summaryrefslogtreecommitdiffstats
path: root/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch
diff options
context:
space:
mode:
authorPeter Korsgaard <jacmet@sunsite.dk>2008-04-23 15:27:15 +0000
committerPeter Korsgaard <jacmet@sunsite.dk>2008-04-23 15:27:15 +0000
commitc71479f8fdd6cbf443aed87655ceb725ab1b15b2 (patch)
tree3d8c937f055066885001b68a9b8a1071778605cd /package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch
parentd8dcacdab1e3c661569c83b875c91816c1359b20 (diff)
downloadbuildroot-novena-c71479f8fdd6cbf443aed87655ceb725ab1b15b2.tar.gz
buildroot-novena-c71479f8fdd6cbf443aed87655ceb725ab1b15b2.zip
qtopia4: use .patch.$ARCH naming convention
Diffstat (limited to 'package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch')
-rw-r--r--package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch6139
1 files changed, 0 insertions, 6139 deletions
diff --git a/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch b/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch
deleted file mode 100644
index 3dcebb7c7..000000000
--- a/package/qtopia4/qtopia-4.2.2-add-avr32-arch.patch
+++ /dev/null
@@ -1,6139 +0,0 @@
-diff -Nupr a/include/Qt/qatomic_avr32.h b/include/Qt/qatomic_avr32.h
---- a/include/Qt/qatomic_avr32.h 1970-01-01 01:00:00.000000000 +0100
-+++ b/include/Qt/qatomic_avr32.h 2006-07-27 07:55:09.000000000 +0200
-@@ -0,0 +1 @@
-+#include "../../src/corelib/arch/qatomic_avr32.h"
-diff -Nupr a/include/QtCore/qatomic_avr32.h b/include/QtCore/qatomic_avr32.h
---- a/include/QtCore/qatomic_avr32.h 1970-01-01 01:00:00.000000000 +0100
-+++ b/include/QtCore/qatomic_avr32.h 2006-07-27 07:55:28.000000000 +0200
-@@ -0,0 +1 @@
-+#include "../../src/corelib/arch/qatomic_avr32.h"
-diff -Nupr a/src/corelib/arch/arch.pri b/src/corelib/arch/arch.pri
---- a/src/corelib/arch/arch.pri 2006-06-30 09:49:44.000000000 +0200
-+++ b/src/corelib/arch/arch.pri 2006-07-26 11:03:43.000000000 +0200
-@@ -13,6 +13,7 @@ mac:HEADERS += arch/qatomic_macosx.h \
- arch/qatomic_generic.h \
- arch/qatomic_powerpc.h \
- arch/qatomic_arm.h \
-+ arch/qatomic_avr32.h \
- arch/qatomic_i386.h \
- arch/qatomic_mips.h \
- arch/qatomic_s390.h \
-diff -Nupr a/src/corelib/arch/avr32/arch.pri b/src/corelib/arch/avr32/arch.pri
---- a/src/corelib/arch/avr32/arch.pri 1970-01-01 01:00:00.000000000 +0100
-+++ b/src/corelib/arch/avr32/arch.pri 2006-07-26 11:02:16.000000000 +0200
-@@ -0,0 +1,5 @@
-+#
-+# AVR32 architecture
-+#
-+SOURCES += $$QT_ARCH_CPP/qatomic.cpp \
-+ $$QT_ARCH_CPP/malloc.c
-diff -Nupr a/src/corelib/arch/avr32/malloc.c b/src/corelib/arch/avr32/malloc.c
---- a/src/corelib/arch/avr32/malloc.c 1970-01-01 01:00:00.000000000 +0100
-+++ b/src/corelib/arch/avr32/malloc.c 2006-07-28 10:29:44.000000000 +0200
-@@ -0,0 +1,5819 @@
-+/****************************************************************************
-+**
-+** This file is part of the QtCore module of the Qt Toolkit.
-+**
-+** This file contains third party code which is not governed by the Qt
-+** Commercial License Agreement. Please read the license headers below
-+** for more information.
-+**
-+** Further information about Qt licensing is available at:
-+** http://www.trolltech.com/products/qt/licensing.html or by
-+** contacting info@trolltech.com.
