++ ++/* ++ Note: memcpy is ONLY invoked with non-overlapping regions, ++ so the (usually slower) memmove is not needed. ++*/ ++ ++#define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes) ++#define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes) ++ ++#else /* !USE_MEMCPY */ ++ ++/* Use Duff's device for good zeroing/copying performance. */ ++ ++#define MALLOC_ZERO(charp, nbytes) \ ++do { \ ++ INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ ++ unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \ ++ long mcn; \ ++ if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ ++ switch (mctmp) { \ ++ case 0: for(;;) { *mzp++ = 0; \ ++ case 7: *mzp++ = 0; \ ++ case 6: *mzp++ = 0; \ ++ case 5: *mzp++ = 0; \ ++ case 4: *mzp++ = 0; \ ++ case 3: *mzp++ = 0; \ ++ case 2: *mzp++ = 0; \ ++ case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ ++ } \ ++} while(0) ++ ++#define MALLOC_COPY(dest,src,nbytes) \ ++do { \ ++ INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ ++ INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ ++ unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \ ++ long mcn; \ ++ if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ ++ switch (mctmp) { \ ++ case 0: for(;;) { *mcdst++ = *mcsrc++; \ ++ case 7: *mcdst++ = *mcsrc++; \ ++ case 6: *mcdst++ = *mcsrc++; \ ++ case 5: *mcdst++ = *mcsrc++; \ ++ case 4: *mcdst++ = *mcsrc++; \ ++ case 3: *mcdst++ = *mcsrc++; \ ++ case 2: *mcdst++ = *mcsrc++; \ ++ case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ ++ } \ ++} while(0) ++ ++#endif ++ ++/* ------------------ MMAP support ------------------ */ ++ ++ ++#if HAVE_MMAP ++ ++#include <fcntl.h> ++#ifndef LACKS_SYS_MMAN_H ++#include <sys/mman.h> ++#endif ++ ++#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) ++#define MAP_ANONYMOUS MAP_ANON ++#endif ++ ++/* ++ Nearly all versions of mmap support MAP_ANONYMOUS, ++ so the following is unlikely to be needed, but is ++ supplied just in case. ++*/ ++ ++#ifndef MAP_ANONYMOUS ++ ++static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ ++ ++#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \ ++ (dev_zero_fd = open("/dev/zero", O_RDWR), \ ++ mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \ ++ mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) ++ ++#else ++ ++#define MMAP(addr, size, prot, flags) \ ++ (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0)) ++ ++#endif ++ ++ ++#endif /* HAVE_MMAP */ ++ ++ ++/* ++ ----------------------- Chunk representations ----------------------- ++*/ ++ ++ ++/* ++ This struct declaration is misleading (but accurate and necessary). ++ It declares a "view" into memory allowing access to necessary ++ fields at known offsets from a given base. See explanation below. ++*/ ++ ++struct malloc_chunk { ++ ++ INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ ++ INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ ++ ++ struct malloc_chunk* fd; /* double links -- used only if free. */ ++ struct malloc_chunk* bk; ++}; ++ ++ ++typedef struct malloc_chunk* mchunkptr; ++ ++/* ++ malloc_chunk details: ++ ++ (The following includes lightly edited explanations by Colin Plumb.) ++ ++ Chunks of memory are maintained using a `boundary tag' method as ++ described in e.g., Knuth or Standish. (See the paper by Paul ++ Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a ++ survey of such techniques.) Sizes of free chunks are stored both ++ in the front of each chunk and at the end. This makes ++ consolidating fragmented chunks into bigger chunks very fast. The ++ size fields also hold bits representing whether chunks are free or ++ in use. ++ ++ An allocated chunk looks like this: ++ ++ ++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of previous chunk, if allocated | | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of chunk, in bytes |P| ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | User data starts here... . ++ . . ++ . (malloc_usable_space() bytes) . ++ . | ++nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of chunk | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ ++ ++ Where "chunk" is the front of the chunk for the purpose of most of ++ the malloc code, but "mem" is the pointer that is returned to the ++ user. "Nextchunk" is the beginning of the next contiguous chunk. ++ ++ Chunks always begin on even word boundaries, so the mem portion ++ (which is returned to the user) is also on an even word boundary, and ++ thus at least double-word aligned. ++ ++ Free chunks are stored in circular doubly-linked lists, and look like this: ++ ++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of previous chunk | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ `head:' | Size of chunk, in bytes |P| ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Forward pointer to next chunk in list | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Back pointer to previous chunk in list | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Unused space (may be 0 bytes long) . ++ . . ++ . | ++nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ `foot:' | Size of chunk, in bytes | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ ++ The P (PREV_INUSE) bit, stored in the unused low-order bit of the ++ chunk size (which is always a multiple of two words), is an in-use ++ bit for the *previous* chunk. If that bit is *clear*, then the ++ word before the current chunk size contains the previous chunk ++ size, and can be used to find the front of the previous chunk. ++ The very first chunk allocated always has this bit set, ++ preventing access to non-existent (or non-owned) memory. If ++ prev_inuse is set for any given chunk, then you CANNOT determine ++ the size of the previous chunk, and might even get a memory ++ addressing fault when trying to do so. ++ ++ Note that the `foot' of the current chunk is actually represented ++ as the prev_size of the NEXT chunk. This makes it easier to ++ deal with alignments etc but can be very confusing when trying ++ to extend or adapt this code. ++ ++ The two exceptions to all this are ++ ++ 1. The special chunk `top' doesn't bother using the ++ trailing size field since there is no next contiguous chunk ++ that would have to index off it. After initialization, `top' ++ is forced to always exist. If it would become less than ++ MINSIZE bytes long, it is replenished. ++ ++ 2. Chunks allocated via mmap, which have the second-lowest-order ++ bit (IS_MMAPPED) set in their size fields. Because they are ++ allocated one-by-one, each must contain its own trailing size field. ++ ++*/ ++ ++/* ++ ---------- Size and alignment checks and conversions ---------- ++*/ ++ ++/* conversion from malloc headers to user pointers, and back */ ++ ++#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) ++#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) ++ ++/* The smallest possible chunk */ ++#define MIN_CHUNK_SIZE (sizeof(struct malloc_chunk)) ++ ++/* The smallest size we can malloc is an aligned minimal chunk */ ++ ++#define MINSIZE \ ++ (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)) ++ ++/* Check if m has acceptable alignment */ ++ ++#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) ++ ++ ++/* ++ Check if a request is so large that it would wrap around zero when ++ padded and aligned. To simplify some other code, the bound is made ++ low enough so that adding MINSIZE will also not wrap around zero. ++*/ ++ ++#define REQUEST_OUT_OF_RANGE(req) \ ++ ((unsigned long)(req) >= \ ++ (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE)) ++ ++/* pad request bytes into a usable size -- internal version */ ++ ++#define request2size(req) \ ++ (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \ ++ MINSIZE : \ ++ ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK) ++ ++/* Same, except also perform argument check */ ++ ++#define checked_request2size(req, sz) \ ++ if (REQUEST_OUT_OF_RANGE(req)) { \ ++ MALLOC_FAILURE_ACTION; \ ++ return 0; \ ++ } \ ++ (sz) = request2size(req); ++ ++/* ++ --------------- Physical chunk operations --------------- ++*/ ++ ++ ++/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ ++#define PREV_INUSE 0x1 ++ ++/* extract inuse bit of previous chunk */ ++#define prev_inuse(p) ((p)->size & PREV_INUSE) ++ ++ ++/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ ++#define IS_MMAPPED 0x2 ++ ++/* check for mmap()'ed chunk */ ++#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) ++ ++/* ++ Bits to mask off when extracting size ++ ++ Note: IS_MMAPPED is intentionally not masked off from size field in ++ macros for which mmapped chunks should never be seen. This should ++ cause helpful core dumps to occur if it is tried by accident by ++ people extending or adapting this malloc. ++*/ ++#define SIZE_BITS (PREV_INUSE|IS_MMAPPED) ++ ++/* Get size, ignoring use bits */ ++#define chunksize(p) ((p)->size & ~(SIZE_BITS)) ++ ++ ++/* Ptr to next physical malloc_chunk. */ ++#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) ++ ++/* Ptr to previous physical malloc_chunk */ ++#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) ++ ++/* Treat space at ptr + offset as a chunk */ ++#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) ++ ++/* extract p's inuse bit */ ++#define inuse(p)\ ++((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) ++ ++/* set/clear chunk as being inuse without otherwise disturbing */ ++#define set_inuse(p)\ ++((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE ++ ++#define clear_inuse(p)\ ++((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) ++ ++ ++/* check/set/clear inuse bits in known places */ ++#define inuse_bit_at_offset(p, s)\ ++ (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) ++ ++#define set_inuse_bit_at_offset(p, s)\ ++ (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) ++ ++#define clear_inuse_bit_at_offset(p, s)\ ++ (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) ++ ++ ++/* Set size at head, without disturbing its use bit */ ++#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) ++ ++/* Set size/use field */ ++#define set_head(p, s) ((p)->size = (s)) ++ ++/* Set size at footer (only when chunk is not in use) */ ++#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) ++ ++ ++/* ++ -------------------- Internal data structures -------------------- ++ ++ All internal state is held in an instance of malloc_state defined ++ below. There are no other static variables, except in two optional ++ cases: ++ * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above. ++ * If HAVE_MMAP is true, but mmap doesn't support ++ MAP_ANONYMOUS, a dummy file descriptor for mmap. ++ ++ Beware of lots of tricks that minimize the total bookkeeping space ++ requirements. The result is a little over 1K bytes (for 4byte ++ pointers and size_t.) ++*/ ++ ++/* ++ Bins ++ ++ An array of bin headers for free chunks. Each bin is doubly ++ linked. The bins are approximately proportionally (log) spaced. ++ There are a lot of these bins (128). This may look excessive, but ++ works very well in practice. Most bins hold sizes that are ++ unusual as malloc request sizes, but are more usual for fragments ++ and consolidated sets of chunks, which is what these bins hold, so ++ they can be found quickly. All procedures maintain the invariant ++ that no consolidated chunk physically borders another one, so each ++ chunk in a list is known to be preceded and followed by either ++ inuse chunks or the ends of memory. ++ ++ Chunks in bins are kept in size order, with ties going to the ++ approximately least recently used chunk. Ordering isn't needed ++ for the small bins, which all contain the same-sized chunks, but ++ facilitates best-fit allocation for larger chunks. These lists ++ are just sequential. Keeping them in order almost never requires ++ enough traversal to warrant using fancier ordered data ++ structures. ++ ++ Chunks of the same size are linked with the most ++ recently freed at the front, and allocations are taken from the ++ back. This results in LRU (FIFO) allocation order, which tends ++ to give each chunk an equal opportunity to be consolidated with ++ adjacent freed chunks, resulting in larger free chunks and less ++ fragmentation. ++ ++ To simplify use in double-linked lists, each bin header acts ++ as a malloc_chunk. This avoids special-casing for headers. ++ But to conserve space and improve locality, we allocate ++ only the fd/bk pointers of bins, and then use repositioning tricks ++ to treat these as the fields of a malloc_chunk*. ++*/ ++ ++typedef struct malloc_chunk* mbinptr; ++ ++/* addressing -- note that bin_at(0) does not exist */ ++#define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1))) ++ ++/* analog of ++bin */ ++#define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1))) ++ ++/* Reminders about list directionality within bins */ ++#define first(b) ((b)->fd) ++#define last(b) ((b)->bk) ++ ++/* Take a chunk off a bin list */ ++#define unlink(P, BK, FD) { \ ++ FD = P->fd; \ ++ BK = P->bk; \ ++ FD->bk = BK; \ ++ BK->fd = FD; \ ++} ++ ++/* ++ Indexing ++ ++ Bins for sizes < 512 bytes contain chunks of all the same size, spaced ++ 8 bytes apart. Larger bins are approximately logarithmically spaced: ++ ++ 64 bins of size 8 ++ 32 bins of size 64 ++ 16 bins of size 512 ++ 8 bins of size 4096 ++ 4 bins of size 32768 ++ 2 bins of size 262144 ++ 1 bin of size what's left ++ ++ There is actually a little bit of slop in the numbers in bin_index ++ for the sake of speed. This makes no difference elsewhere. ++ ++ The bins top out around 1MB because we expect to service large ++ requests via mmap. ++*/ ++ ++#define NBINS 128 ++#define NSMALLBINS 64 ++#define SMALLBIN_WIDTH 8 ++#define MIN_LARGE_SIZE 512 ++ ++#define in_smallbin_range(sz) \ ++ ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE) ++ ++#define smallbin_index(sz) (((unsigned)(sz)) >> 3) ++ ++#define largebin_index(sz) \ ++(((((unsigned long)(sz)) >> 6) <= 32)? 