-+**
-+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
-+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-+**
-+****************************************************************************/
-+
-+/* ---- config.h */
-+#define KDE_MALLOC
-+#define KDE_MALLOC_FULL
-+#define KDE_MALLOC_AVR32
-+/* ---- */
-+
-+#ifdef KDE_MALLOC
-+
-+#ifdef KDE_MALLOC_DEBUG
-+#define DEBUG
-+#endif
-+
-+#define USE_MALLOC_LOCK
-+#define INLINE __inline__
-+/*#define INLINE*/
-+#define USE_MEMCPY 0
-+#define MMAP_CLEARS 1
-+
-+/*
-+ This is a version (aka dlmalloc) of malloc/free/realloc written by
-+ Doug Lea and released to the public domain. Use, modify, and
-+ redistribute this code without permission or acknowledgment in any
-+ way you wish. Send questions, comments, complaints, performance
-+ data, etc to dl@cs.oswego.edu
-+
-+* VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
-+
-+ Note: There may be an updated version of this malloc obtainable at
-+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
-+ Check before installing!
-+
-+* Quickstart
-+
-+ This library is all in one file to simplify the most common usage:
-+ ftp it, compile it (-O), and link it into another program. All
-+ of the compile-time options default to reasonable values for use on
-+ most unix platforms. Compile -DWIN32 for reasonable defaults on windows.
-+ You might later want to step through various compile-time and dynamic
-+ tuning options.
-+
-+ For convenience, an include file for code using this malloc is at:
-+ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.7.0.h
-+ You don't really need this .h file unless you call functions not
-+ defined in your system include files. The .h file contains only the
-+ excerpts from this file needed for using this malloc on ANSI C/C++
-+ systems, so long as you haven't changed compile-time options about
-+ naming and tuning parameters. If you do, then you can create your
-+ own malloc.h that does include all settings by cutting at the point
-+ indicated below.
-+
-+* Why use this malloc?
-+
-+ This is not the fastest, most space-conserving, most portable, or
-+ most tunable malloc ever written. However it is among the fastest
-+ while also being among the most space-conserving, portable and tunable.
-+ Consistent balance across these factors results in a good general-purpose
-+ allocator for malloc-intensive programs.
-+
-+ The main properties of the algorithms are:
-+ * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
-+ with ties normally decided via FIFO (i.e. least recently used).
-+ * For small (<= 64 bytes by default) requests, it is a caching
-+ allocator, that maintains pools of quickly recycled chunks.
-+ * In between, and for combinations of large and small requests, it does
-+ the best it can trying to meet both goals at once.
-+ * For very large requests (>= 128KB by default), it relies on system
-+ memory mapping facilities, if supported.
-+
-+ For a longer but slightly out of date high-level description, see
-+ http://gee.cs.oswego.edu/dl/html/malloc.html
-+
-+ You may already by default be using a C library containing a malloc
-+ that is based on some version of this malloc (for example in
-+ linux). You might still want to use the one in this file in order to
-+ customize settings or to avoid overheads associated with library
-+ versions.
-+
-+* Contents, described in more detail in "description of public routines" below.
-+
-+ Standard (ANSI/SVID/...) functions:
-+ malloc(size_t n);
-+ calloc(size_t n_elements, size_t element_size);
-+ free(Void_t* p);
-+ realloc(Void_t* p, size_t n);
-+ memalign(size_t alignment, size_t n);
-+ valloc(size_t n);
-+ mallinfo()
-+ mallopt(int parameter_number, int parameter_value)
-+
-+ Additional functions:
-+ independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
-+ independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
-+ pvalloc(size_t n);
-+ cfree(Void_t* p);
-+ malloc_trim(size_t pad);
-+ malloc_usable_size(Void_t* p);
-+ malloc_stats();
-+
-+* Vital statistics:
-+
-+ Supported pointer representation: 4 or 8 bytes
-+ Supported size_t representation: 4 or 8 bytes
-+ Note that size_t is allowed to be 4 bytes even if pointers are 8.
-+ You can adjust this by defining INTERNAL_SIZE_T
-+
-+ Alignment: 2 * sizeof(size_t) (default)
-+ (i.e., 8 byte alignment with 4byte size_t). This suffices for
-+ nearly all current machines and C compilers. However, you can
-+ define MALLOC_ALIGNMENT to be wider than this if necessary.
-+
-+ Minimum overhead per allocated chunk: 4 or 8 bytes
-+ Each malloced chunk has a hidden word of overhead holding size
-+ and status information.
-+
-+ Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
-+ 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
-+
-+ When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
-+ ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
-+ needed; 4 (8) for a trailing size field and 8 (16) bytes for
-+ free list pointers. Thus, the minimum allocatable size is
-+ 16/24/32 bytes.
-+
-+ Even a request for zero bytes (i.e., malloc(0)) returns a
-+ pointer to something of the minimum allocatable size.
-+
-+ The maximum overhead wastage (i.e., number of extra bytes
-+ allocated than were requested in malloc) is less than or equal
-+ to the minimum size, except for requests >= mmap_threshold that
-+ are serviced via mmap(), where the worst case wastage is 2 *
-+ sizeof(size_t) bytes plus the remainder from a system page (the
-+ minimal mmap unit); typically 4096 or 8192 bytes.
-+
-+ Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
-+ 8-byte size_t: 2^64 minus about two pages
-+
-+ It is assumed that (possibly signed) size_t values suffice to
-+ represent chunk sizes. `Possibly signed' is due to the fact
-+ that `size_t' may be defined on a system as either a signed or
-+ an unsigned type. The ISO C standard says that it must be
-+ unsigned, but a few systems are known not to adhere to this.
-+ Additionally, even when size_t is unsigned, sbrk (which is by
-+ default used to obtain memory from system) accepts signed
-+ arguments, and may not be able to handle size_t-wide arguments
-+ with negative sign bit. Generally, values that would
-+ appear as negative after accounting for overhead and alignment
-+ are supported only via mmap(), which does not have this
-+ limitation.
-+
-+ Requests for sizes outside the allowed range will perform an optional
-+ failure action and then return null. (Requests may also
-+ also fail because a system is out of memory.)
-+
-+ Thread-safety: NOT thread-safe unless USE_MALLOC_LOCK defined
-+
-+ When USE_MALLOC_LOCK is defined, wrappers are created to
-+ surround every public call with either a pthread mutex or
-+ a win32 spinlock (depending on WIN32). This is not
-+ especially fast, and can be a major bottleneck.
-+ It is designed only to provide minimal protection
-+ in concurrent environments, and to provide a basis for
-+ extensions. If you are using malloc in a concurrent program,
-+ you would be far better off obtaining ptmalloc, which is
-+ derived from a version of this malloc, and is well-tuned for
-+ concurrent programs. (See http://www.malloc.de)
-+
-+ Compliance: I believe it is compliant with the 1997 Single Unix Specification
-+ (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
-+ others as well.
-+
-+* Synopsis of compile-time options:
-+
-+ People have reported using previous versions of this malloc on all
-+ versions of Unix, sometimes by tweaking some of the defines
-+ below. It has been tested most extensively on Solaris and
-+ Linux. It is also reported to work on WIN32 platforms.
-+ People also report using it in stand-alone embedded systems.
-+
-+ The implementation is in straight, hand-tuned ANSI C. It is not
-+ at all modular. (Sorry!) It uses a lot of macros. To be at all
-+ usable, this code should be compiled using an optimizing compiler
-+ (for example gcc -O3) that can simplify expressions and control
-+ paths. (FAQ: some macros import variables as arguments rather than
-+ declare locals because people reported that some debuggers
-+ otherwise get confused.)
-+
-+ OPTION DEFAULT VALUE
-+
-+ Compilation Environment options:
-+
-+ __STD_C derived from C compiler defines
-+ WIN32 NOT defined
-+ HAVE_MEMCPY defined
-+ USE_MEMCPY 1 if HAVE_MEMCPY is defined
-+ HAVE_MMAP defined as 1
-+ MMAP_CLEARS 1
-+ HAVE_MREMAP 0 unless linux defined
-+ malloc_getpagesize derived from system #includes, or 4096 if not
-+ HAVE_USR_INCLUDE_MALLOC_H NOT defined
-+ LACKS_UNISTD_H NOT defined unless WIN32
-+ LACKS_SYS_PARAM_H NOT defined unless WIN32
-+ LACKS_SYS_MMAN_H NOT defined unless WIN32
-+
-+ Changing default word sizes:
-+
-+ INTERNAL_SIZE_T size_t
-+ MALLOC_ALIGNMENT 2 * sizeof(INTERNAL_SIZE_T)
-+
-+ Configuration and functionality options:
-+
-+ USE_DL_PREFIX NOT defined
-+ USE_PUBLIC_MALLOC_WRAPPERS NOT defined
-+ USE_MALLOC_LOCK NOT defined
-+ DEBUG NOT defined
-+ REALLOC_ZERO_BYTES_FREES NOT defined
-+ MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
-+ TRIM_FASTBINS 0
-+
-+ Options for customizing MORECORE:
-+
-+ MORECORE sbrk
-+ MORECORE_CONTIGUOUS 1
-+ MORECORE_CANNOT_TRIM NOT defined
-+ MMAP_AS_MORECORE_SIZE (1024 * 1024)
-+
-+ Tuning options that are also dynamically changeable via mallopt:
-+
-+ DEFAULT_MXFAST 64
-+ DEFAULT_TRIM_THRESHOLD 128 * 1024
-+ DEFAULT_TOP_PAD 0
-+ DEFAULT_MMAP_THRESHOLD 128 * 1024
-+ DEFAULT_MMAP_MAX 65536
-+
-+ There are several other #defined constants and macros that you
-+ probably don't want to touch unless you are extending or adapting malloc.