56 + (((unsigned long)(sz)) >> 6): \ ++ ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \ ++ ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \ ++ ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \ ++ ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \ ++ 126) ++ ++#define bin_index(sz) \ ++ ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz)) ++ ++ ++/* ++ Unsorted chunks ++ ++ All remainders from chunk splits, as well as all returned chunks, ++ are first placed in the "unsorted" bin. They are then placed ++ in regular bins after malloc gives them ONE chance to be used before ++ binning. So, basically, the unsorted_chunks list acts as a queue, ++ with chunks being placed on it in free (and malloc_consolidate), ++ and taken off (to be either used or placed in bins) in malloc. ++*/ ++ ++/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */ ++#define unsorted_chunks(M) (bin_at(M, 1)) ++ ++/* ++ Top ++ ++ The top-most available chunk (i.e., the one bordering the end of ++ available memory) is treated specially. It is never included in ++ any bin, is used only if no other chunk is available, and is ++ released back to the system if it is very large (see ++ M_TRIM_THRESHOLD). Because top initially ++ points to its own bin with initial zero size, thus forcing ++ extension on the first malloc request, we avoid having any special ++ code in malloc to check whether it even exists yet. But we still ++ need to do so when getting memory from system, so we make ++ initial_top treat the bin as a legal but unusable chunk during the ++ interval between initialization and the first call to ++ sYSMALLOc. (This is somewhat delicate, since it relies on ++ the 2 preceding words to be zero during this interval as well.) ++*/ ++ ++/* Conveniently, the unsorted bin can be used as dummy top on first call */ ++#define initial_top(M) (unsorted_chunks(M)) ++ ++/* ++ Binmap ++ ++ To help compensate for the large number of bins, a one-level index ++ structure is used for bin-by-bin searching. `binmap' is a ++ bitvector recording whether bins are definitely empty so they can ++ be skipped over during during traversals. The bits are NOT always ++ cleared as soon as bins are empty, but instead only ++ when they are noticed to be empty during traversal in malloc. ++*/ ++ ++/* Conservatively use 32 bits per map word, even if on 64bit system */ ++#define BINMAPSHIFT 5 ++#define BITSPERMAP (1U << BINMAPSHIFT) ++#define BINMAPSIZE (NBINS / BITSPERMAP) ++ ++#define idx2block(i) ((i) >> BINMAPSHIFT) ++#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1)))) ++ ++#define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i)) ++#define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i))) ++#define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i)) ++ ++/* ++ Fastbins ++ ++ An array of lists holding recently freed small chunks. Fastbins ++ are not doubly linked. It is faster to single-link them, and ++ since chunks are never removed from the middles of these lists, ++ double linking is not necessary. Also, unlike regular bins, they ++ are not even processed in FIFO order (they use faster LIFO) since ++ ordering doesn't much matter in the transient contexts in which ++ fastbins are normally used. ++ ++ Chunks in fastbins keep their inuse bit set, so they cannot ++ be consolidated with other free chunks. malloc_consolidate ++ releases all chunks in fastbins and consolidates them with ++ other free chunks. ++*/ ++ ++typedef struct malloc_chunk* mfastbinptr; ++ ++/* offset 2 to use otherwise unindexable first 2 bins */ ++#define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2) ++ ++/* The maximum fastbin request size we support */ ++#define MAX_FAST_SIZE 80 ++ ++#define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1) ++ ++/* ++ FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free() ++ that triggers automatic consolidation of possibly-surrounding ++ fastbin chunks. This is a heuristic, so the exact value should not ++ matter too much. It is defined at half the default trim threshold as a ++ compromise heuristic to only attempt consolidation if it is likely ++ to lead to trimming. However, it is not dynamically tunable, since ++ consolidation reduces fragmentation surrounding loarge chunks even ++ if trimming is not used. ++*/ ++ ++#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL) ++ ++/* ++ Since the lowest 2 bits in max_fast don't matter in size comparisons, ++ they are used as flags. ++*/ ++ ++/* ++ FASTCHUNKS_BIT held in max_fast indicates that there are probably ++ some fastbin chunks. It is set true on entering a chunk into any ++ fastbin, and cleared only in malloc_consolidate. ++ ++ The truth value is inverted so that have_fastchunks will be true ++ upon startup (since statics are zero-filled), simplifying ++ initialization checks. ++*/ ++ ++#define FASTCHUNKS_BIT (1U) ++ ++#define have_fastchunks(M) (((M)->max_fast & FASTCHUNKS_BIT) == 0) ++#define clear_fastchunks(M) ((M)->max_fast |= FASTCHUNKS_BIT) ++#define set_fastchunks(M) ((M)->max_fast &= ~FASTCHUNKS_BIT) ++ ++/* ++ NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous ++ regions. Otherwise, contiguity is exploited in merging together, ++ when possible, results from consecutive MORECORE calls. ++ ++ The initial value comes from MORECORE_CONTIGUOUS, but is ++ changed dynamically if mmap is ever used as an sbrk substitute. ++*/ ++ ++#define NONCONTIGUOUS_BIT (2U) ++ ++#define contiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) == 0) ++#define noncontiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) != 0) ++#define set_noncontiguous(M) ((M)->max_fast |= NONCONTIGUOUS_BIT) ++#define set_contiguous(M) ((M)->max_fast &= ~NONCONTIGUOUS_BIT) ++ ++/* ++ Set value of max_fast. ++ Use impossibly small value if 0. ++ Precondition: there are no existing fastbin chunks. ++ Setting the value clears fastchunk bit but preserves noncontiguous bit. ++*/ ++ ++#define set_max_fast(M, s) \ ++ (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \ ++ FASTCHUNKS_BIT | \ ++ ((M)->max_fast & NONCONTIGUOUS_BIT) ++ ++ ++/* ++ ----------- Internal state representation and initialization ----------- ++*/ ++ ++struct malloc_state { ++ ++ /* The maximum chunk size to be eligible for fastbin */ ++ INTERNAL_SIZE_T max_fast; /* low 2 bits used as flags */ ++ ++ /* Fastbins */ ++ mfastbinptr fastbins[NFASTBINS]; ++ ++ /* Base of the topmost chunk -- not otherwise kept in a bin */ ++ mchunkptr top; ++ ++ /* The remainder from the most recent split of a small request */ ++ mchunkptr last_remainder; ++ ++ /* Normal bins packed as described above */ ++ mchunkptr bins[NBINS * 2]; ++ ++ /* Bitmap of bins */ ++ unsigned int binmap[BINMAPSIZE]; ++ ++ /* Tunable parameters */ ++ unsigned long trim_threshold; ++ INTERNAL_SIZE_T top_pad; ++ INTERNAL_SIZE_T mmap_threshold; ++ ++ /* Memory map support */ ++ int n_mmaps; ++ int n_mmaps_max; ++ int max_n_mmaps; ++ ++ /* Cache malloc_getpagesize */ ++ unsigned int pagesize; ++ ++ /* Statistics */ ++ INTERNAL_SIZE_T mmapped_mem; ++ INTERNAL_SIZE_T sbrked_mem; ++ INTERNAL_SIZE_T max_sbrked_mem; ++ INTERNAL_SIZE_T max_mmapped_mem; ++ INTERNAL_SIZE_T max_total_mem; ++}; ++ ++typedef struct malloc_state *mstate; ++ ++/* ++ There is exactly one instance of this struct in this malloc. ++ If you are adapting this malloc in a way that does NOT use a static ++ malloc_state, you MUST explicitly zero-fill it before using. This ++ malloc relies on the property that malloc_state is initialized to ++ all zeroes (as is true of C statics). ++*/ ++ ++static struct malloc_state av_; /* never directly referenced */ ++ ++/* ++ All uses of av_ are via get_malloc_state(). ++ At most one "call" to get_malloc_state is made per invocation of ++ the public versions of malloc and free, but other routines ++ that in turn invoke malloc and/or free may call more then once. ++ Also, it is called in check* routines if DEBUG is set. ++*/ ++ ++#define get_malloc_state() (&(av_)) ++ ++/* ++ Initialize a malloc_state struct. ++ ++ This is called only from within malloc_consolidate, which needs ++ be called in the same contexts anyway. It is never called directly ++ outside of malloc_consolidate because some optimizing compilers try ++ to inline it at all call points, which turns out not to be an ++ optimization at all. (Inlining it in malloc_consolidate is fine though.) ++*/ ++ ++#if __STD_C ++static void malloc_init_state(mstate av) ++#else ++static void malloc_init_state(av) mstate av; ++#endif ++{ ++ int i; ++ mbinptr bin; ++ ++ /* Establish circular links for normal bins */ ++ for (i = 1; i < NBINS; ++i) { ++ bin = bin_at(av,i); ++ bin->fd = bin->bk = bin; ++ } ++ ++ av->top_pad = DEFAULT_TOP_PAD; ++ av->n_mmaps_max = DEFAULT_MMAP_MAX; ++ av->mmap_threshold = DEFAULT_MMAP_THRESHOLD; ++ av->trim_threshold = DEFAULT_TRIM_THRESHOLD; ++ ++#if !MORECORE_CONTIGUOUS ++ set_noncontiguous(av); ++#endif ++ ++ set_max_fast(av, DEFAULT_MXFAST); ++ ++ av->top = initial_top(av); ++ av->pagesize = malloc_getpagesize; ++} ++ ++/* ++ Other internal utilities operating on mstates ++*/ ++ ++#if __STD_C ++static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate); ++static int sYSTRIm(size_t, mstate); ++static void malloc_consolidate(mstate); ++static Void_t** iALLOc(size_t, size_t*, int, Void_t**); ++#else ++static Void_t* sYSMALLOc(); ++static int sYSTRIm(); ++static void malloc_consolidate(); ++static Void_t** iALLOc(); ++#endif ++ ++/* ++ Debugging support ++ ++ These routines make a number of assertions about the states ++ of data structures that should be true at all times. If any ++ are not true, it's very likely that a user program has somehow ++ trashed memory. (It's also possible that there is a coding error ++ in malloc. In which case, please report it!) ++*/ ++ ++#ifndef DEBUG ++ ++#define check_chunk(P) ++#define check_free_chunk(P) ++#define check_inuse_chunk(P) ++#define check_remalloced_chunk(P,N) ++#define check_malloced_chunk(P,N) ++#define check_malloc_state() ++ ++#else ++#define check_chunk(P) do_check_chunk(P) ++#define check_free_chunk(P) do_check_free_chunk(P) ++#define check_inuse_chunk(P) do_check_inuse_chunk(P) ++#define check_remalloced_chunk(P,N) do_check_remalloced_chunk(P,N) ++#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) ++#define check_malloc_state() do_check_malloc_state() ++ ++/* ++ Properties of all chunks ++*/ ++ ++INLINE ++#if __STD_C ++static void do_check_chunk(mchunkptr p) ++#else ++static void do_check_chunk(p) mchunkptr p; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ unsigned long sz = chunksize(p); ++ /* min and max possible addresses assuming contiguous allocation */ ++ char* max_address = (char*)(av->top) + chunksize(av->top); ++ char* min_address = max_address - av->sbrked_mem; ++ ++ if (!chunk_is_mmapped(p)) { ++ ++ /* Has legal address ... */ ++ if (p != av->top) { ++ if (contiguous(av)) { ++ assert(((char*)p) >= min_address); ++ assert(((char*)p + sz) <= ((char*)(av->top))); ++ } ++ } ++ else { ++ /* top size is always at least MINSIZE */ ++ assert((unsigned long)(sz) >= MINSIZE); ++ /* top predecessor always marked inuse */ ++ assert(prev_inuse(p)); ++ } ++ ++ } ++ else { ++#if HAVE_MMAP ++ /* address is outside main heap */ ++ if (contiguous(av) && av->top != initial_top(av)) { ++ assert(((char*)p) < min_address || ((char*)p) > max_address); ++ } ++ /* chunk is page-aligned */ ++ assert(((p->prev_size + sz) & (av->pagesize-1)) == 0); ++ /* mem is aligned */ ++ assert(aligned_OK(chunk2mem(p))); ++#else ++ /* force an appropriate assert violation if debug set */ ++ assert(!chunk_is_mmapped(p)); ++#endif ++ } ++} ++ ++/* ++ Properties of free chunks ++*/ ++ ++INLINE ++#if __STD_C ++static void do_check_free_chunk(mchunkptr p) ++#else ++static void do_check_free_chunk(p) mchunkptr p; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ ++ INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; ++ mchunkptr next = chunk_at_offset(p, sz); ++ ++ do_check_chunk(p); ++ ++ /* Chunk must claim to be free ... */ ++ assert(!inuse(p)); ++ assert (!chunk_is_mmapped(p)); ++ ++ /* Unless a special marker, must have OK fields */ ++ if ((unsigned long)(sz) >= MINSIZE) ++ { ++ assert((sz & MALLOC_ALIGN_MASK) == 0); ++ assert(aligned_OK(chunk2mem(p))); ++ /* ... matching footer field */ ++ assert(next->prev_size == sz); ++ /* ... and is fully consolidated */ ++ assert(prev_inuse(p)); ++ assert (next == av->top || inuse(next)); ++ ++ /* ... and has minimally sane links */ ++ assert(p->fd->bk == p); ++ assert(p->bk->fd == p); ++ } ++ else /* markers are always of size SIZE_SZ */ ++ assert(sz == SIZE_SZ); ++} ++ ++/* ++ Properties of inuse chunks ++*/ ++ ++INLINE ++#if __STD_C ++static void do_check_inuse_chunk(mchunkptr p) ++#else ++static void do_check_inuse_chunk(p) mchunkptr p; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ mchunkptr next; ++ do_check_chunk(p); ++ ++ if (chunk_is_mmapped(p)) ++ return; /* mmapped chunks have no next/prev */ ++ ++ /* Check whether it claims to be in use ... */ ++ assert(inuse(p)); ++ ++ next = next_chunk(p); ++ ++ /* ... and is surrounded by OK chunks. ++ Since more things can be checked with free chunks than inuse ones, ++ if an inuse chunk borders them and debug is on, it's worth doing them. ++ */ ++ if (!prev_inuse(p)) { ++ /* Note that we cannot even look at prev unless it is not inuse */ ++ mchunkptr prv = prev_chunk(p); ++ assert(next_chunk(prv) == p); ++ do_check_free_chunk(prv); ++ } ++ ++ if (next == av->top) { ++ assert(prev_inuse(next)); ++ assert(chunksize(next) >= MINSIZE); ++ } ++ else if (!inuse(next)) ++ do_check_free_chunk(next); ++} ++ ++/* ++ Properties of chunks recycled from fastbins ++*/ ++ ++INLINE ++#if __STD_C ++static void do_check_remalloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) ++#else ++static void do_check_remalloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; ++#endif ++{ ++ INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; ++ ++ do_check_inuse_chunk(p); ++ ++ /* Legal size ... */ ++ assert((sz & MALLOC_ALIGN_MASK) == 0); ++ assert((unsigned long)(sz) >= MINSIZE); ++ /* ... and alignment */ ++ assert(aligned_OK(chunk2mem(p))); ++ /* chunk is less than MINSIZE more than request */ ++ assert((long)(sz) - (long)(s) >= 0); ++ assert((long)(sz) - (long)(s + MINSIZE) < 0); ++} ++ ++/* ++ Properties of nonrecycled chunks at the point they are malloced ++*/ ++ ++INLINE ++#if __STD_C ++static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) ++#else ++static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; ++#endif ++{ ++ /* same as recycled case ... */ ++ do_check_remalloced_chunk(p, s); ++ ++ /* ++ ... plus, must obey implementation invariant that prev_inuse is ++ always true of any allocated chunk; i.e., that each allocated ++ chunk borders either a previously allocated and still in-use ++ chunk, or the base of its memory arena. This is ensured ++ by making all allocations from the the `lowest' part of any found ++ chunk. This does not necessarily hold however for chunks ++ recycled via fastbins. ++ */ ++ ++ assert(prev_inuse(p)); ++} ++ ++ ++/* ++ Properties of malloc_state. ++ ++ This may be useful for debugging malloc, as well as detecting user ++ programmer errors that somehow write into malloc_state. ++ ++ If you are extending or experimenting with this malloc, you can ++ probably figure out how to hack this routine to print out or ++ display chunk addresses, sizes, bins, and other instrumentation. ++*/ ++ ++static void do_check_malloc_state() ++{ ++ mstate av = get_malloc_state(); ++ int i; ++ mchunkptr p; ++ mchunkptr q; ++ mbinptr b; ++ unsigned int binbit; ++ int empty; ++ unsigned int idx; ++ INTERNAL_SIZE_T size; ++ unsigned long total = 0; ++ int max_fast_bin; ++ ++ /* internal size_t must be no wider than pointer type */ ++ assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*)); ++ ++ /* alignment is a power of 2 */ ++ assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0); ++ ++ /* cannot run remaining checks until fully initialized */ ++ if (av->top == 0 || av->top == initial_top(av)) ++ return; ++ ++ /* pagesize is a power of 2 */ ++ assert((av->pagesize & (av->pagesize-1)) == 0); ++ ++ /* properties of fastbins */ ++ ++ /* max_fast is in allowed range */ ++ assert((av->max_fast & ~1) <= request2size(MAX_FAST_SIZE)); ++ ++ max_fast_bin = fastbin_index(av->max_fast); ++ ++ for (i = 0; i < NFASTBINS; ++i) { ++ p = av->fastbins[i]; ++ ++ /* all bins past max_fast are empty */ ++ if (i > max_fast_bin) ++ assert(p == 0); ++ ++ while (p != 0) { ++ /* each chunk claims to be inuse */ ++ do_check_inuse_chunk(p); ++ total += chunksize(p); ++ /* chunk belongs in this bin */ ++ assert(fastbin_index(chunksize(p)) == i); ++ p = p->fd; ++ } ++ } ++ ++ if (total != 0) ++ assert(have_fastchunks(av)); ++ else if (!have_fastchunks(av)) ++ assert(total == 0); ++ ++ /* check normal bins */ ++ for (i = 1; i < NBINS; ++i) { ++ b = bin_at(av,i); ++ ++ /* binmap is accurate (except for bin 1 == unsorted_chunks) */ ++ if (i >= 2) { ++ binbit = get_binmap(av,i); ++ empty = last(b) == b; ++ if (!binbit) ++ assert(empty); ++ else if (!empty) ++ assert(binbit); ++ } ++ ++ for (p = last(b); p != b; p = p->bk) { ++ /* each chunk claims to be free */ ++ do_check_free_chunk(p); ++ size = chunksize(p); ++ total += size; ++ if (i >= 2) { ++ /* chunk belongs in bin */ ++ idx = bin_index(size); ++ assert(idx == i); ++ /* lists are sorted */ ++ assert(p->bk == b || ++ (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p)); ++ } ++ /* chunk is followed by a legal chain of inuse chunks */ ++ for (q = next_chunk(p); ++ (q != av->top && inuse(q) && ++ (unsigned long)(chunksize(q)) >= MINSIZE); ++ q = next_chunk(q)) ++ do_check_inuse_chunk(q); ++ } ++ } ++ ++ /* top chunk is OK */ ++ check_chunk(av->top); ++ ++ /* sanity checks for statistics */ ++ ++ assert(total <= (unsigned long)(av->max_total_mem)); ++ assert(av->n_mmaps >= 0); ++ assert(av->n_mmaps <= av->n_mmaps_max); ++ assert(av->n_mmaps <= av->max_n_mmaps); ++ ++ assert((unsigned long)(av->sbrked_mem) <= ++ (unsigned long)(av->max_sbrked_mem)); ++ ++ assert((unsigned long)(av->mmapped_mem) <= ++ (unsigned long)(av->max_mmapped_mem)); ++ ++ assert((unsigned long)(av->max_total_mem) >= ++ (unsigned long)(av->mmapped_mem) + (unsigned long)(av->sbrked_mem)); ++} ++#endif ++ ++ ++/* ----------- Routines dealing with system allocation -------------- */ ++ ++/* ++ sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back ++ to the system (via negative arguments to sbrk) if there is unused ++ memory at the `high' end of the malloc pool. It is called ++ automatically by free() when top space exceeds the trim ++ threshold. It is also called by the public malloc_trim routine. It ++ returns 1 if it actually released any memory, else 0. ++*/ ++ ++INLINE ++#if __STD_C ++static int sYSTRIm(size_t pad, mstate av) ++#else ++static int sYSTRIm(pad, av) size_t pad; mstate av; ++#endif ++{ ++ long top_size; /* Amount of top-most memory */ ++ long extra; /* Amount to release */ ++ long released; /* Amount actually released */ ++ char* current_brk; /* address returned by pre-check sbrk call */ ++ char* new_brk; /* address returned by post-check sbrk call */ ++ size_t pagesz; ++ ++ pagesz = av->pagesize; ++ top_size = chunksize(av->top); ++ ++ /* Release in pagesize units, keeping at least one page */ ++ extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; ++ ++ if (extra > 0) { ++ ++ /* ++ Only proceed if end of memory is where we last set it. ++ This avoids problems if there were foreign sbrk calls. ++ */ ++ current_brk = (char*)(MORECORE(0)); ++ if (current_brk == (char*)(av->top) + top_size) { ++ ++ /* ++ Attempt to release memory. We ignore MORECORE return value, ++ and instead call again to find out where new end of memory is. ++ This avoids problems if first call releases less than we asked, ++ of if failure somehow altered brk value. (We could still ++ encounter problems if it altered brk in some very bad way, ++ but the only thing we can do is adjust anyway, which will cause ++ some downstream failure.) ++ */ ++ ++ MORECORE(-extra); ++ new_brk = (char*)(MORECORE(0)); ++ ++ if (new_brk != (char*)MORECORE_FAILURE) { ++ released = (long)(current_brk - new_brk); ++ ++ if (released != 0) { ++ /* Success. Adjust top. */ ++ av->sbrked_mem -= released; ++ set_head(av->top, (top_size - released) | PREV_INUSE); ++ check_malloc_state(); ++ return 1; ++ } ++ } ++ } ++ } ++ return 0; ++} ++ ++/* ++ ------------------------- malloc_consolidate ------------------------- ++ ++ malloc_consolidate is a specialized version of free() that tears ++ down chunks held in fastbins. Free itself cannot be used for this ++ purpose since, among other things, it might place chunks back onto ++ fastbins. So, instead, we need to use a minor variant of the same ++ code. ++ ++ Also, because this routine needs to be called the first time through ++ malloc anyway, it turns out to be the perfect place to trigger ++ initialization code. ++*/ ++ ++INLINE ++#if __STD_C ++static void malloc_consolidate(mstate av) ++#else ++static void malloc_consolidate(av) mstate av; ++#endif ++{ ++ mfastbinptr* fb; /* current fastbin being consolidated */ ++ mfastbinptr* maxfb; /* last fastbin (for loop control) */ ++ mchunkptr p; /* current chunk being consolidated */ ++ mchunkptr nextp; /* next chunk to consolidate */ ++ mchunkptr unsorted_bin; /* bin header */ ++ mchunkptr first_unsorted; /* chunk to link to */ ++ ++ /* These have same use as in free() */ ++ mchunkptr nextchunk; ++ INTERNAL_SIZE_T size; ++ INTERNAL_SIZE_T nextsize; ++ INTERNAL_SIZE_T prevsize; ++ int nextinuse; ++ mchunkptr bck; ++ mchunkptr fwd; ++ ++ /* ++ If max_fast is 0, we know that av hasn't ++ yet been initialized, in which case do so below ++ */ ++ ++ if (av->max_fast != 0) { ++ clear_fastchunks(av); ++ ++ unsorted_bin = unsorted_chunks(av); ++ ++ /* ++ Remove each chunk from fast bin and consolidate it, placing it ++ then in unsorted bin. Among other reasons for doing this, ++ placing in unsorted bin avoids needing to calculate actual bins ++ until malloc is sure that chunks aren't immediately going to be ++ reused anyway. ++ */ ++ ++ maxfb = &(av->fastbins[fastbin_index(av->max_fast)]); ++ fb = &(av->fastbins[0]); ++ do { ++ if ( (p = *fb) != 0) { ++ *fb = 0; ++ ++ do { ++ check_inuse_chunk(p); ++ nextp = p->fd; ++ ++ /* Slightly streamlined version of consolidation code in free() */ ++ size = p->size & ~PREV_INUSE; ++ nextchunk = chunk_at_offset(p, size); ++ nextsize = chunksize(nextchunk); ++ ++ if (!prev_inuse(p)) { ++ prevsize = p->prev_size; ++ size += prevsize; ++ p = chunk_at_offset(p, -((long) prevsize)); ++ unlink(p, bck, fwd); ++ } ++ ++ if (nextchunk != av->top) { ++ nextinuse = inuse_bit_at_offset(nextchunk, nextsize); ++ set_head(nextchunk, nextsize); ++ ++ if (!nextinuse) { ++ size += nextsize; ++ unlink(nextchunk, bck, fwd); ++ } ++ ++ first_unsorted = unsorted_bin->fd; ++ unsorted_bin->fd = p; ++ first_unsorted->bk = p; ++ ++ set_head(p, size | PREV_INUSE); ++ p->bk = unsorted_bin; ++ p->fd = first_unsorted; ++ set_foot(p, size); ++ } ++ ++ else { ++ size += nextsize; ++ set_head(p, size | PREV_INUSE); ++ av->top = p; ++ } ++ ++ } while ( (p = nextp) != 0); ++ ++ } ++ } while (fb++ != maxfb); ++ } ++ else { ++ malloc_init_state(av); ++ check_malloc_state(); ++ } ++} ++ ++/* ++ ------------------------------ free ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++void fREe(Void_t* mem) ++#else ++void fREe(mem) Void_t* mem; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ ++ mchunkptr p; /* chunk corresponding to mem */ ++ INTERNAL_SIZE_T size; /* its size */ ++ mfastbinptr* fb; /* associated fastbin */ ++ mchunkptr nextchunk; /* next contiguous chunk */ ++ INTERNAL_SIZE_T nextsize; /* its size */ ++ int nextinuse; /* true if nextchunk is used */ ++ INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */ ++ mchunkptr bck; /* misc temp for linking */ ++ mchunkptr fwd; /* misc temp for linking */ ++ ++ ++ /* free(0) has no effect */ ++ if (mem != 0) { ++ p = mem2chunk(mem); ++ size = chunksize(p); ++ ++ check_inuse_chunk(p); ++ ++ /* ++ If eligible, place chunk on a fastbin so it can be found ++ and used quickly in malloc. ++ */ ++ ++ if ((unsigned long)(size) <= (unsigned long)(av->max_fast) ++ ++#if TRIM_FASTBINS ++ /* ++ If TRIM_FASTBINS set, don't place chunks ++ bordering top into fastbins ++ */ ++ && (chunk_at_offset(p, size) != av->top) ++#endif ++ ) { ++ ++ set_fastchunks(av); ++ fb = &(av->fastbins[fastbin_index(size)]); ++ p->fd = *fb; ++ *fb = p; ++ } ++ ++ /* ++ Consolidate other non-mmapped chunks as they arrive. ++ */ ++ ++ else if (!chunk_is_mmapped(p)) { ++ nextchunk = chunk_at_offset(p, size); ++ nextsize = chunksize(nextchunk); ++ ++ /* consolidate backward */ ++ if (!prev_inuse(p)) { ++ prevsize = p->prev_size; ++ size += prevsize; ++ p = chunk_at_offset(p, -((long) prevsize)); ++ unlink(p, bck, fwd); ++ } ++ ++ if (nextchunk != av->top) { ++ /* get and clear inuse bit */ ++ nextinuse = inuse_bit_at_offset(nextchunk, nextsize); ++ set_head(nextchunk, nextsize); ++ ++ /* consolidate forward */ ++ if (!nextinuse) { ++ unlink(nextchunk, bck, fwd); ++ size += nextsize; ++ } ++ ++ /* ++ Place the chunk in unsorted chunk list. Chunks are ++ not placed into regular bins until after they have ++ been given one chance to be used in malloc. ++ */ ++ ++ bck = unsorted_chunks(av); ++ fwd = bck->fd; ++ p->bk = bck; ++ p->fd = fwd; ++ bck->fd = p; ++ fwd->bk = p; ++ ++ set_head(p, size | PREV_INUSE); ++ set_foot(p, size); ++ ++ check_free_chunk(p); ++ } ++ ++ /* ++ If the chunk borders the current high end of memory, ++ consolidate into top ++ */ ++ ++ else { ++ size += nextsize; ++ set_head(p, size | PREV_INUSE); ++ av->top = p; ++ check_chunk(p); ++ } ++ ++ /* ++ If freeing a large space, consolidate possibly-surrounding ++ chunks. Then, if the total unused topmost memory exceeds trim ++ threshold, ask malloc_trim to reduce top. ++ ++ Unless max_fast is 0, we don't know if there are fastbins ++ bordering top, so we cannot tell for sure whether threshold ++ has been reached unless fastbins are consolidated. But we ++ don't want to consolidate on each free. As a compromise, ++ consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD ++ is reached. ++ */ ++ ++ if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { ++ if (have_fastchunks(av)) ++ malloc_consolidate(av); ++ ++#ifndef MORECORE_CANNOT_TRIM ++ if ((unsigned long)(chunksize(av->top)) >= ++ (unsigned long)(av->trim_threshold)) ++ sYSTRIm(av->top_pad, av); ++#endif ++ } ++ ++ } ++ /* ++ If the chunk was allocated via mmap, release via munmap() ++ Note that if HAVE_MMAP is false but chunk_is_mmapped is ++ true, then user must have overwritten memory. There's nothing ++ we can do to catch this error unless DEBUG is set, in which case ++ check_inuse_chunk (above) will have triggered error. ++ */ ++ ++ else { ++#if HAVE_MMAP ++ int ret; ++ INTERNAL_SIZE_T offset = p->prev_size; ++ av->n_mmaps--; ++ av->mmapped_mem -= (size + offset); ++ ret = munmap((char*)p - offset, size + offset); ++ /* munmap returns non-zero on failure */ ++ assert(ret == 0); ++#endif ++ } ++ } ++} ++ ++/* ++ sysmalloc handles malloc cases requiring more memory from the system. ++ On entry, it is assumed that av->top does not have enough ++ space to service request for nb bytes, thus requiring that av->top ++ be extended or replaced. ++*/ ++ ++INLINE ++#if __STD_C ++static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av) ++#else ++static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av; ++#endif ++{ ++ mchunkptr old_top; /* incoming value of av->top */ ++ INTERNAL_SIZE_T old_size; /* its size */ ++ char* old_end; /* its end address */ ++ ++ long size; /* arg to first MORECORE or mmap call */ ++ char* brk; /* return value from MORECORE */ ++ ++ long correction; /* arg to 2nd MORECORE call */ ++ char* snd_brk; /* 2nd return val */ ++ ++ INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ ++ INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */ ++ char* aligned_brk; /* aligned offset into brk */ ++ ++ mchunkptr p; /* the allocated/returned chunk */ ++ mchunkptr remainder; /* remainder from allocation */ ++ unsigned long remainder_size; /* its size */ ++ ++ unsigned long sum; /* for updating stats */ ++ ++ size_t pagemask = av->pagesize - 1; ++ ++ ++#if HAVE_MMAP ++ ++ /* ++ If have mmap, and the request size meets the mmap threshold, and ++ the system supports mmap, and there are few enough currently ++ allocated mmapped regions, try to directly map this request ++ rather than expanding top. ++ */ ++ ++ if ((unsigned long)(nb) >= (unsigned long)(av->mmap_threshold) && ++ (av->n_mmaps < av->n_mmaps_max)) { ++ ++ char* mm; /* return value from mmap call*/ ++ ++ /* ++ Round up size to nearest page. For mmapped chunks, the overhead ++ is one SIZE_SZ unit larger than for normal chunks, because there ++ is no following chunk whose prev_size field could be used. ++ */ ++ size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask; ++ ++ /* Don't try if size wraps around 0 */ ++ if ((unsigned long)(size) > (unsigned long)(nb)) { ++ ++ mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE)); ++ ++ if (mm != (char*)(MORECORE_FAILURE)) { ++ ++ /* ++ The offset to the start of the mmapped region is stored ++ in the prev_size field of the chunk. This allows us to adjust ++ returned start address to meet alignment requirements here ++ and in memalign(), and still be able to compute proper ++ address argument for later munmap in free() and realloc(). ++ */ ++ ++ front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK; ++ if (front_misalign > 0) { ++ correction = MALLOC_ALIGNMENT - front_misalign; ++ p = (mchunkptr)(mm + correction); ++ p->prev_size = correction; ++ set_head(p, (size - correction) |IS_MMAPPED); ++ } ++ else { ++ p = (mchunkptr)mm; ++ p->prev_size = 0; ++ set_head(p, size|IS_MMAPPED); ++ } ++ ++ /* update statistics */ ++ ++ if (++av->n_mmaps > av->max_n_mmaps) ++ av->max_n_mmaps = av->n_mmaps; ++ ++ sum = av->mmapped_mem += size; ++ if (sum > (unsigned long)(av->max_mmapped_mem)) ++ av->max_mmapped_mem = sum; ++ sum += av->sbrked_mem; ++ if (sum > (unsigned long)(av->max_total_mem)) ++ av->max_total_mem = sum; ++ ++ check_chunk(p); ++ ++ return chunk2mem(p); ++ } ++ } ++ } ++#endif ++ ++ /* Record incoming configuration of top */ ++ ++ old_top = av->top; ++ old_size = chunksize(old_top); ++ old_end = (char*)(chunk_at_offset(old_top, old_size)); ++ ++ brk = snd_brk = (char*)(MORECORE_FAILURE); ++ ++ /* ++ If not the first time through, we require old_size to be ++ at least MINSIZE and to have prev_inuse set. ++ */ ++ ++ assert((old_top == initial_top(av) && old_size == 0) || ++ ((unsigned long) (old_size) >= MINSIZE && ++ prev_inuse(old_top))); ++ ++ /* Precondition: not enough current space to satisfy nb request */ ++ assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE)); ++ ++ /* Precondition: all fastbins are consolidated */ ++ assert(!have_fastchunks(av)); ++ ++ ++ /* Request enough space for nb + pad + overhead */ ++ ++ size = nb + av->top_pad + MINSIZE; ++ ++ /* ++ If contiguous, we can subtract out existing space that we hope to ++ combine with new space. We add it back later only if ++ we don't actually get contiguous space. ++ */ ++ ++ if (contiguous(av)) ++ size -= old_size; ++ ++ /* ++ Round to a multiple of page size. ++ If MORECORE is not contiguous, this ensures that we only call it ++ with whole-page arguments. And if MORECORE is contiguous and ++ this is not first time through, this preserves page-alignment of ++ previous calls. Otherwise, we correct to page-align below. ++ */ ++ ++ size = (size + pagemask) & ~pagemask; ++ ++ /* ++ Don't try to call MORECORE if argument is so big as to appear ++ negative. Note that since mmap takes size_t arg, it may succeed ++ below even if we cannot call MORECORE. ++ */ ++ ++ if (size > 0) ++ brk = (char*)(MORECORE(size)); ++ ++ /* ++ If have mmap, try using it as a backup when MORECORE fails or ++ cannot be used. This is worth doing on systems that have "holes" in ++ address space, so sbrk cannot extend to give contiguous space, but ++ space is available elsewhere. Note that we ignore mmap max count ++ and threshold limits, since the space will not be used as a ++ segregated mmap region. ++ */ ++ ++#if HAVE_MMAP ++ if (brk == (char*)(MORECORE_FAILURE)) { ++ ++ /* Cannot merge with old top, so add its size back in */ ++ if (contiguous(av)) ++ size = (size + old_size + pagemask) & ~pagemask; ++ ++ /* If we are relying on mmap as backup, then use larger units */ ++ if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE)) ++ size = MMAP_AS_MORECORE_SIZE; ++ ++ /* Don't try if size wraps around 0 */ ++ if ((unsigned long)(size) > (unsigned long)(nb)) { ++ ++ brk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE)); ++ ++ if (brk != (char*)(MORECORE_FAILURE)) { ++ ++ /* We do not need, and cannot use, another sbrk call to find end */ ++ snd_brk = brk + size; ++ ++ /* ++ Record that we no longer have a contiguous sbrk region. ++ After the first time mmap is used as backup, we do not ++ ever rely on contiguous space since this could incorrectly ++ bridge regions. ++ */ ++ set_noncontiguous(av); ++ } ++ } ++ } ++#endif ++ ++ if (brk != (char*)(MORECORE_FAILURE)) { ++ av->sbrked_mem += size; ++ ++ /* ++ If MORECORE extends previous space, we can likewise extend top size. ++ */ ++ ++ if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE)) { ++ set_head(old_top, (size + old_size) | PREV_INUSE); ++ } ++ ++ /* ++ Otherwise, make adjustments: ++ ++ * If the first time through or noncontiguous, we need to call sbrk ++ just to find out where the end of memory lies. ++ ++ * We need to ensure that all returned chunks from malloc will meet ++ MALLOC_ALIGNMENT ++ ++ * If there was an intervening foreign sbrk, we need to adjust sbrk ++ request size to account for fact that we will not be able to ++ combine new space with existing space in old_top. ++ ++ * Almost all systems internally allocate whole pages at a time, in ++ which case we might as well use the whole last page of request. ++ So we allocate enough more memory to hit a page boundary now, ++ which in turn causes future contiguous calls to page-align. ++ */ ++ ++ else { ++ front_misalign = 0; ++ end_misalign = 0; ++ correction = 0; ++ aligned_brk = brk; ++ ++ /* handle contiguous cases */ ++ if (contiguous(av)) { ++ ++ /* Guarantee alignment of first new chunk made from this space */ ++ ++ front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK; ++ if (front_misalign > 0) { ++ ++ /* ++ Skip over some bytes to arrive at an aligned position. ++ We don't need to specially mark these wasted front bytes. ++ They will never be accessed anyway because ++ prev_inuse of av->top (and any chunk created from its start) ++ is always true after initialization. ++ */ ++ ++ correction = MALLOC_ALIGNMENT - front_misalign; ++ aligned_brk += correction; ++ } ++ ++ /* ++ If this isn't adjacent to existing space, then we will not ++ be able to merge with old_top space, so must add to 2nd request. ++ */ ++ ++ correction += old_size; ++ ++ /* Extend the end address to hit a page boundary */ ++ end_misalign = (INTERNAL_SIZE_T)(brk + size + correction); ++ correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign; ++ ++ assert(correction >= 0); ++ snd_brk = (char*)(MORECORE(correction)); ++ ++ /* ++ If can't allocate correction, try to at least find out current ++ brk. It might be enough to proceed without failing. ++ ++ Note that if second sbrk did NOT fail, we assume that space ++ is contiguous with first sbrk. This is a safe assumption unless ++ program is multithreaded but doesn't use locks and a foreign sbrk ++ occurred between our first and second calls. ++ */ ++ ++ if (snd_brk == (char*)(MORECORE_FAILURE)) { ++ correction = 0; ++ snd_brk = (char*)(MORECORE(0)); ++ } ++ } ++ ++ /* handle non-contiguous cases */ ++ else { ++ /* MORECORE/mmap must correctly align */ ++ assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0); ++ ++ /* Find out current end of memory */ ++ if (snd_brk == (char*)(MORECORE_FAILURE)) { ++ snd_brk = (char*)(MORECORE(0)); ++ } ++ } ++ ++ /* Adjust top based on results of second sbrk */ ++ if (snd_brk != (char*)(MORECORE_FAILURE)) { ++ av->top = (mchunkptr)aligned_brk; ++ set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE); ++ av->sbrked_mem += correction; ++ ++ /* ++ If not the first time through, we either have a ++ gap due to foreign sbrk or a non-contiguous region. Insert a ++ double fencepost at old_top to prevent consolidation with space ++ we don't own. These fenceposts are artificial chunks that are ++ marked as inuse and are in any case too small to use. We need ++ two to make sizes and alignments work out. ++ */ ++ ++ if (old_size != 0) { ++ /* ++ Shrink old_top to insert fenceposts, keeping size a ++ multiple of MALLOC_ALIGNMENT. We know there is at least ++ enough space in old_top to do this. ++ */ ++ old_size = (old_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; ++ set_head(old_top, old_size | PREV_INUSE); ++ ++ /* ++ Note that the following assignments completely overwrite ++ old_top when old_size was previously MINSIZE. This is ++ intentional. We need the fencepost, even if old_top otherwise gets ++ lost. ++ */ ++ chunk_at_offset(old_top, old_size )->size = ++ SIZE_SZ|PREV_INUSE; ++ ++ chunk_at_offset(old_top, old_size + SIZE_SZ)->size = ++ SIZE_SZ|PREV_INUSE; ++ ++ /* If possible, release the rest. */ ++ if (old_size >= MINSIZE) { ++ fREe(chunk2mem(old_top)); ++ } ++ ++ } ++ } ++ } ++ ++ /* Update statistics */ ++ sum = av->sbrked_mem; ++ if (sum > (unsigned long)(av->max_sbrked_mem)) ++ av->max_sbrked_mem = sum; ++ ++ sum += av->mmapped_mem; ++ if (sum > (unsigned long)(av->max_total_mem)) ++ av->max_total_mem = sum; ++ ++ check_malloc_state(); ++ ++ /* finally, do the allocation */ ++ p = av->top; ++ size = chunksize(p); ++ ++ /* check that one of the above allocation paths succeeded */ ++ if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { ++ remainder_size = size - nb; ++ remainder = chunk_at_offset(p, nb); ++ av->top = remainder; ++ set_head(p, nb | PREV_INUSE); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ check_malloced_chunk(p, nb); ++ return chunk2mem(p); ++ } ++ } ++ ++ /* catch all failure paths */ ++ MALLOC_FAILURE_ACTION; ++ return 0; ++} ++ ++ ++/* ++ ------------------------------ malloc ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++Void_t* mALLOc(size_t bytes) ++#else ++ Void_t* mALLOc(bytes) size_t bytes; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ ++ INTERNAL_SIZE_T nb; /* normalized request size */ ++ unsigned int idx; /* associated bin index */ ++ mbinptr bin; /* associated bin */ ++ mfastbinptr* fb; /* associated fastbin */ ++ ++ mchunkptr victim; /* inspected/selected chunk */ ++ INTERNAL_SIZE_T size; /* its size */ ++ int victim_index; /* its bin index */ ++ ++ mchunkptr remainder; /* remainder from a split */ ++ unsigned long remainder_size; /* its size */ ++ ++ unsigned int block; /* bit map traverser */ ++ unsigned int bit; /* bit map traverser */ ++ unsigned int map; /* current word of binmap */ ++ ++ mchunkptr fwd; /* misc temp for linking */ ++ mchunkptr bck; /* misc temp for linking */ ++ ++ /* ++ Convert request size to internal form by adding SIZE_SZ bytes ++ overhead plus possibly more to obtain necessary alignment and/or ++ to obtain a size of at least MINSIZE, the smallest allocatable ++ size. Also, checked_request2size traps (returning 0) request sizes ++ that are so large that they wrap around zero when padded and ++ aligned. ++ */ ++ ++ checked_request2size(bytes, nb); ++ ++ /* ++ If the size qualifies as a fastbin, first check corresponding bin. ++ This code is safe to execute even if av is not yet initialized, so we ++ can try it without checking, which saves some time on this fast path. ++ */ ++ ++ if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) { ++ fb = &(av->fastbins[(fastbin_index(nb))]); ++ if ( (victim = *fb) != 0) { ++ *fb = victim->fd; ++ check_remalloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ } ++ ++ /* ++ If a small request, check regular bin. Since these "smallbins" ++ hold one size each, no searching within bins is necessary. ++ (For a large request, we need to wait until unsorted chunks are ++ processed to find best fit. But for small ones, fits are exact ++ anyway, so we can check now, which is faster.) ++ */ ++ ++ if (in_smallbin_range(nb)) { ++ idx = smallbin_index(nb); ++ bin = bin_at(av,idx); ++ ++ if ( (victim = last(bin)) != bin) { ++ if (victim == 0) /* initialization check */ ++ malloc_consolidate(av); ++ else { ++ bck = victim->bk; ++ set_inuse_bit_at_offset(victim, nb); ++ bin->bk = bck; ++ bck->fd = bin; ++ ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ } ++ } ++ ++ /* ++ If this is a large request, consolidate fastbins before continuing. ++ While it might look excessive to kill all fastbins before ++ even seeing if there is space available, this avoids ++ fragmentation problems normally associated with fastbins. ++ Also, in practice, programs tend to have runs of either small or ++ large requests, but less often mixtures, so consolidation is not ++ invoked all that often in most programs. And the programs that ++ it is called frequently in otherwise tend to fragment. ++ */ ++ ++ else { ++ idx = largebin_index(nb); ++ if (have_fastchunks(av)) ++ malloc_consolidate(av); ++ } ++ ++ /* ++ Process recently freed or remaindered chunks, taking one only if ++ it is exact fit, or, if this a small request, the chunk is remainder from ++ the most recent non-exact fit. Place other traversed chunks in ++ bins. Note that this step is the only place in any routine where ++ chunks are placed in bins. ++ ++ The outer loop here is needed because we might not realize until ++ near the end of malloc that we should have consolidated, so must ++ do so and retry. This happens at most once, and only when we would ++ otherwise need to expand memory to service a "small" request. ++ */ ++ ++ for(;;) { ++ ++ while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) { ++ bck = victim->bk; ++ size = chunksize(victim); ++ ++ /* ++ If a small request, try to use last remainder if it is the ++ only chunk in unsorted bin. This helps promote locality for ++ runs of consecutive small requests. This is the only ++ exception to best-fit, and applies only when there is ++ no exact fit for a small chunk. ++ */ ++ ++ if (in_smallbin_range(nb) && ++ bck == unsorted_chunks(av) && ++ victim == av->last_remainder && ++ (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) { ++ ++ /* split and reattach remainder */ ++ remainder_size = size - nb; ++ remainder = chunk_at_offset(victim, nb); ++ unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder; ++ av->last_remainder = remainder; ++ remainder->bk = remainder->fd = unsorted_chunks(av); ++ ++ set_head(victim, nb | PREV_INUSE); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ set_foot(remainder, remainder_size); ++ ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ ++ /* remove from unsorted list */ ++ unsorted_chunks(av)->bk = bck; ++ bck->fd = unsorted_chunks(av); ++ ++ /* Take now instead of binning if exact fit */ ++ ++ if (size == nb) { ++ set_inuse_bit_at_offset(victim, size); ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ ++ /* place chunk in bin */ ++ ++ if (in_smallbin_range(size)) { ++ victim_index = smallbin_index(size); ++ bck = bin_at(av, victim_index); ++ fwd = bck->fd; ++ } ++ else { ++ victim_index = largebin_index(size); ++ bck = bin_at(av, victim_index); ++ fwd = bck->fd; ++ ++ /* maintain large bins in sorted order */ ++ if (fwd != bck) { ++ size |= PREV_INUSE; /* Or with inuse bit to speed comparisons */ ++ /* if smaller than smallest, bypass loop below */ ++ if ((unsigned long)(size) <= (unsigned long)(bck->bk->size)) { ++ fwd = bck; ++ bck = bck->bk; ++ } ++ else { ++ while ((unsigned long)(size) < (unsigned long)(fwd->size)) ++ fwd = fwd->fd; ++ bck = fwd->bk; ++ } ++ } ++ } ++ ++ mark_bin(av, victim_index); ++ victim->bk = bck; ++ victim->fd = fwd; ++ fwd->bk = victim; ++ bck->fd = victim; ++ } ++ ++ /* ++ If a large request, scan through the chunks of current bin in ++ sorted order to find smallest that fits. This is the only step ++ where an unbounded number of chunks might be scanned without doing ++ anything useful with them. However the lists tend to be short. ++ */ ++ ++ if (!in_smallbin_range(nb)) { ++ bin = bin_at(av, idx); ++ ++ /* skip scan if empty or largest chunk is too small */ ++ if ((victim = last(bin)) != bin && ++ (unsigned long)(first(bin)->size) >= (unsigned long)(nb)) { ++ ++ while (((unsigned long)(size = chunksize(victim)) < ++ (unsigned long)(nb))) ++ victim = victim->bk; ++ ++ remainder_size = size - nb; ++ unlink(victim, bck, fwd); ++ ++ /* Exhaust */ ++ if (remainder_size < MINSIZE) { ++ set_inuse_bit_at_offset(victim, size); ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ /* Split */ ++ else { ++ remainder = chunk_at_offset(victim, nb); ++ unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder; ++ remainder->bk = remainder->fd = unsorted_chunks(av); ++ set_head(victim, nb | PREV_INUSE); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ set_foot(remainder, remainder_size); ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ } ++ } ++ ++ /* ++ Search for a chunk by scanning bins, starting with next largest ++ bin. This search is strictly by best-fit; i.e., the smallest ++ (with ties going to approximately the least recently used) chunk ++ that fits is selected. ++ ++ The bitmap avoids needing to check that most blocks are nonempty. ++ The particular case of skipping all bins during warm-up phases ++ when no chunks have been returned yet is faster than it might look. ++ */ ++ ++ ++idx; ++ bin = bin_at(av,idx); ++ block = idx2block(idx); ++ map = av->binmap[block]; ++ bit = idx2bit(idx); ++ ++ for (;;) { ++ ++ /* Skip rest of block if there are no more set bits in this block. */ ++ if (bit > map || bit == 0) { ++ do { ++ if (++block >= BINMAPSIZE) /* out of bins */ ++ goto use_top; ++ } while ( (map = av->binmap[block]) == 0); ++ ++ bin = bin_at(av, (block << BINMAPSHIFT)); ++ bit = 1; ++ } ++ ++ /* Advance to bin with set bit. There must be one. */ ++ while ((bit & map) == 0) { ++ bin = next_bin(bin); ++ bit <<= 1; ++ assert(bit != 0); ++ } ++ ++ /* Inspect the bin. It is likely to be non-empty */ ++ victim = last(bin); ++ ++ /* If a false alarm (empty bin), clear the bit. */ ++ if (victim == bin) { ++ av->binmap[block] = map &= ~bit; /* Write through */ ++ bin = next_bin(bin); ++ bit <<= 1; ++ } ++ ++ else { ++ size = chunksize(victim); ++ ++ /* We know the first chunk in this bin is big enough to use. */ ++ assert((unsigned long)(size) >= (unsigned long)(nb)); ++ ++ remainder_size = size - nb; ++ ++ /* unlink */ ++ bck = victim->bk; ++ bin->bk = bck; ++ bck->fd = bin; ++ ++ /* Exhaust */ ++ if (remainder_size < MINSIZE) { ++ set_inuse_bit_at_offset(victim, size); ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ ++ /* Split */ ++ else { ++ remainder = chunk_at_offset(victim, nb); ++ ++ unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder; ++ remainder->bk = remainder->fd = unsorted_chunks(av); ++ /* advertise as last remainder */ ++ if (in_smallbin_range(nb)) ++ av->last_remainder = remainder; ++ ++ set_head(victim, nb | PREV_INUSE); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ set_foot(remainder, remainder_size); ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ } ++ } ++ ++ use_top: ++ /* ++ If large enough, split off the chunk bordering the end of memory ++ (held in av->top). Note that this is in accord with the best-fit ++ search rule. In effect, av->top is treated as larger (and thus ++ less well fitting) than any other available chunk since it can ++ be extended to be as large as necessary (up to system ++ limitations). ++ ++ We require that av->top always exists (i.e., has size >= ++ MINSIZE) after initialization, so if it would otherwise be ++ exhuasted by current request, it is replenished. (The main ++ reason for ensuring it exists is that we may need MINSIZE space ++ to put in fenceposts in sysmalloc.) ++ */ ++ ++ victim = av->top; ++ size = chunksize(victim); ++ ++ if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) { ++ remainder_size = size - nb; ++ remainder = chunk_at_offset(victim, nb); ++ av->top = remainder; ++ set_head(victim, nb | PREV_INUSE); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ ++ check_malloced_chunk(victim, nb); ++ return chunk2mem(victim); ++ } ++ ++ /* ++ If there is space available in fastbins, consolidate and retry, ++ to possibly avoid expanding memory. This can occur only if nb is ++ in smallbin range so we didn't consolidate upon entry. ++ */ ++ ++ else if (have_fastchunks(av)) { ++ assert(in_smallbin_range(nb)); ++ malloc_consolidate(av); ++ idx = smallbin_index(nb); /* restore original bin index */ ++ } ++ ++ /* ++ Otherwise, relay to handle system-dependent cases ++ */ ++ else ++ return sYSMALLOc(nb, av); ++ } ++} ++ ++/* ++ ------------------------------ realloc ------------------------------ ++*/ ++ ++ ++INLINE ++#if __STD_C ++Void_t* rEALLOc(Void_t* oldmem, size_t bytes) ++#else ++Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ ++ INTERNAL_SIZE_T nb; /* padded request size */ ++ ++ mchunkptr oldp; /* chunk corresponding to oldmem */ ++ INTERNAL_SIZE_T oldsize; /* its size */ ++ ++ mchunkptr newp; /* chunk to return */ ++ INTERNAL_SIZE_T newsize; /* its size */ ++ Void_t* newmem; /* corresponding user mem */ ++ ++ mchunkptr next; /* next contiguous chunk after oldp */ ++ ++ mchunkptr remainder; /* extra space at end of newp */ ++ unsigned long remainder_size; /* its size */ ++ ++ mchunkptr bck; /* misc temp for linking */ ++ mchunkptr fwd; /* misc temp for linking */ ++ ++ unsigned long copysize; /* bytes to copy */ ++ unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */ ++ INTERNAL_SIZE_T* s; /* copy source */ ++ INTERNAL_SIZE_T* d; /* copy destination */ ++ ++ ++#ifdef REALLOC_ZERO_BYTES_FREES ++ if (bytes == 0) { ++ fREe(oldmem); ++ return 0; ++ } ++#endif ++ ++ /* realloc of null is supposed to be same as malloc */ ++ if (oldmem == 0) return mALLOc(bytes); ++ ++ checked_request2size(bytes, nb); ++ ++ oldp = mem2chunk(oldmem); ++ oldsize = chunksize(oldp); ++ ++ check_inuse_chunk(oldp); ++ ++ if (!chunk_is_mmapped(oldp)) { ++ ++ if ((unsigned long)(oldsize) >= (unsigned long)(nb)) { ++ /* already big enough; split below */ ++ newp = oldp; ++ newsize = oldsize; ++ } ++ ++ else { ++ next = chunk_at_offset(oldp, oldsize); ++ ++ /* Try to expand forward into top */ ++ if (next == av->top && ++ (unsigned long)(newsize = oldsize + chunksize(next)) >= ++ (unsigned long)(nb + MINSIZE)) { ++ set_head_size(oldp, nb); ++ av->top = chunk_at_offset(oldp, nb); ++ set_head(av->top, (newsize - nb) | PREV_INUSE); ++ return chunk2mem(oldp); ++ } ++ ++ /* Try to expand forward into next chunk; split off remainder below */ ++ else if (next != av->top && ++ !inuse(next) && ++ (unsigned long)(newsize = oldsize + chunksize(next)) >= ++ (unsigned long)(nb)) { ++ newp = oldp; ++ unlink(next, bck, fwd); ++ } ++ ++ /* allocate, copy, free */ ++ else { ++ newmem = mALLOc(nb - MALLOC_ALIGN_MASK); ++ if (newmem == 0) ++ return 0; /* propagate failure */ ++ ++ newp = mem2chunk(newmem); ++ newsize = chunksize(newp); ++ ++ /* ++ Avoid copy if newp is next chunk after oldp. ++ */ ++ if (newp == next) { ++ newsize += oldsize; ++ newp = oldp; ++ } ++ else { ++ /* ++ Unroll copy of <= 36 bytes (72 if 8byte sizes) ++ We know that contents have an odd number of ++ INTERNAL_SIZE_T-sized words; minimally 3. ++ */ ++ ++ copysize = oldsize - SIZE_SZ; ++ s = (INTERNAL_SIZE_T*)(oldmem); ++ d = (INTERNAL_SIZE_T*)(newmem); ++ ncopies = copysize / sizeof(INTERNAL_SIZE_T); ++ assert(ncopies >= 3); ++ ++ if (ncopies > 9) ++ MALLOC_COPY(d, s, copysize); ++ ++ else { ++ *(d+0) = *(s+0); ++ *(d+1) = *(s+1); ++ *(d+2) = *(s+2); ++ if (ncopies > 4) { ++ *(d+3) = *(s+3); ++ *(d+4) = *(s+4); ++ if (ncopies > 6) { ++ *(d+5) = *(s+5); ++ *(d+6) = *(s+6); ++ if (ncopies > 8) { ++ *(d+7) = *(s+7); ++ *(d+8) = *(s+8); ++ } ++ } ++ } ++ } ++ ++ fREe(oldmem); ++ check_inuse_chunk(newp); ++ return chunk2mem(newp); ++ } ++ } ++ } ++ ++ /* If possible, free extra space in old or extended chunk */ ++ ++ assert((unsigned long)(newsize) >= (unsigned long)(nb)); ++ ++ remainder_size = newsize - nb; ++ ++ if (remainder_size < MINSIZE) { /* not enough extra to split off */ ++ set_head_size(newp, newsize); ++ set_inuse_bit_at_offset(newp, newsize); ++ } ++ else { /* split remainder */ ++ remainder = chunk_at_offset(newp, nb); ++ set_head_size(newp, nb); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ /* Mark remainder as inuse so free() won't complain */ ++ set_inuse_bit_at_offset(remainder, remainder_size); ++ fREe(chunk2mem(remainder)); ++ } ++ ++ check_inuse_chunk(newp); ++ return chunk2mem(newp); ++ } ++ ++ /* ++ Handle mmap cases ++ */ ++ ++ else { ++#if HAVE_MMAP ++ ++#if HAVE_MREMAP ++ INTERNAL_SIZE_T offset = oldp->prev_size; ++ size_t pagemask = av->pagesize - 1; ++ char *cp; ++ unsigned long sum; ++ ++ /* Note the extra SIZE_SZ overhead */ ++ newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask; ++ ++ /* don't need to remap if still within same page */ ++ if (oldsize == newsize - offset) ++ return oldmem; ++ ++ cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1); ++ ++ if (cp != (char*)MORECORE_FAILURE) { ++ ++ newp = (mchunkptr)(cp + offset); ++ set_head(newp, (newsize - offset)|IS_MMAPPED); ++ ++ assert(aligned_OK(chunk2mem(newp))); ++ assert((newp->prev_size == offset)); ++ ++ /* update statistics */ ++ sum = av->mmapped_mem += newsize - oldsize; ++ if (sum > (unsigned long)(av->max_mmapped_mem)) ++ av->max_mmapped_mem = sum; ++ sum += av->sbrked_mem; ++ if (sum > (unsigned long)(av->max_total_mem)) ++ av->max_total_mem = sum; ++ ++ return chunk2mem(newp); ++ } ++#endif ++ ++ /* Note the extra SIZE_SZ overhead. */ ++ if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ)) ++ newmem = oldmem; /* do nothing */ ++ else { ++ /* Must alloc, copy, free. */ ++ newmem = mALLOc(nb - MALLOC_ALIGN_MASK); ++ if (newmem != 0) { ++ MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); ++ fREe(oldmem); ++ } ++ } ++ return newmem; ++ ++#else ++ /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */ ++ check_malloc_state(); ++ MALLOC_FAILURE_ACTION; ++ return 0; ++#endif ++ } ++} ++ ++/* ++ ------------------------------ memalign ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++Void_t* mEMALIGn(size_t alignment, size_t bytes) ++#else ++Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; ++#endif ++{ ++ INTERNAL_SIZE_T nb; /* padded request size */ ++ char* m; /* memory returned by malloc call */ ++ mchunkptr p; /* corresponding chunk */ ++ char* brk; /* alignment point within p */ ++ mchunkptr newp; /* chunk to return */ ++ INTERNAL_SIZE_T newsize; /* its size */ ++ INTERNAL_SIZE_T leadsize; /* leading space before alignment point */ ++ mchunkptr remainder; /* spare room at end to split off */ ++ unsigned long remainder_size; /* its size */ ++ INTERNAL_SIZE_T size; ++ ++ /* If need less alignment than we give anyway, just relay to malloc */ ++ ++ if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); ++ ++ /* Otherwise, ensure that it is at least a minimum chunk size */ ++ ++ if (alignment < MINSIZE) alignment = MINSIZE; ++ ++ /* Make sure alignment is power of 2 (in case MINSIZE is not). */ ++ if ((alignment & (alignment - 1)) != 0) { ++ size_t a = MALLOC_ALIGNMENT * 2; ++ while ((unsigned long)a < (unsigned long)alignment) a <<= 1; ++ alignment = a; ++ } ++ ++ checked_request2size(bytes, nb); ++ ++ /* ++ Strategy: find a spot within that chunk that meets the alignment ++ request, and then possibly free the leading and trailing space. ++ */ ++ ++ ++ /* Call malloc with worst case padding to hit alignment. */ ++ ++ m = (char*)(mALLOc(nb + alignment + MINSIZE)); ++ ++ if (m == 0) return 0; /* propagate failure */ ++ ++ p = mem2chunk(m); ++ ++ if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */ ++ ++ /* ++ Find an aligned spot inside chunk. Since we need to give back ++ leading space in a chunk of at least MINSIZE, if the first ++ calculation places us at a spot with less than MINSIZE leader, ++ we can move to the next aligned spot -- we've allocated enough ++ total room so that this is always possible. ++ */ ++ ++ brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & ++ -((signed long) alignment)); ++ if ((unsigned long)(brk - (char*)(p)) < MINSIZE) ++ brk += alignment; ++ ++ newp = (mchunkptr)brk; ++ leadsize = brk - (char*)(p); ++ newsize = chunksize(p) - leadsize; ++ ++ /* For mmapped chunks, just adjust offset */ ++ if (chunk_is_mmapped(p)) { ++ newp->prev_size = p->prev_size + leadsize; ++ set_head(newp, newsize|IS_MMAPPED); ++ return chunk2mem(newp); ++ } ++ ++ /* Otherwise, give back leader, use the rest */ ++ set_head(newp, newsize | PREV_INUSE); ++ set_inuse_bit_at_offset(newp, newsize); ++ set_head_size(p, leadsize); ++ fREe(chunk2mem(p)); ++ p = newp; ++ ++ assert (newsize >= nb && ++ (((unsigned long)(chunk2mem(p))) % alignment) == 0); ++ } ++ ++ /* Also give back spare room at the end */ ++ if (!chunk_is_mmapped(p)) { ++ size = chunksize(p); ++ if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) { ++ remainder_size = size - nb; ++ remainder = chunk_at_offset(p, nb); ++ set_head(remainder, remainder_size | PREV_INUSE); ++ set_head_size(p, nb); ++ fREe(chunk2mem(remainder)); ++ } ++ } ++ ++ check_inuse_chunk(p); ++ return chunk2mem(p); ++} ++ ++/* ++ ------------------------------ calloc ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++Void_t* cALLOc(size_t n_elements, size_t elem_size) ++#else ++Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size; ++#endif ++{ ++ mchunkptr p; ++ unsigned long clearsize; ++ unsigned long nclears; ++ INTERNAL_SIZE_T* d; ++ ++ Void_t* mem = mALLOc(n_elements * elem_size); ++ ++ if (mem != 0) { ++ p = mem2chunk(mem); ++ ++ if (!chunk_is_mmapped(p)) ++ { ++ /* ++ Unroll clear of <= 36 bytes (72 if 8byte sizes) ++ We know that contents have an odd number of ++ INTERNAL_SIZE_T-sized words; minimally 3. ++ */ ++ ++ d = (INTERNAL_SIZE_T*)mem; ++ clearsize = chunksize(p) - SIZE_SZ; ++ nclears = clearsize / sizeof(INTERNAL_SIZE_T); ++ assert(nclears >= 3); ++ ++ if (nclears > 9) ++ MALLOC_ZERO(d, clearsize); ++ ++ else { ++ *(d+0) = 0; ++ *(d+1) = 0; ++ *(d+2) = 0; ++ if (nclears > 4) { ++ *(d+3) = 0; ++ *(d+4) = 0; ++ if (nclears > 6) { ++ *(d+5) = 0; ++ *(d+6) = 0; ++ if (nclears > 8) { ++ *(d+7) = 0; ++ *(d+8) = 0; ++ } ++ } ++ } ++ } ++ } ++#if ! MMAP_CLEARS ++ else ++ { ++ d = (INTERNAL_SIZE_T*)mem; ++ clearsize = chunksize(p) - 2 * SIZE_SZ; ++ MALLOC_ZERO(d, clearsize); ++ } ++#endif ++ } ++ return mem; ++} ++ ++/* ++ ------------------------------ cfree ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++void cFREe(Void_t *mem) ++#else ++void cFREe(mem) Void_t *mem; ++#endif ++{ ++ fREe(mem); ++} ++ ++/* ++ ------------------------------ ialloc ------------------------------ ++ ialloc provides common support for independent_X routines, handling all of ++ the combinations that can result. ++ ++ The opts arg has: ++ bit 0 set if all elements are same size (using sizes[0]) ++ bit 1 set if elements should be zeroed ++*/ ++ ++ ++INLINE ++#if __STD_C ++static Void_t** iALLOc(size_t n_elements, ++ size_t* sizes, ++ int opts, ++ Void_t* chunks[]) ++#else ++static Void_t** iALLOc(n_elements, sizes, opts, chunks) size_t n_elements; size_t* sizes; int opts; Void_t* chunks[]; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */ ++ INTERNAL_SIZE_T contents_size; /* total size of elements */ ++ INTERNAL_SIZE_T array_size; /* request size of pointer array */ ++ Void_t* mem; /* malloced aggregate space */ ++ mchunkptr p; /* corresponding chunk */ ++ INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */ ++ Void_t** marray; /* either "chunks" or malloced ptr array */ ++ mchunkptr array_chunk; /* chunk for malloced ptr array */ ++ int mmx; /* to disable mmap */ ++ INTERNAL_SIZE_T size; ++ size_t i; ++ ++ /* Ensure initialization/consolidation */ ++ if (have_fastchunks(av)) malloc_consolidate(av); ++ ++ /* compute array length, if needed */ ++ if (chunks != 0) { ++ if (n_elements == 0) ++ return chunks; /* nothing to do */ ++ marray = chunks; ++ array_size = 0; ++ } ++ else { ++ /* if empty req, must still return chunk representing empty array */ ++ if (n_elements == 0) ++ return (Void_t**) mALLOc(0); ++ marray = 0; ++ array_size = request2size(n_elements * (sizeof(Void_t*))); ++ } ++ ++ /* compute total element size */ ++ if (opts & 0x1) { /* all-same-size */ ++ element_size = request2size(*sizes); ++ contents_size = n_elements * element_size; ++ } ++ else { /* add up all the sizes */ ++ element_size = 0; ++ contents_size = 0; ++ for (i = 0; i != n_elements; ++i) ++ contents_size += request2size(sizes[i]); ++ } ++ ++ /* subtract out alignment bytes from total to minimize overallocation */ ++ size = contents_size + array_size - MALLOC_ALIGN_MASK; ++ ++ /* ++ Allocate the aggregate chunk. ++ But first disable mmap so malloc won't use it, since ++ we would not be able to later free/realloc space internal ++ to a segregated mmap region. ++ */ ++ mmx = av->n_mmaps_max; /* disable mmap */ ++ av->n_mmaps_max = 0; ++ mem = mALLOc(size); ++ av->n_mmaps_max = mmx; /* reset mmap */ ++ if (mem == 0) ++ return 0; ++ ++ p = mem2chunk(mem); ++ assert(!chunk_is_mmapped(p)); ++ remainder_size = chunksize(p); ++ ++ if (opts & 0x2) { /* optionally clear the elements */ ++ MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size); ++ } ++ ++ /* If not provided, allocate the pointer array as final part of chunk */ ++ if (marray == 0) { ++ array_chunk = chunk_at_offset(p, contents_size); ++ marray = (Void_t**) (chunk2mem(array_chunk)); ++ set_head(array_chunk, (remainder_size - contents_size) | PREV_INUSE); ++ remainder_size = contents_size; ++ } ++ ++ /* split out elements */ ++ for (i = 0; ; ++i) { ++ marray[i] = chunk2mem(p); ++ if (i != n_elements-1) { ++ if (element_size != 0) ++ size = element_size; ++ else ++ size = request2size(sizes[i]); ++ remainder_size -= size; ++ set_head(p, size | PREV_INUSE); ++ p = chunk_at_offset(p, size); ++ } ++ else { /* the final element absorbs any overallocation slop */ ++ set_head(p, remainder_size | PREV_INUSE); ++ break; ++ } ++ } ++ ++#ifdef DEBUG ++ if (marray != chunks) { ++ /* final element must have exactly exhausted chunk */ ++ if (element_size != 0) ++ assert(remainder_size == element_size); ++ else ++ assert(remainder_size == request2size(sizes[i])); ++ check_inuse_chunk(mem2chunk(marray)); ++ } ++ ++ for (i = 0; i != n_elements; ++i) ++ check_inuse_chunk(mem2chunk(marray[i])); ++#endif ++ ++ return marray; ++} ++ ++ ++/* ++ ------------------------- independent_calloc ------------------------- ++*/ ++ ++INLINE ++#if __STD_C ++Void_t** iCALLOc(size_t n_elements, size_t elem_size, Void_t* chunks[]) ++#else ++Void_t** iCALLOc(n_elements, elem_size, chunks) size_t