-+*/
-+
-+/*
-+ WIN32 sets up defaults for MS environment and compilers.
-+ Otherwise defaults are for unix.
-+*/
-+
-+/* #define WIN32 */
-+
-+#ifdef WIN32
-+
-+#define WIN32_LEAN_AND_MEAN
-+#include <windows.h>
-+
-+/* Win32 doesn't supply or need the following headers */
-+#define LACKS_UNISTD_H
-+#define LACKS_SYS_PARAM_H
-+#define LACKS_SYS_MMAN_H
-+
-+/* Use the supplied emulation of sbrk */
-+#define MORECORE sbrk
-+#define MORECORE_CONTIGUOUS 1
-+#define MORECORE_FAILURE ((void*)(-1))
-+
-+/* Use the supplied emulation of mmap and munmap */
-+#define HAVE_MMAP 1
-+#define MUNMAP_FAILURE (-1)
-+#define MMAP_CLEARS 1
-+
-+/* These values don't really matter in windows mmap emulation */
-+#define MAP_PRIVATE 1
-+#define MAP_ANONYMOUS 2
-+#define PROT_READ 1
-+#define PROT_WRITE 2
-+
-+/* Emulation functions defined at the end of this file */
-+
-+/* If USE_MALLOC_LOCK, use supplied critical-section-based lock functions */
-+#ifdef USE_MALLOC_LOCK
-+static int slwait(int *sl);
-+static int slrelease(int *sl);
-+#endif
-+
-+static long getpagesize(void);
-+static long getregionsize(void);
-+static void *sbrk(long size);
-+static void *mmap(void *ptr, long size, long prot, long type, long handle, long arg);
-+static long munmap(void *ptr, long size);
-+
-+static void vminfo (unsigned long *free, unsigned long *reserved, unsigned long *committed);
-+static int cpuinfo (int whole, unsigned long *kernel, unsigned long *user);
-+
-+#endif
-+
-+/*
-+ __STD_C should be nonzero if using ANSI-standard C compiler, a C++
-+ compiler, or a C compiler sufficiently close to ANSI to get away
-+ with it.
-+*/
-+
-+#ifndef __STD_C
-+#if defined(__STDC__) || defined(_cplusplus)
-+#define __STD_C 1
-+#else
-+#define __STD_C 0
-+#endif
-+#endif /*__STD_C*/
-+
-+
-+/*
-+ Void_t* is the pointer type that malloc should say it returns
-+*/
-+
-+#ifndef Void_t
-+#if (__STD_C || defined(WIN32))
-+#define Void_t void
-+#else
-+#define Void_t char
-+#endif
-+#endif /*Void_t*/
-+
-+#if __STD_C
-+#include <stddef.h> /* for size_t */
-+#else
-+#include <sys/types.h>
-+#endif
-+
-+#ifdef __cplusplus
-+extern "C" {
-+#endif
-+
-+/* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
-+
-+/* #define LACKS_UNISTD_H */
-+
-+#ifndef LACKS_UNISTD_H
-+#include <unistd.h>
-+#endif
-+
-+/* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
-+
-+/* #define LACKS_SYS_PARAM_H */
-+
-+
-+#include <stdio.h> /* needed for malloc_stats */
-+#include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
-+
-+
-+/*
-+ Debugging:
-+
-+ Because freed chunks may be overwritten with bookkeeping fields, this
-+ malloc will often die when freed memory is overwritten by user
-+ programs. This can be very effective (albeit in an annoying way)
-+ in helping track down dangling pointers.
-+
-+ If you compile with -DDEBUG, a number of assertion checks are
-+ enabled that will catch more memory errors. You probably won't be
-+ able to make much sense of the actual assertion errors, but they
-+ should help you locate incorrectly overwritten memory. The
-+ checking is fairly extensive, and will slow down execution
-+ noticeably. Calling malloc_stats or mallinfo with DEBUG set will
-+ attempt to check every non-mmapped allocated and free chunk in the
-+ course of computing the summmaries. (By nature, mmapped regions
-+ cannot be checked very much automatically.)
-+
-+ Setting DEBUG may also be helpful if you are trying to modify
-+ this code. The assertions in the check routines spell out in more
-+ detail the assumptions and invariants underlying the algorithms.
-+
-+ Setting DEBUG does NOT provide an automated mechanism for checking
-+ that all accesses to malloced memory stay within their
-+ bounds. However, there are several add-ons and adaptations of this
-+ or other mallocs available that do this.
-+*/
-+
-+#ifdef DEBUG
-+#include <assert.h>
-+#else
-+#define assert(x) ((void)0)
-+#endif
-+
-+
-+/*
-+ INTERNAL_SIZE_T is the word-size used for internal bookkeeping
-+ of chunk sizes.
-+
-+ The default version is the same as size_t.
-+
-+ While not strictly necessary, it is best to define this as an
-+ unsigned type, even if size_t is a signed type. This may avoid some
-+ artificial size limitations on some systems.
-+
-+ On a 64-bit machine, you may be able to reduce malloc overhead by
-+ defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
-+ expense of not being able to handle more than 2^32 of malloced
-+ space. If this limitation is acceptable, you are encouraged to set
-+ this unless you are on a platform requiring 16byte alignments. In
-+ this case the alignment requirements turn out to negate any
-+ potential advantages of decreasing size_t word size.
-+
-+ Implementors: Beware of the possible combinations of:
-+ - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
-+ and might be the same width as int or as long
-+ - size_t might have different width and signedness as INTERNAL_SIZE_T
-+ - int and long might be 32 or 64 bits, and might be the same width
-+ To deal with this, most comparisons and difference computations
-+ among INTERNAL_SIZE_Ts should cast them to unsigned long, being
-+ aware of the fact that casting an unsigned int to a wider long does
-+ not sign-extend. (This also makes checking for negative numbers
-+ awkward.) Some of these casts result in harmless compiler warnings
-+ on some systems.
-+*/
-+
-+#ifndef INTERNAL_SIZE_T
-+#define INTERNAL_SIZE_T size_t
-+#endif
-+
-+/* The corresponding word size */
-+#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
-+
-+
-+/*
-+ MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
-+ It must be a power of two at least 2 * SIZE_SZ, even on machines
-+ for which smaller alignments would suffice. It may be defined as
-+ larger than this though. Note however that code and data structures
-+ are optimized for the case of 8-byte alignment.
-+*/
-+
-+
-+#ifndef MALLOC_ALIGNMENT
-+#define MALLOC_ALIGNMENT (2 * SIZE_SZ)
-+#endif
-+
-+/* The corresponding bit mask value */
-+#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
-+
-+
-+
-+/*
-+ REALLOC_ZERO_BYTES_FREES should be set if a call to
-+ realloc with zero bytes should be the same as a call to free.
-+ Some people think it should. Otherwise, since this malloc
-+ returns a unique pointer for malloc(0), so does realloc(p, 0).
-+*/
-+
-+/* #define REALLOC_ZERO_BYTES_FREES */
-+
-+/*
-+ TRIM_FASTBINS controls whether free() of a very small chunk can
-+ immediately lead to trimming. Setting to true (1) can reduce memory
-+ footprint, but will almost always slow down programs that use a lot
-+ of small chunks.
-+
-+ Define this only if you are willing to give up some speed to more
-+ aggressively reduce system-level memory footprint when releasing
-+ memory in programs that use many small chunks. You can get
-+ essentially the same effect by setting MXFAST to 0, but this can
-+ lead to even greater slowdowns in programs using many small chunks.
-+ TRIM_FASTBINS is an in-between compile-time option, that disables
-+ only those chunks bordering topmost memory from being placed in
-+ fastbins.
-+*/
-+
-+#ifndef TRIM_FASTBINS
-+#define TRIM_FASTBINS 0
-+#endif
-+
-+
-+/*
-+ USE_DL_PREFIX will prefix all public routines with the string 'dl'.
-+ This is necessary when you only want to use this malloc in one part
-+ of a program, using your regular system malloc elsewhere.
-+*/
-+
-+/* #define USE_DL_PREFIX */
-+
-+
-+/*
-+ USE_MALLOC_LOCK causes wrapper functions to surround each
-+ callable routine with pthread mutex lock/unlock.