n_elements; size_t elem_size; Void_t* chunks[]; ++#endif ++{ ++ size_t sz = elem_size; /* serves as 1-element array */ ++ /* opts arg of 3 means all elements are same size, and should be cleared */ ++ return iALLOc(n_elements, &sz, 3, chunks); ++} ++ ++/* ++ ------------------------- independent_comalloc ------------------------- ++*/ ++ ++INLINE ++#if __STD_C ++Void_t** iCOMALLOc(size_t n_elements, size_t sizes[], Void_t* chunks[]) ++#else ++Void_t** iCOMALLOc(n_elements, sizes, chunks) size_t n_elements; size_t sizes[]; Void_t* chunks[]; ++#endif ++{ ++ return iALLOc(n_elements, sizes, 0, chunks); ++} ++ ++ ++/* ++ ------------------------------ valloc ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++Void_t* vALLOc(size_t bytes) ++#else ++Void_t* vALLOc(bytes) size_t bytes; ++#endif ++{ ++ /* Ensure initialization/consolidation */ ++ mstate av = get_malloc_state(); ++ if (have_fastchunks(av)) malloc_consolidate(av); ++ return mEMALIGn(av->pagesize, bytes); ++} ++ ++/* ++ ------------------------------ pvalloc ------------------------------ ++*/ ++ ++ ++#if __STD_C ++Void_t* pVALLOc(size_t bytes) ++#else ++Void_t* pVALLOc(bytes) size_t bytes; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ size_t pagesz; ++ ++ /* Ensure initialization/consolidation */ ++ if (have_fastchunks(av)) malloc_consolidate(av); ++ pagesz = av->pagesize; ++ return mEMALIGn(pagesz, (bytes + pagesz - 1) & ~(pagesz - 1)); ++} ++ ++ ++/* ++ ------------------------------ malloc_trim ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++int mTRIm(size_t pad) ++#else ++int mTRIm(pad) size_t pad; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ /* Ensure initialization/consolidation */ ++ malloc_consolidate(av); ++ ++#ifndef MORECORE_CANNOT_TRIM ++ return sYSTRIm(pad, av); ++#else ++ return 0; ++#endif ++} ++ ++ ++/* ++ ------------------------- malloc_usable_size ------------------------- ++*/ ++ ++INLINE ++#if __STD_C ++size_t mUSABLe(Void_t* mem) ++#else ++size_t mUSABLe(mem) Void_t* mem; ++#endif ++{ ++ mchunkptr p; ++ if (mem != 0) { ++ p = mem2chunk(mem); ++ if (chunk_is_mmapped(p)) ++ return chunksize(p) - 2*SIZE_SZ; ++ else if (inuse(p)) ++ return chunksize(p) - SIZE_SZ; ++ } ++ return 0; ++} ++ ++/* ++ ------------------------------ mallinfo ------------------------------ ++*/ ++ ++struct mallinfo mALLINFo() ++{ ++ mstate av = get_malloc_state(); ++ struct mallinfo mi; ++ unsigned int i; ++ mbinptr b; ++ mchunkptr p; ++ INTERNAL_SIZE_T avail; ++ INTERNAL_SIZE_T fastavail; ++ int nblocks; ++ int nfastblocks; ++ ++ /* Ensure initialization */ ++ if (av->top == 0) malloc_consolidate(av); ++ ++ check_malloc_state(); ++ ++ /* Account for top */ ++ avail = chunksize(av->top); ++ nblocks = 1; /* top always exists */ ++ ++ /* traverse fastbins */ ++ nfastblocks = 0; ++ fastavail = 0; ++ ++ for (i = 0; i < NFASTBINS; ++i) { ++ for (p = av->fastbins[i]; p != 0; p = p->fd) { ++ ++nfastblocks; ++ fastavail += chunksize(p); ++ } ++ } ++ ++ avail += fastavail; ++ ++ /* traverse regular bins */ ++ for (i = 1; i < NBINS; ++i) { ++ b = bin_at(av, i); ++ for (p = last(b); p != b; p = p->bk) { ++ ++nblocks; ++ avail += chunksize(p); ++ } ++ } ++ ++ mi.smblks = nfastblocks; ++ mi.ordblks = nblocks; ++ mi.fordblks = avail; ++ mi.uordblks = av->sbrked_mem - avail; ++ mi.arena = av->sbrked_mem; ++ mi.hblks = av->n_mmaps; ++ mi.hblkhd = av->mmapped_mem; ++ mi.fsmblks = fastavail; ++ mi.keepcost = chunksize(av->top); ++ mi.usmblks = av->max_total_mem; ++ return mi; ++} ++ ++/* ++ ------------------------------ malloc_stats ------------------------------ ++*/ ++ ++void mSTATs() ++{ ++ struct mallinfo mi = mALLINFo(); ++ ++#ifdef WIN32 ++ { ++ unsigned long free, reserved, committed; ++ vminfo (&free, &reserved, &committed); ++ fprintf(stderr, "free bytes = %10lu\n", ++ free); ++ fprintf(stderr, "reserved bytes = %10lu\n", ++ reserved); ++ fprintf(stderr, "committed bytes = %10lu\n", ++ committed); ++ } ++#endif ++ ++ ++ fprintf(stderr, "max system bytes = %10lu\n", ++ (unsigned long)(mi.usmblks)); ++ fprintf(stderr, "system bytes = %10lu\n", ++ (unsigned long)(mi.arena + mi.hblkhd)); ++ fprintf(stderr, "in use bytes = %10lu\n", ++ (unsigned long)(mi.uordblks + mi.hblkhd)); ++ ++ ++#ifdef WIN32 ++ { ++ unsigned long kernel, user; ++ if (cpuinfo (TRUE, &kernel, &user)) { ++ fprintf(stderr, "kernel ms = %10lu\n", ++ kernel); ++ fprintf(stderr, "user ms = %10lu\n", ++ user); ++ } ++ } ++#endif ++} ++ ++ ++/* ++ ------------------------------ mallopt ------------------------------ ++*/ ++ ++INLINE ++#if __STD_C ++int mALLOPt(int param_number, int value) ++#else ++int mALLOPt(param_number, value) int param_number; int value; ++#endif ++{ ++ mstate av = get_malloc_state(); ++ /* Ensure initialization/consolidation */ ++ malloc_consolidate(av); ++ ++ switch(param_number) { ++ case M_MXFAST: ++ if (value >= 0 && value <= MAX_FAST_SIZE) { ++ set_max_fast(av, value); ++ return 1; ++ } ++ else ++ return 0; ++ ++ case M_TRIM_THRESHOLD: ++ av->trim_threshold = value; ++ return 1; ++ ++ case M_TOP_PAD: ++ av->top_pad = value; ++ return 1; ++ ++ case M_MMAP_THRESHOLD: ++ av->mmap_threshold = value; ++ return 1; ++ ++ case M_MMAP_MAX: ++#if !HAVE_MMAP ++ if (value != 0) ++ return 0; ++#endif ++ av->n_mmaps_max = value; ++ return 1; ++ ++ default: ++ return 0; ++ } ++} ++ ++ ++/* ++ -------------------- Alternative MORECORE functions -------------------- ++*/ ++ ++ ++/* ++ General Requirements for MORECORE. ++ ++ The MORECORE function must have the following properties: ++ ++ If MORECORE_CONTIGUOUS is false: ++ ++ * MORECORE must allocate in multiples of pagesize. It will ++ only be called with arguments that are multiples of pagesize. ++ ++ * MORECORE(0) must return an address that is at least ++ MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.) ++ ++ else (i.e. If MORECORE_CONTIGUOUS is true): ++ ++ * Consecutive calls to MORECORE with positive arguments ++ return increasing addresses, indicating that space has been ++ contiguously extended. ++ ++ * MORECORE need not allocate in multiples of pagesize. ++ Calls to MORECORE need not have args of multiples of pagesize. ++ ++ * MORECORE need not page-align. ++ ++ In either case: ++ ++ * MORECORE may allocate more memory than requested. (Or even less, ++ but this will generally result in a malloc failure.) ++ ++ * MORECORE must not allocate memory when given argument zero, but ++ instead return one past the end address of memory from previous ++ nonzero call. This malloc does NOT call MORECORE(0) ++ until at least one call with positive arguments is made, so ++ the initial value returned is not important. ++ ++ * Even though consecutive calls to MORECORE need not return contiguous ++ addresses, it must be OK for malloc'ed chunks to span multiple ++ regions in those cases where they do happen to be contiguous. ++ ++ * MORECORE need not handle negative arguments -- it may instead ++ just return MORECORE_FAILURE when given negative arguments. ++ Negative arguments are always multiples of pagesize. MORECORE ++ must not misinterpret negative args as large positive unsigned ++ args. You can suppress all such calls from even occurring by defining ++ MORECORE_CANNOT_TRIM, ++ ++ There is some variation across systems about the type of the ++ argument to sbrk/MORECORE. If size_t is unsigned, then it cannot ++ actually be size_t, because sbrk supports negative args, so it is ++ normally the signed type of the same width as size_t (sometimes ++ declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much ++ matter though. Internally, we use "long" as arguments, which should ++ work across all reasonable possibilities. ++ ++ Additionally, if MORECORE ever returns failure for a positive ++ request, and HAVE_MMAP is true, then mmap is used as a noncontiguous ++ system allocator. This is a useful backup strategy for systems with ++ holes in address spaces -- in this case sbrk cannot contiguously ++ expand the heap, but mmap may be able to map noncontiguous space. ++ ++ If you'd like mmap to ALWAYS be used, you can define MORECORE to be ++ a function that always returns MORECORE_FAILURE. ++ ++ If you are using this malloc with something other than sbrk (or its ++ emulation) to supply memory regions, you probably want to set ++ MORECORE_CONTIGUOUS as false. As an example, here is a custom ++ allocator kindly contributed for pre-OSX macOS. It uses virtually ++ but not necessarily physically contiguous non-paged memory (locked ++ in, present and won't get swapped out). You can use it by ++ uncommenting this section, adding some #includes, and setting up the ++ appropriate defines above: ++ ++ #define MORECORE osMoreCore ++ #define MORECORE_CONTIGUOUS 0 ++ ++ There is also a shutdown routine that should somehow be called for ++ cleanup upon program exit. ++ ++ #define MAX_POOL_ENTRIES 100 ++ #define MINIMUM_MORECORE_SIZE (64 * 1024) ++ static int next_os_pool; ++ void *our_os_pools[MAX_POOL_ENTRIES]; ++ ++ void *osMoreCore(int size) ++ { ++ void *ptr = 0; ++ static void *sbrk_top = 0; ++ ++ if (size > 0) ++ { ++ if (size < MINIMUM_MORECORE_SIZE) ++ size = MINIMUM_MORECORE_SIZE; ++ if (CurrentExecutionLevel() == kTaskLevel) ++ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); ++ if (ptr == 0) ++ { ++ return (void *) MORECORE_FAILURE; ++ } ++ // save ptrs so they can be freed during cleanup ++ our_os_pools[next_os_pool] = ptr; ++ next_os_pool++; ++ ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); ++ sbrk_top = (char *) ptr + size; ++ return ptr; ++ } ++ else if (size < 0) ++ { ++ // we don't currently support shrink behavior ++ return (void *) MORECORE_FAILURE; ++ } ++ else ++ { ++ return sbrk_top; ++ } ++ } ++ ++ // cleanup any allocated memory pools ++ // called as last thing before shutting down driver ++ ++ void osCleanupMem(void) ++ { ++ void **ptr; ++ ++ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) ++ if (*ptr) ++ { ++ PoolDeallocate(*ptr); ++ *ptr = 0; ++ } ++ } ++ ++*/ ++ ++ ++/* ++ -------------------------------------------------------------- ++ ++ Emulation of sbrk for win32. ++ Donated by J. Walter <Walter@GeNeSys-e.de>. ++ For additional information about this code, and malloc on Win32, see ++ http://www.genesys-e.de/jwalter/ ++*/ ++ ++ ++#ifdef WIN32 ++ ++#ifdef _DEBUG ++/* #define TRACE */ ++#endif ++ ++/* Support for USE_MALLOC_LOCK */ ++#ifdef USE_MALLOC_LOCK ++ ++/* Wait for spin lock */ ++static int slwait (int *sl) { ++ while (InterlockedCompareExchange ((void **) sl, (void *) 1, (void *) 0) != 0) ++ Sleep (0); ++ return 0; ++} ++ ++/* Release spin lock */ ++static int slrelease (int *sl) { ++ InterlockedExchange (sl, 0); ++ return 0; ++} ++ ++#ifdef NEEDED ++/* Spin lock for emulation code */ ++static int g_sl; ++#endif ++ ++#endif /* USE_MALLOC_LOCK */ ++ ++/* getpagesize for windows */ ++static long getpagesize (void) { ++ static long g_pagesize = 0; ++ if (! g_pagesize) { ++ SYSTEM_INFO system_info; ++ GetSystemInfo (&system_info); ++ g_pagesize = system_info.dwPageSize; ++ } ++ return g_pagesize; ++} ++static long getregionsize (void) { ++ static long g_regionsize = 0; ++ if (! g_regionsize) { ++ SYSTEM_INFO system_info; ++ GetSystemInfo (&system_info); ++ g_regionsize = system_info.dwAllocationGranularity; ++ } ++ return g_regionsize; ++} ++ ++/* A region list entry */ ++typedef struct _region_list_entry { ++ void *top_allocated; ++ void *top_committed; ++ void *top_reserved; ++ long reserve_size; ++ struct _region_list_entry *previous; ++} region_list_entry; ++ ++/* Allocate and link a region entry in the region list */ ++static int region_list_append (region_list_entry **last, void *base_reserved, long reserve_size) { ++ region_list_entry *next = HeapAlloc (GetProcessHeap (), 0, sizeof (region_list_entry)); ++ if (! next) ++ return FALSE; ++ next->top_allocated = (char *) base_reserved; ++ next->top_committed = (char *) base_reserved; ++ next->top_reserved = (char *) base_reserved + reserve_size; ++ next->reserve_size = reserve_size; ++ next->previous = *last; ++ *last = next; ++ return TRUE; ++} ++/* Free and unlink the last region entry from the region list */ ++static int region_list_remove (region_list_entry **last) { ++ region_list_entry *previous = (*last)->previous; ++ if (! HeapFree (GetProcessHeap (), sizeof (region_list_entry), *last)) ++ return FALSE; ++ *last = previous; ++ return TRUE; ++} ++ ++#define CEIL(size,to) (((size)+(to)-1)&~((to)-1)) ++#define FLOOR(size,to) ((size)&~((to)-1)) ++ ++#define SBRK_SCALE 0 ++/* #define SBRK_SCALE 1 */ ++/* #define SBRK_SCALE 2 */ ++/* #define SBRK_SCALE 4 */ ++ ++/* sbrk for windows */ ++static void *sbrk (long size) { ++ static long g_pagesize, g_my_pagesize; ++ static long g_regionsize, g_my_regionsize; ++ static region_list_entry *g_last; ++ void *result = (void *) MORECORE_FAILURE; ++#ifdef TRACE ++ printf ("sbrk %d\n", size); ++#endif ++#if defined (USE_MALLOC_LOCK) && defined (NEEDED) ++ /* Wait for spin lock */ ++ slwait (&g_sl); ++#endif ++ /* First time initialization */ ++ if (! g_pagesize) { ++ g_pagesize = getpagesize (); ++ g_my_pagesize = g_pagesize << SBRK_SCALE; ++ } ++ if (! g_regionsize) { ++ g_regionsize = getregionsize (); ++ g_my_regionsize = g_regionsize << SBRK_SCALE; ++ } ++ if (! g_last) { ++ if (! region_list_append (&g_last, 0, 0)) ++ goto sbrk_exit; ++ } ++ /* Assert invariants */ ++ assert (g_last); ++ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated && ++ g_last->top_allocated <= g_last->top_committed); ++ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed && ++ g_last->top_committed <= g_last->top_reserved && ++ (unsigned) g_last->top_committed % g_pagesize == 0); ++ assert ((unsigned) g_last->top_reserved % g_regionsize == 0); ++ assert ((unsigned) g_last->reserve_size % g_regionsize == 0); ++ /* Allocation requested? */ ++ if (size >= 0) { ++ /* Allocation size is the requested size */ ++ long allocate_size = size; ++ /* Compute the size to commit */ ++ long to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed; ++ /* Do we reach the commit limit? */ ++ if (to_commit > 0) { ++ /* Round size to commit */ ++ long commit_size = CEIL (to_commit, g_my_pagesize); ++ /* Compute the size to reserve */ ++ long to_reserve = (char *) g_last->top_committed + commit_size - (char *) g_last->top_reserved; ++ /* Do we reach the reserve limit? */ ++ if (to_reserve > 0) { ++ /* Compute the remaining size to commit in the current region */ ++ long remaining_commit_size = (char *) g_last->top_reserved - (char *) g_last->top_committed; ++ if (remaining_commit_size > 0) { ++ /* Assert preconditions */ ++ assert ((unsigned) g_last->top_committed % g_pagesize == 0); ++ assert (0 < remaining_commit_size && remaining_commit_size % g_pagesize == 0); { ++ /* Commit this */ ++ void *base_committed = VirtualAlloc (g_last->top_committed, remaining_commit_size, ++ MEM_COMMIT, PAGE_READWRITE); ++ /* Check returned pointer for consistency */ ++ if (base_committed != g_last->top_committed) ++ goto sbrk_exit; ++ /* Assert postconditions */ ++ assert ((unsigned) base_committed % g_pagesize == 0); ++#ifdef TRACE ++ printf ("Commit %p %d\n", base_committed, remaining_commit_size); ++#endif ++ /* Adjust the regions commit top */ ++ g_last->top_committed = (char *) base_committed + remaining_commit_size; ++ } ++ } { ++ /* Now we are going to search and reserve. */ ++ int contiguous = -1; ++ int found = FALSE; ++ MEMORY_BASIC_INFORMATION memory_info; ++ void *base_reserved; ++ long