-+
-+ USE_MALLOC_LOCK forces USE_PUBLIC_MALLOC_WRAPPERS to be defined
-+*/
-+
-+
-+/* #define USE_MALLOC_LOCK */
-+
-+
-+/*
-+ If USE_PUBLIC_MALLOC_WRAPPERS is defined, every public routine is
-+ actually a wrapper function that first calls MALLOC_PREACTION, then
-+ calls the internal routine, and follows it with
-+ MALLOC_POSTACTION. This is needed for locking, but you can also use
-+ this, without USE_MALLOC_LOCK, for purposes of interception,
-+ instrumentation, etc. It is a sad fact that using wrappers often
-+ noticeably degrades performance of malloc-intensive programs.
-+*/
-+
-+#ifdef USE_MALLOC_LOCK
-+#define USE_PUBLIC_MALLOC_WRAPPERS
-+#else
-+/* #define USE_PUBLIC_MALLOC_WRAPPERS */
-+#endif
-+
-+
-+/*
-+ Two-phase name translation.
-+ All of the actual routines are given mangled names.
-+ When wrappers are used, they become the public callable versions.
-+ When DL_PREFIX is used, the callable names are prefixed.
-+*/
-+
-+#ifndef USE_PUBLIC_MALLOC_WRAPPERS
-+#define cALLOc public_cALLOc
-+#define fREe public_fREe
-+#define cFREe public_cFREe
-+#define mALLOc public_mALLOc
-+#define mEMALIGn public_mEMALIGn
-+#define rEALLOc public_rEALLOc
-+#define vALLOc public_vALLOc
-+#define pVALLOc public_pVALLOc
-+#define mALLINFo public_mALLINFo
-+#define mALLOPt public_mALLOPt
-+#define mTRIm public_mTRIm
-+#define mSTATs public_mSTATs
-+#define mUSABLe public_mUSABLe
-+#define iCALLOc public_iCALLOc
-+#define iCOMALLOc public_iCOMALLOc
-+#endif
-+
-+#ifdef USE_DL_PREFIX
-+#define public_cALLOc dlcalloc
-+#define public_fREe dlfree
-+#define public_cFREe dlcfree
-+#define public_mALLOc dlmalloc
-+#define public_mEMALIGn dlmemalign
-+#define public_rEALLOc dlrealloc
-+#define public_vALLOc dlvalloc
-+#define public_pVALLOc dlpvalloc
-+#define public_mALLINFo dlmallinfo
-+#define public_mALLOPt dlmallopt
-+#define public_mTRIm dlmalloc_trim
-+#define public_mSTATs dlmalloc_stats
-+#define public_mUSABLe dlmalloc_usable_size
-+#define public_iCALLOc dlindependent_calloc
-+#define public_iCOMALLOc dlindependent_comalloc
-+#else /* USE_DL_PREFIX */
-+#define public_cALLOc calloc
-+#define public_fREe free
-+#define public_cFREe cfree
-+#define public_mALLOc malloc
-+#define public_mEMALIGn memalign
-+#define public_rEALLOc realloc
-+#define public_vALLOc valloc
-+#define public_pVALLOc pvalloc
-+#define public_mALLINFo mallinfo
-+#define public_mALLOPt mallopt
-+#define public_mTRIm malloc_trim
-+#define public_mSTATs malloc_stats
-+#define public_mUSABLe malloc_usable_size
-+#define public_iCALLOc independent_calloc
-+#define public_iCOMALLOc independent_comalloc
-+#endif /* USE_DL_PREFIX */
-+
-+
-+/*
-+ HAVE_MEMCPY should be defined if you are not otherwise using
-+ ANSI STD C, but still have memcpy and memset in your C library
-+ and want to use them in calloc and realloc. Otherwise simple
-+ macro versions are defined below.
-+
-+ USE_MEMCPY should be defined as 1 if you actually want to
-+ have memset and memcpy called. People report that the macro
-+ versions are faster than libc versions on some systems.
-+
-+ Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
-+ (of <= 36 bytes) are manually unrolled in realloc and calloc.
-+*/
-+
-+/* If it's available it's defined in config.h. */
-+/* #define HAVE_MEMCPY */
-+
-+#ifndef USE_MEMCPY
-+#ifdef HAVE_MEMCPY
-+#define USE_MEMCPY 1
-+#else
-+#define USE_MEMCPY 0
-+#endif
-+#endif
-+
-+
-+#if (__STD_C || defined(HAVE_MEMCPY))
-+
-+#ifdef WIN32
-+/* On Win32 memset and memcpy are already declared in windows.h */
-+#else
-+#if __STD_C
-+void* memset(void*, int, size_t);
-+void* memcpy(void*, const void*, size_t);
-+#else
-+Void_t* memset();
-+Void_t* memcpy();
-+#endif
-+#endif
-+#endif
-+
-+/*
-+ MALLOC_FAILURE_ACTION is the action to take before "return 0" when
-+ malloc fails to be able to return memory, either because memory is
-+ exhausted or because of illegal arguments.
-+
-+ By default, sets errno if running on STD_C platform, else does nothing.
-+*/
-+
-+#ifndef MALLOC_FAILURE_ACTION
-+#if __STD_C
-+#define MALLOC_FAILURE_ACTION \
-+ errno = ENOMEM;
-+
-+#else
-+#define MALLOC_FAILURE_ACTION
-+#endif
-+#endif
-+
-+/*
-+ MORECORE-related declarations. By default, rely on sbrk
-+*/
-+
-+
-+#ifdef LACKS_UNISTD_H
-+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
-+#if __STD_C
-+extern Void_t* sbrk(ptrdiff_t);
-+#else
-+extern Void_t* sbrk();
-+#endif
-+#endif
-+#endif
-+
-+/*
-+ MORECORE is the name of the routine to call to obtain more memory
-+ from the system. See below for general guidance on writing
-+ alternative MORECORE functions, as well as a version for WIN32 and a
-+ sample version for pre-OSX macos.
-+*/
-+
-+#ifndef MORECORE
-+#define MORECORE sbrk
-+#endif
-+
-+/*
-+ MORECORE_FAILURE is the value returned upon failure of MORECORE
-+ as well as mmap. Since it cannot be an otherwise valid memory address,
-+ and must reflect values of standard sys calls, you probably ought not
-+ try to redefine it.
-+*/
-+
-+#ifndef MORECORE_FAILURE
-+#define MORECORE_FAILURE (-1)
-+#endif
-+
-+/*
-+ If MORECORE_CONTIGUOUS is true, take advantage of fact that
-+ consecutive calls to MORECORE with positive arguments always return
-+ contiguous increasing addresses. This is true of unix sbrk. Even
-+ if not defined, when regions happen to be contiguous, malloc will
-+ permit allocations spanning regions obtained from different
-+ calls. But defining this when applicable enables some stronger
-+ consistency checks and space efficiencies.
-+*/
-+
-+#ifndef MORECORE_CONTIGUOUS
-+#define MORECORE_CONTIGUOUS 1
-+#endif
-+
-+/*
-+ Define MORECORE_CANNOT_TRIM if your version of MORECORE
-+ cannot release space back to the system when given negative
-+ arguments. This is generally necessary only if you are using
-+ a hand-crafted MORECORE function that cannot handle negative arguments.
-+*/
-+
-+/* #define MORECORE_CANNOT_TRIM */
-+
-+
-+/*
-+ Define HAVE_MMAP as true to optionally make malloc() use mmap() to
-+ allocate very large blocks. These will be returned to the
-+ operating system immediately after a free(). Also, if mmap
-+ is available, it is used as a backup strategy in cases where
-+ MORECORE fails to provide space from system.
-+
-+ This malloc is best tuned to work with mmap for large requests.
-+ If you do not have mmap, operations involving very large chunks (1MB
-+ or so) may be slower than you'd like.
-+*/
-+
-+#ifndef HAVE_MMAP
-+#define HAVE_MMAP 1
-+#endif
-+
-+#if HAVE_MMAP
-+/*
-+ Standard unix mmap using /dev/zero clears memory so calloc doesn't
-+ need to.
-+*/
-+
-+#ifndef MMAP_CLEARS
-+#define MMAP_CLEARS 1
-+#endif
-+
-+#else /* no mmap */
-+#ifndef MMAP_CLEARS
-+#define MMAP_CLEARS 0
-+#endif
-+#endif
-+
-+
-+/*
-+ MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
-+ sbrk fails, and mmap is used as a backup (which is done only if
-+ HAVE_MMAP). The value must be a multiple of page size. This
-+ backup strategy generally applies only when systems have "holes" in
-+ address space, so sbrk cannot perform contiguous expansion, but
-+ there is still space available on system. On systems for which
-+ this is known to be useful (i.e. most linux kernels), this occurs
-+ only when programs allocate huge amounts of memory. Between this,
-+ and the fact that mmap regions tend to be limited, the size should
-+ be large, to avoid too many mmap calls and thus avoid running out
-+ of kernel resources.
-+*/
-+
-+#ifndef MMAP_AS_MORECORE_SIZE
-+#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
-+#endif
-+
-+/*
-+ Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
-+ large blocks. This is currently only possible on Linux with
-+ kernel versions newer than 1.3.77.