reserve_size; ++ do { ++ /* Assume contiguous memory */ ++ contiguous = TRUE; ++ /* Round size to reserve */ ++ reserve_size = CEIL (to_reserve, g_my_regionsize); ++ /* Start with the current region's top */ ++ memory_info.BaseAddress = g_last->top_reserved; ++ /* Assert preconditions */ ++ assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0); ++ assert (0 < reserve_size && reserve_size % g_regionsize == 0); ++ while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) { ++ /* Assert postconditions */ ++ assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0); ++#ifdef TRACE ++ printf ("Query %p %d %s\n", memory_info.BaseAddress, memory_info.RegionSize, ++ memory_info.State == MEM_FREE ? "FREE": ++ (memory_info.State == MEM_RESERVE ? "RESERVED": ++ (memory_info.State == MEM_COMMIT ? "COMMITTED": "?"))); ++#endif ++ /* Region is free, well aligned and big enough: we are done */ ++ if (memory_info.State == MEM_FREE && ++ (unsigned) memory_info.BaseAddress % g_regionsize == 0 && ++ memory_info.RegionSize >= (unsigned) reserve_size) { ++ found = TRUE; ++ break; ++ } ++ /* From now on we can't get contiguous memory! */ ++ contiguous = FALSE; ++ /* Recompute size to reserve */ ++ reserve_size = CEIL (allocate_size, g_my_regionsize); ++ memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize; ++ /* Assert preconditions */ ++ assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0); ++ assert (0 < reserve_size && reserve_size % g_regionsize == 0); ++ } ++ /* Search failed? */ ++ if (! found) ++ goto sbrk_exit; ++ /* Assert preconditions */ ++ assert ((unsigned) memory_info.BaseAddress % g_regionsize == 0); ++ assert (0 < reserve_size && reserve_size % g_regionsize == 0); ++ /* Try to reserve this */ ++ base_reserved = VirtualAlloc (memory_info.BaseAddress, reserve_size, ++ MEM_RESERVE, PAGE_NOACCESS); ++ if (! base_reserved) { ++ int rc = GetLastError (); ++ if (rc != ERROR_INVALID_ADDRESS) ++ goto sbrk_exit; ++ } ++ /* A null pointer signals (hopefully) a race condition with another thread. */ ++ /* In this case, we try again. */ ++ } while (! base_reserved); ++ /* Check returned pointer for consistency */ ++ if (memory_info.BaseAddress && base_reserved != memory_info.BaseAddress) ++ goto sbrk_exit; ++ /* Assert postconditions */ ++ assert ((unsigned) base_reserved % g_regionsize == 0); ++#ifdef TRACE ++ printf ("Reserve %p %d\n", base_reserved, reserve_size); ++#endif ++ /* Did we get contiguous memory? */ ++ if (contiguous) { ++ long start_size = (char *) g_last->top_committed - (char *) g_last->top_allocated; ++ /* Adjust allocation size */ ++ allocate_size -= start_size; ++ /* Adjust the regions allocation top */ ++ g_last->top_allocated = g_last->top_committed; ++ /* Recompute the size to commit */ ++ to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed; ++ /* Round size to commit */ ++ commit_size = CEIL (to_commit, g_my_pagesize); ++ } ++ /* Append the new region to the list */ ++ if (! region_list_append (&g_last, base_reserved, reserve_size)) ++ goto sbrk_exit; ++ /* Didn't we get contiguous memory? */ ++ if (! contiguous) { ++ /* Recompute the size to commit */ ++ to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed; ++ /* Round size to commit */ ++ commit_size = CEIL (to_commit, g_my_pagesize); ++ } ++ } ++ } ++ /* Assert preconditions */ ++ assert ((unsigned) g_last->top_committed % g_pagesize == 0); ++ assert (0 < commit_size && commit_size % g_pagesize == 0); { ++ /* Commit this */ ++ void *base_committed = VirtualAlloc (g_last->top_committed, commit_size, ++ MEM_COMMIT, PAGE_READWRITE); ++ /* Check returned pointer for consistency */ ++ if (base_committed != g_last->top_committed) ++ goto sbrk_exit; ++ /* Assert postconditions */ ++ assert ((unsigned) base_committed % g_pagesize == 0); ++#ifdef TRACE ++ printf ("Commit %p %d\n", base_committed, commit_size); ++#endif ++ /* Adjust the regions commit top */ ++ g_last->top_committed = (char *) base_committed + commit_size; ++ } ++ } ++ /* Adjust the regions allocation top */ ++ g_last->top_allocated = (char *) g_last->top_allocated + allocate_size; ++ result = (char *) g_last->top_allocated - size; ++ /* Deallocation requested? */ ++ } else if (size < 0) { ++ long deallocate_size = - size; ++ /* As long as we have a region to release */ ++ while ((char *) g_last->top_allocated - deallocate_size < (char *) g_last->top_reserved - g_last->reserve_size) { ++ /* Get the size to release */ ++ long release_size = g_last->reserve_size; ++ /* Get the base address */ ++ void *base_reserved = (char *) g_last->top_reserved - release_size; ++ /* Assert preconditions */ ++ assert ((unsigned) base_reserved % g_regionsize == 0); ++ assert (0 < release_size && release_size % g_regionsize == 0); { ++ /* Release this */ ++ int rc = VirtualFree (base_reserved, 0, ++ MEM_RELEASE); ++ /* Check returned code for consistency */ ++ if (! rc) ++ goto sbrk_exit; ++#ifdef TRACE ++ printf ("Release %p %d\n", base_reserved, release_size); ++#endif ++ } ++ /* Adjust deallocation size */ ++ deallocate_size -= (char *) g_last->top_allocated - (char *) base_reserved; ++ /* Remove the old region from the list */ ++ if (! region_list_remove (&g_last)) ++ goto sbrk_exit; ++ } { ++ /* Compute the size to decommit */ ++ long to_decommit = (char *) g_last->top_committed - ((char *) g_last->top_allocated - deallocate_size); ++ if (to_decommit >= g_my_pagesize) { ++ /* Compute the size to decommit */ ++ long decommit_size = FLOOR (to_decommit, g_my_pagesize); ++ /* Compute the base address */ ++ void *base_committed = (char *) g_last->top_committed - decommit_size; ++ /* Assert preconditions */ ++ assert ((unsigned) base_committed % g_pagesize == 0); ++ assert (0 < decommit_size && decommit_size % g_pagesize == 0); { ++ /* Decommit this */ ++ int rc = VirtualFree ((char *) base_committed, decommit_size, ++ MEM_DECOMMIT); ++ /* Check returned code for consistency */ ++ if (! rc) ++ goto sbrk_exit; ++#ifdef TRACE ++ printf ("Decommit %p %d\n", base_committed, decommit_size); ++#endif ++ } ++ /* Adjust deallocation size and regions commit and allocate top */ ++ deallocate_size -= (char *) g_last->top_allocated - (char *) base_committed; ++ g_last->top_committed = base_committed; ++ g_last->top_allocated = base_committed; ++ } ++ } ++ /* Adjust regions allocate top */ ++ g_last->top_allocated = (char *) g_last->top_allocated - deallocate_size; ++ /* Check for underflow */ ++ if ((char *) g_last->top_reserved - g_last->reserve_size > (char *) g_last->top_allocated || ++ g_last->top_allocated > g_last->top_committed) { ++ /* Adjust regions allocate top */ ++ g_last->top_allocated = (char *) g_last->top_reserved - g_last->reserve_size; ++ goto sbrk_exit; ++ } ++ result = g_last->top_allocated; ++ } ++ /* Assert invariants */ ++ assert (g_last); ++ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated && ++ g_last->top_allocated <= g_last->top_committed); ++ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed && ++ g_last->top_committed <= g_last->top_reserved && ++ (unsigned) g_last->top_committed % g_pagesize == 0); ++ assert ((unsigned) g_last->top_reserved % g_regionsize == 0); ++ assert ((unsigned) g_last->reserve_size % g_regionsize == 0); ++ ++sbrk_exit: ++#if defined (USE_MALLOC_LOCK) && defined (NEEDED) ++ /* Release spin lock */ ++ slrelease (&g_sl); ++#endif ++ return result; ++} ++ ++/* mmap for windows */ ++static void *mmap (void *ptr, long size, long prot, long type, long handle, long arg) { ++ static long g_pagesize; ++ static long g_regionsize; ++#ifdef TRACE ++ printf ("mmap %d\n", size); ++#endif ++#if defined (USE_MALLOC_LOCK) && defined (NEEDED) ++ /* Wait for spin lock */ ++ slwait (&g_sl); ++#endif ++ /* First time initialization */ ++ if (! g_pagesize) ++ g_pagesize = getpagesize (); ++ if (! g_regionsize) ++ g_regionsize = getregionsize (); ++ /* Assert preconditions */ ++ assert ((unsigned) ptr % g_regionsize == 0); ++ assert (size % g_pagesize == 0); ++ /* Allocate this */ ++ ptr = VirtualAlloc (ptr, size, ++ MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN, PAGE_READWRITE); ++ if (! ptr) { ++ ptr = (void *) MORECORE_FAILURE; ++ goto mmap_exit; ++ } ++ /* Assert postconditions */ ++ assert ((unsigned) ptr % g_regionsize == 0); ++#ifdef TRACE ++ printf ("Commit %p %d\n", ptr, size); ++#endif ++mmap_exit: ++#if defined (USE_MALLOC_LOCK) && defined (NEEDED) ++ /* Release spin lock */ ++ slrelease (&g_sl); ++#endif ++ return ptr; ++} ++ ++/* munmap for windows */ ++static long munmap (void *ptr, long size) { ++ static long g_pagesize; ++ static long g_regionsize; ++ int rc = MUNMAP_FAILURE; ++#ifdef TRACE ++ printf ("munmap %p %d\n", ptr, size); ++#endif ++#if defined (USE_MALLOC_LOCK) && defined (NEEDED) ++ /* Wait for spin lock */ ++ slwait (&g_sl); ++#endif ++ /* First time initialization */ ++ if (! g_pagesize) ++ g_pagesize = getpagesize (); ++ if (! g_regionsize) ++ g_regionsize = getregionsize (); ++ /* Assert preconditions */ ++ assert ((unsigned) ptr % g_regionsize == 0); ++ assert (size % g_pagesize == 0); ++ /* Free this */ ++ if (! VirtualFree (ptr, 0, ++ MEM_RELEASE)) ++ goto munmap_exit; ++ rc = 0; ++#ifdef TRACE ++ printf ("Release %p %d\n", ptr, size); ++#endif ++munmap_exit: ++#if defined (USE_MALLOC_LOCK) && defined (NEEDED) ++ /* Release spin lock */ ++ slrelease (&g_sl); ++#endif ++ return rc; ++} ++ ++static void vminfo (unsigned long *free, unsigned long *reserved, unsigned long *committed) { ++ MEMORY_BASIC_INFORMATION memory_info; ++ memory_info.BaseAddress = 0; ++ *free = *reserved = *committed = 0; ++ while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) { ++ switch (memory_info.State) { ++ case MEM_FREE: ++ *free += memory_info.RegionSize; ++ break; ++ case MEM_RESERVE: ++ *reserved += memory_info.RegionSize; ++ break; ++ case MEM_COMMIT: ++ *committed += memory_info.RegionSize; ++ break; ++ } ++ memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize; ++ } ++} ++ ++static int cpuinfo (int whole, unsigned long *kernel, unsigned long *user) { ++ if (whole) { ++ __int64 creation64, exit64, kernel64, user64; ++ int rc = GetProcessTimes (GetCurrentProcess (), ++ (FILETIME *) &creation64, ++ (FILETIME *) &exit64, ++ (FILETIME *) &kernel64, ++ (FILETIME *) &user64); ++ if (! rc) { ++ *kernel = 0; ++ *user = 0; ++ return FALSE; ++ } ++ *kernel = (unsigned long) (kernel64 / 10000); ++ *user = (unsigned long) (user64 / 10000); ++ return TRUE; ++ } else { ++ __int64 creation64, exit64, kernel64, user64; ++ int rc = GetThreadTimes (GetCurrentThread (), ++ (FILETIME *) &creation64, ++ (FILETIME *) &exit64, ++ (FILETIME *) &kernel64, ++ (FILETIME *) &user64); ++ if (! rc) { ++ *kernel = 0; ++ *user = 0; ++ return FALSE; ++ } ++ *kernel = (unsigned long) (kernel64 / 10000); ++ *user = (unsigned long) (user64 / 10000); ++ return TRUE; ++ } ++} ++ ++#endif /* WIN32 */ ++ ++/* ------------------------------------------------------------ ++History: ++ ++ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) ++ * Introduce independent_comalloc and independent_calloc. ++ Thanks to Michael Pachos for motivation and help. ++ * Make optional .h file available ++ * Allow > 2GB requests on 32bit systems. ++ * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. ++ Thanks also to Andreas Mueller <a.mueller at paradatec.de>, ++ and Anonymous. ++ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for ++ helping test this.) ++ * memalign: check alignment arg ++ * realloc: don't try to shift chunks backwards, since this ++ leads to more fragmentation in some programs and doesn't ++ seem to help in any others. ++ * Collect all cases in malloc requiring system memory into sYSMALLOc ++ * Use mmap as backup to sbrk ++ * Place all internal state in malloc_state ++ * Introduce fastbins (although similar to 2.5.1) ++ * Many minor tunings and cosmetic improvements ++ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK ++ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS ++ Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. ++ * Include errno.h to support default failure action. ++ ++ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) ++ * return null for negative arguments ++ * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> ++ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' ++ (e.g. WIN32 platforms) ++ * Cleanup header file inclusion for WIN32 platforms ++ * Cleanup code to avoid Microsoft Visual C++ compiler complaints ++ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing ++ memory allocation routines ++ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) ++ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to ++ usage of 'assert' in non-WIN32 code ++ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to ++ avoid infinite loop ++ * Always call 'fREe()' rather than 'free()' ++ ++ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) ++ * Fixed ordering problem with boundary-stamping ++ ++ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) ++ * Added pvalloc, as recommended by H.J. Liu ++ * Added 64bit pointer support mainly from Wolfram Gloger ++ * Added anonymously donated WIN32 sbrk emulation ++ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen ++ * malloc_extend_top: fix mask error that caused wastage after ++ foreign sbrks ++ * Add linux mremap support code from HJ Liu ++ ++ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) ++ * Integrated most documentation with the code. ++ * Add support for mmap, with help from ++ Wolfram Gloger (Gloger@lrz.uni-muenchen.de). ++ * Use last_remainder in more cases. ++ * Pack bins using idea from colin@nyx10.cs.du.edu ++ * Use ordered bins instead of best-fit threshold ++ * Eliminate block-local decls to simplify tracing and debugging. ++ * Support another case of realloc via move into top ++ * Fix error occurring when initial sbrk_base not word-aligned. ++ * Rely on page size for units instead of SBRK_UNIT to ++ avoid surprises about sbrk alignment conventions. ++ * Add mallinfo, mallopt. Thanks to Raymond Nijssen ++ (raymond@es.ele.tue.nl) for the suggestion. ++ * Add `pad' argument to malloc_trim and top_pad mallopt parameter. ++ * More precautions for cases where other routines call sbrk, ++ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). ++ * Added macros etc., allowing use in linux libc from ++ H.J. Lu (hjl@gnu.ai.mit.edu) ++ * Inverted this history list ++ ++ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) ++ * Re-tuned and fixed to behave more nicely with V2.6.0 changes. ++ * Removed all preallocation code since under current scheme ++ the work required to undo bad preallocations exceeds ++ the work saved in good cases for most test programs. ++ * No longer use return list or unconsolidated bins since ++ no scheme using them consistently outperforms those that don't ++ given above changes. ++ * Use best fit for very large chunks to prevent some worst-cases. ++ * Added some support for debugging ++ ++ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) ++ * Removed footers when chunks are in use. Thanks to ++ Paul Wilson (wilson@cs.texas.edu) for the suggestion. ++ ++ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) ++ * Added malloc_trim, with help from Wolfram Gloger ++ (wmglo@Dent.MED.Uni-Muenchen.DE). ++ ++ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) ++ ++ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) ++ * realloc: try to expand in both directions ++ * malloc: swap order of clean-bin strategy; ++ * realloc: only conditionally expand backwards ++ * Try not to scavenge used bins ++ * Use bin counts as a guide to preallocation ++ * Occasionally bin return list chunks in first scan ++ * Add a few optimizations from colin@nyx10.cs.du.edu ++ ++ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) ++ * faster bin computation & slightly different binning ++ * merged all consolidations to one part of malloc proper ++ (eliminating old malloc_find_space & malloc_clean_bin) ++ * Scan 2 returns chunks (not just 1) ++ * Propagate failure in realloc if malloc returns 0 ++ * Add stuff to allow compilation on non-ANSI compilers ++ from kpv@research.att.com ++ ++ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) ++ * removed potential for odd address access in prev_chunk ++ * removed dependency on getpagesize.h ++ * misc cosmetics and a bit more internal documentation ++ * anticosmetics: mangled names in macros to evade debugger strangeness ++ * tested on sparc, hp-700, dec-mips, rs6000 ++ with gcc & native cc (hp, dec only) allowing ++ Detlefs & Zorn comparison study (in SIGPLAN Notices.) ++ ++ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) ++ * Based loosely on libg++-1.2X malloc. (It retains some of the overall ++ structure of old version, but most details differ.) ++ ++*/ ++ ++#ifdef USE_PUBLIC_MALLOC_WRAPPERS ++ ++#ifndef KDE_MALLOC_FULL ++ ++#ifdef KDE_MALLOC_GLIBC ++#include "glibc.h" ++#else ++/* cannot use dlsym(RTLD_NEXT,...) here, it calls malloc()*/ ++#error Unknown libc ++#endif ++ ++/* 0 - uninitialized ++ 1 - this malloc ++ 2 - standard libc malloc*/ ++extern char* getenv(const char*); ++static int malloc_type = 0; ++static void init_malloc_type(void) ++ { ++ const char* const env = getenv( "KDE_MALLOC" ); ++ if( env == NULL ) ++ malloc_type = 1; ++ else if( env[ 0 ] == '0' || env[ 0 ] == 'n' || env[ 0 ] == 'N' ) ++ malloc_type = 2; ++ else ++ malloc_type = 1; ++ } ++ ++#endif ++ ++Void_t* public_mALLOc(size_t bytes) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = mALLOc(bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_malloc( bytes ); ++ init_malloc_type(); ++ return public_mALLOc( bytes ); ++#endif ++} ++ ++void public_fREe(Void_t* m) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ if (MALLOC_PREACTION != 0) { ++ return; ++ } ++ fREe(m); ++ if (MALLOC_POSTACTION != 0) { ++ } ++#ifndef KDE_MALLOC_FULL ++ return; ++ } ++ if( malloc_type == 2 ) ++ { ++ libc_free( m ); ++ return; ++ } ++ init_malloc_type(); ++ public_fREe( m ); ++#endif ++} ++ ++Void_t* public_rEALLOc(Void_t* m, size_t bytes) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = rEALLOc(m, bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_realloc( m, bytes ); ++ init_malloc_type(); ++ return public_rEALLOc( m, bytes ); ++#endif ++} ++ ++Void_t* public_mEMALIGn(size_t alignment, size_t bytes) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = mEMALIGn(alignment, bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_memalign( alignment, bytes ); ++ init_malloc_type(); ++ return public_mEMALIGn( alignment, bytes ); ++#endif ++} ++ ++Void_t* public_vALLOc(size_t bytes) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = vALLOc(bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_valloc( bytes ); ++ init_malloc_type(); ++ return public_vALLOc( bytes ); ++#endif ++} ++ ++Void_t* public_pVALLOc(size_t bytes) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = pVALLOc(bytes); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_pvalloc( bytes ); ++ init_malloc_type(); ++ return public_pVALLOc( bytes ); ++#endif ++} ++ ++Void_t* public_cALLOc(size_t n, size_t elem_size) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ Void_t* m; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ m = cALLOc(n, elem_size); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_calloc( n, elem_size ); ++ init_malloc_type(); ++ return public_cALLOc( n, elem_size ); ++#endif ++} ++ ++void public_cFREe(Void_t* m) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ if (MALLOC_PREACTION != 0) { ++ return; ++ } ++ cFREe(m); ++ if (MALLOC_POSTACTION != 0) { ++ } ++#ifndef KDE_MALLOC_FULL ++ return; ++ } ++ if( malloc_type == 2 ) ++ { ++ libc_cfree( m ); ++ return; ++ } ++ init_malloc_type(); ++ public_cFREe( m ); ++#endif ++} ++ ++struct mallinfo public_mALLINFo() { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ struct mallinfo m; ++ if (MALLOC_PREACTION != 0) { ++ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ++ return nm; ++ } ++ m = mALLINFo(); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return m; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_mallinfo(); ++ init_malloc_type(); ++ return public_mALLINFo(); ++#endif ++} ++ ++int public_mALLOPt(int p, int v) { ++#ifndef KDE_MALLOC_FULL ++ if( malloc_type == 1 ) ++ { ++#endif ++ int result; ++ if (MALLOC_PREACTION != 0) { ++ return 0; ++ } ++ result = mALLOPt(p, v); ++ if (MALLOC_POSTACTION != 0) { ++ } ++ return result; ++#ifndef KDE_MALLOC_FULL ++ } ++ if( malloc_type == 2 ) ++ return libc_mallopt( p, v ); ++ init_malloc_type(); ++ return public_mALLOPt( p, v ); ++#endif ++} ++#endif ++ ++int ++posix_memalign (void **memptr, size_t alignment, size_t size) ++{ ++ void *mem; ++ ++ /* Test whether the SIZE argument is valid. It must be a power of ++ two multiple of sizeof (void *). */ ++ if (size % sizeof (void *) != 0 || (size & (size - 1)) != 0) ++ return EINVAL; ++ ++ mem = memalign (alignment, size); ++ ++ if (mem != NULL) { ++ *memptr = mem; ++ return 0; ++ } ++ ++ return ENOMEM; ++} ++ ++#else ++/* Some linkers (Solaris 2.6) don't like empty archives, but for ++ easier Makefile's we want to link against libklmalloc.la every time, ++ so simply make it non-empty. */ ++void kde_malloc_dummy_function () ++{ ++ return; ++} ++#endif +diff -Nupr a/src/corelib/arch/avr32/qatomic.cpp b/src/corelib/arch/avr32/qatomic.cpp +--- a/src/corelib/arch/avr32/qatomic.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ b/src/corelib/arch/avr32/qatomic.cpp 2006-07-26 11:02:43.000000000 +0200 +@@ -0,0 +1,24 @@ ++/**************************************************************************** ++** ++** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved. ++** ++** This file is part of the QtCore module of the Qt Toolkit. ++** ++** Licensees holding valid Qt Preview licenses may use this file in ++** accordance with the Qt Preview License Agreement provided with the ++** Software. ++** ++** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for ++** information about Qt Commercial License Agreements. ++** ++** Contact info@trolltech.com if any conditions of this licensing are ++** not clear to you. ++** ++** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ++** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ++** ++****************************************************************************/ ++ ++#include "QtCore/qatomic_avr32.h" ++ ++Q_CORE_EXPORT long q_atomic_lock = 0; +diff -Nupr a/src/corelib/arch/qatomic_arch.h b/src/corelib/arch/qatomic_arch.h +--- a/src/corelib/arch/qatomic_arch.h 2006-06-30 09:49:44.000000000 +0200 ++++ b/src/corelib/arch/qatomic_arch.h 2006-07-27 12:42:58.000000000 +0200 +@@ -32,6 +32,8 @@ QT_BEGIN_HEADER + # include "QtCore/qatomic_alpha.h" + #elif defined(QT_ARCH_ARM) + # include "QtCore/qatomic_arm.h" ++#elif defined(QT_ARCH_AVR32) ++# include "QtCore/qatomic_avr32.h" + #elif defined(QT_ARCH_BOUNDSCHECKER) + # include "QtCore/qatomic_boundschecker.h" + #elif defined(QT_ARCH_GENERIC) +diff -Nupr a/src/corelib/arch/qatomic_avr32.h b/src/corelib/arch/qatomic_avr32.h +--- a/src/corelib/arch/qatomic_avr32.h 1970-01-01 01:00:00.000000000 +0100 ++++ b/src/corelib/arch/qatomic_avr32.h 2006-07-28 10:30:08.000000000 +0200 +@@ -0,0 +1,113 @@ ++/**************************************************************************** ++** ++** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved. ++** ++** This file is part of the QtCore module of the Qt Toolkit. ++** ++** Licensees holding valid Qt Preview licenses may use this file in ++** accordance with the Qt Preview License Agreement provided with the ++** Software. ++** ++** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for ++** information about Qt Commercial License Agreements. ++** ++** Contact info@trolltech.com if any conditions of this licensing are ++** not clear to you. ++** ++** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ++** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ++** ++****************************************************************************/ ++ ++#ifndef AVR32_QATOMIC_H ++#define AVR32_QATOMIC_H ++ ++#include <QtCore/qglobal.h> ++ ++QT_BEGIN_HEADER ++ ++extern Q_CORE_EXPORT long q_atomic_lock; ++ ++inline long q_atomic_swp(volatile long *ptr, long newval) ++{ ++ register int ret; ++ asm volatile("xchg %0,%1,%2" ++ : "=&r"(ret) ++ : "r"(ptr), "r"(newval) ++ : "memory", "cc"); ++ return ret; ++} ++ ++inline int q_atomic_test_and_set_int(volatile int *ptr, int expected, int newval) ++{ ++ int ret = 0; ++ while (q_atomic_swp(&q_atomic_lock, ~0) != 0); ++ if (*ptr == expected) { ++ *ptr = newval; ++ ret = 1; ++ } ++ q_atomic_swp(&q_atomic_lock, 0); ++ return ret; ++} ++ ++inline int q_atomic_test_and_set_acquire_int(volatile int *ptr, int expected, int newval) ++{ ++ return q_atomic_test_and_set_int(ptr, expected, newval); ++} ++ ++inline int q_atomic_test_and_set_release_int(volatile int *ptr, int expected, int newval) ++{ ++ return q_atomic_test_and_set_int(ptr, expected, newval); ++} ++ ++inline int q_atomic_test_and_set_ptr(volatile void *ptr, void *expected, void *newval) ++{ ++ int ret = 0; ++ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ; ++ if (*reinterpret_cast<void * volatile *>(ptr) == expected) { ++ *reinterpret_cast<void * volatile *>(ptr) = newval; ++ ret = 1; ++ } ++ q_atomic_swp(&q_atomic_lock, 0); ++ return ret; ++} ++ ++inline int q_atomic_increment(volatile int *ptr) ++{ ++ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ; ++ int originalValue = *ptr; ++ *ptr = originalValue + 1; ++ q_atomic_swp(&q_atomic_lock, 0); ++ return originalValue != -1; ++} ++ ++inline int q_atomic_decrement(volatile int *ptr) ++{ ++ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ; ++ int originalValue = *ptr; ++ *ptr = originalValue - 1; ++ q_atomic_swp(&q_atomic_lock, 0); ++ return originalValue != 1; ++} ++ ++inline int q_atomic_set_int(volatile int *ptr, int newval) ++{ ++ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ; ++ int originalValue = *ptr; ++ *ptr = newval; ++ q_atomic_swp(&q_atomic_lock, 0); ++ return originalValue; ++} ++ ++inline void *q_atomic_set_ptr(volatile void *ptr, void *newval) ++{ ++ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ; ++ void *originalValue = *reinterpret_cast<void * volatile *>(ptr); ++ *reinterpret_cast<void * volatile *>(ptr) = newval; ++ q_atomic_swp(&q_atomic_lock, 0); ++ return originalValue; ++} ++ ++QT_END_HEADER ++ ++#endif // AVR32_QATOMIC_H +diff -Nupr a/src/corelib/io/qfilesystemwatcher_inotify.cpp b/src/corelib/io/qfilesystemwatcher_inotify.cpp +--- a/src/corelib/io/qfilesystemwatcher_inotify.cpp 2006-06-30 09:49:45.000000000 +0200 ++++ b/src/corelib/io/qfilesystemwatcher_inotify.cpp 2006-07-27 13:24:27.000000000 +0200 +@@ -72,6 +72,10 @@ + # define __NR_inotify_init 316 + # define __NR_inotify_add_watch 317 + # define __NR_inotify_rm_watch 318 ++#elif defined (__avr32__) ++# define __NR_inotify_init 240 ++# define __NR_inotify_add_watch 241 ++# define __NR_inotify_rm_watch 242 + #elif defined (__SH4__) + # define __NR_inotify_init 290 + # define __NR_inotify_add_watch 291 +diff -uprN a/mkspecs/qws/linux-avr32-g++/qmake.conf b/mkspecs/qws/linux-avr32-g++/qmake.conf +--- a/mkspecs/qws/linux-avr32-g++/qmake.conf 1970-01-01 01:00:00.000000000 +0100 ++++ b/mkspecs/qws/linux-avr32-g++/qmake.conf 2006-08-01 08:47:12.000000000 +0200 +@@ -0,0 +1,85 @@ ++# ++# qmake configuration for linux-g++ using the avr32-linux-g++ crosscompiler ++# ++ ++MAKEFILE_GENERATOR = UNIX ++TEMPLATE = app ++CONFIG += qt warn_on release link_prl ++QT += core gui network ++QMAKE_INCREMENTAL_STYLE = sublib ++ ++QMAKE_CC = avr32-linux-gcc ++QMAKE_LEX = flex ++QMAKE_LEXFLAGS = ++QMAKE_YACC = yacc ++QMAKE_YACCFLAGS = -d ++QMAKE_CFLAGS = -pipe ++QMAKE_CFLAGS_WARN_ON = -Wall -W ++QMAKE_CFLAGS_WARN_OFF = ++QMAKE_CFLAGS_RELEASE = -O2 ++QMAKE_CFLAGS_DEBUG = -g -O2 ++QMAKE_CFLAGS_SHLIB = -fPIC ++QMAKE_CFLAGS_YACC = -Wno-unused -Wno-parentheses ++QMAKE_CFLAGS_THREAD = -D_REENTRANT ++QMAKE_CFLAGS_HIDESYMS = -fvisibility=hidden ++ ++QMAKE_CXX = avr32-linux-g++ ++QMAKE_CXXFLAGS = $$QMAKE_CFLAGS -fno-exceptions ++QMAKE_CXXFLAGS_WARN_ON = $$QMAKE_CFLAGS_WARN_ON ++QMAKE_CXXFLAGS_WARN_OFF = $$QMAKE_CFLAGS_WARN_OFF ++QMAKE_CXXFLAGS_RELEASE = $$QMAKE_CFLAGS_RELEASE ++QMAKE_CXXFLAGS_DEBUG = $$QMAKE_CFLAGS_DEBUG ++QMAKE_CXXFLAGS_SHLIB = $$QMAKE_CFLAGS_SHLIB ++QMAKE_CXXFLAGS_YACC = $$QMAKE_CFLAGS_YACC ++QMAKE_CXXFLAGS_THREAD = $$QMAKE_CFLAGS_THREAD ++QMAKE_CXXFLAGS_HIDESYMS = $$QMAKE_CFLAGS_HIDESYMS -fvisibility-inlines-hidden ++ ++QMAKE_INCDIR = ++QMAKE_LIBDIR = ++QMAKE_INCDIR_X11 = ++QMAKE_LIBDIR_X11 = ++QMAKE_INCDIR_QT = $$[QT_INSTALL_HEADERS] ++QMAKE_LIBDIR_QT = $$[QT_INSTALL_LIBS] ++QMAKE_INCDIR_OPENGL = ++QMAKE_LIBDIR_OPENGL = ++QMAKE_INCDIR_QTOPIA = $(QPEDIR)/include ++QMAKE_LIBDIR_QTOPIA = $(QPEDIR)/lib ++ ++QMAKE_LINK = avr32-linux-g++ ++QMAKE_LINK_SHLIB = avr32-linux-g++ ++QMAKE_LFLAGS = ++QMAKE_LFLAGS_RELEASE = ++QMAKE_LFLAGS_DEBUG = ++QMAKE_LFLAGS_SHLIB = -shared ++QMAKE_LFLAGS_PLUGIN = $$QMAKE_LFLAGS_SHLIB ++QMAKE_LFLAGS_SONAME = -Wl,-soname, ++QMAKE_LFLAGS_THREAD = ++QMAKE_RPATH = -Wl,-rpath, ++ ++QMAKE_LIBS = ++QMAKE_LIBS_DYNLOAD = -ldl ++QMAKE_LIBS_X11 = ++QMAKE_LIBS_X11SM = ++QMAKE_LIBS_QT = -lqte ++QMAKE_LIBS_QT_THREAD = -lqte-mt ++QMAKE_LIBS_QT_OPENGL = -lqgl ++QMAKE_LIBS_QTOPIA = -lqpe -lqtopia ++QMAKE_LIBS_THREAD = -lpthread ++ ++QMAKE_MOC = $$[QT_INSTALL_BINS]/moc ++QMAKE_UIC = $$[QT_INSTALL_BINS]/uic ++ ++QMAKE_AR = avr32-linux-ar cqs ++QMAKE_RANLIB = avr32-linux-ranlib ++ ++QMAKE_TAR = tar -cf ++QMAKE_GZIP = gzip -9f ++ ++QMAKE_COPY = cp -f ++QMAKE_MOVE = mv -f ++QMAKE_DEL_FILE = rm -f ++QMAKE_DEL_DIR = rmdir ++QMAKE_STRIP = avr32-linux-strip ++QMAKE_CHK_DIR_EXISTS = test -d ++QMAKE_MKDIR = mkdir -p ++load(qt_config) +diff -uprN a/mkspecs/qws/linux-avr32-g++/qplatformdefs.h b/mkspecs/qws/linux-avr32-g++/qplatformdefs.h +--- a/mkspecs/qws/linux-avr32-g++/qplatformdefs.h 1970-01-01 01:00:00.000000000 +0100 ++++ b/mkspecs/qws/linux-avr32-g++/qplatformdefs.h 2006-07-26 09:16:52.000000000 +0200 +@@ -0,0 +1,22 @@ ++/**************************************************************************** ++** ++** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved. ++** ++** This file is part of the qmake spec of the Qt Toolkit. ++** ++** Licensees holding valid Qt Preview licenses may use this file in ++** accordance with the Qt Preview License Agreement provided with the ++** Software. ++** ++** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for ++** information about Qt Commercial License Agreements. ++** ++** Contact info@trolltech.com if any conditions of this licensing are ++** not clear to you. ++** ++** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ++** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ++** ++****************************************************************************/ ++ ++#include "../../linux-g++/qplatformdefs.h" |