-+*/
-+
-+#ifndef HAVE_MREMAP
-+#if defined(linux) || defined(__linux__) || defined(__linux)
-+#define HAVE_MREMAP 1
-+#else
-+#define HAVE_MREMAP 0
-+#endif
-+
-+#endif /* HAVE_MMAP */
-+
-+
-+/*
-+ The system page size. To the extent possible, this malloc manages
-+ memory from the system in page-size units. Note that this value is
-+ cached during initialization into a field of malloc_state. So even
-+ if malloc_getpagesize is a function, it is only called once.
-+
-+ The following mechanics for getpagesize were adapted from bsd/gnu
-+ getpagesize.h. If none of the system-probes here apply, a value of
-+ 4096 is used, which should be OK: If they don't apply, then using
-+ the actual value probably doesn't impact performance.
-+*/
-+
-+
-+#ifndef malloc_getpagesize
-+
-+#ifndef LACKS_UNISTD_H
-+# include <unistd.h>
-+#endif
-+
-+# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
-+# ifndef _SC_PAGE_SIZE
-+# define _SC_PAGE_SIZE _SC_PAGESIZE
-+# endif
-+# endif
-+
-+# ifdef _SC_PAGE_SIZE
-+# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-+# else
-+# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
-+ extern size_t getpagesize();
-+# define malloc_getpagesize getpagesize()
-+# else
-+# ifdef WIN32 /* use supplied emulation of getpagesize */
-+# define malloc_getpagesize getpagesize()
-+# else
-+# ifndef LACKS_SYS_PARAM_H
-+# include <sys/param.h>
-+# endif
-+# ifdef EXEC_PAGESIZE
-+# define malloc_getpagesize EXEC_PAGESIZE
-+# else
-+# ifdef NBPG
-+# ifndef CLSIZE
-+# define malloc_getpagesize NBPG
-+# else
-+# define malloc_getpagesize (NBPG * CLSIZE)
-+# endif
-+# else
-+# ifdef NBPC
-+# define malloc_getpagesize NBPC
-+# else
-+# ifdef PAGESIZE
-+# define malloc_getpagesize PAGESIZE
-+# else /* just guess */
-+# define malloc_getpagesize (4096)
-+# endif
-+# endif
-+# endif
-+# endif
-+# endif
-+# endif
-+# endif
-+#endif
-+
-+/*
-+ This version of malloc supports the standard SVID/XPG mallinfo
-+ routine that returns a struct containing usage properties and
-+ statistics. It should work on any SVID/XPG compliant system that has
-+ a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
-+ install such a thing yourself, cut out the preliminary declarations
-+ as described above and below and save them in a malloc.h file. But
-+ there's no compelling reason to bother to do this.)
-+
-+ The main declaration needed is the mallinfo struct that is returned
-+ (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
-+ bunch of field that are not even meaningful in this version of
-+ malloc. These fields are are instead filled by mallinfo() with
-+ other numbers that might be of interest.
-+
-+ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
-+ /usr/include/malloc.h file that includes a declaration of struct
-+ mallinfo. If so, it is included; else an SVID2/XPG2 compliant
-+ version is declared below. These must be precisely the same for
-+ mallinfo() to work. The original SVID version of this struct,
-+ defined on most systems with mallinfo, declares all fields as
-+ ints. But some others define as unsigned long. If your system
-+ defines the fields using a type of different width than listed here,
-+ you must #include your system version and #define
-+ HAVE_USR_INCLUDE_MALLOC_H.
-+*/
-+
-+/* #define HAVE_USR_INCLUDE_MALLOC_H */
-+
-+/*#ifdef HAVE_USR_INCLUDE_MALLOC_H*/
-+#if 0
-+#include "/usr/include/malloc.h"
-+#else
-+
-+/* SVID2/XPG mallinfo structure */
-+
-+struct mallinfo {
-+ int arena; /* non-mmapped space allocated from system */
-+ int ordblks; /* number of free chunks */
-+ int smblks; /* number of fastbin blocks */
-+ int hblks; /* number of mmapped regions */
-+ int hblkhd; /* space in mmapped regions */
-+ int usmblks; /* maximum total allocated space */
-+ int fsmblks; /* space available in freed fastbin blocks */
-+ int uordblks; /* total allocated space */
-+ int fordblks; /* total free space */
-+ int keepcost; /* top-most, releasable (via malloc_trim) space */
-+};
-+
-+/*
-+ SVID/XPG defines four standard parameter numbers for mallopt,
-+ normally defined in malloc.h. Only one of these (M_MXFAST) is used
-+ in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
-+ so setting them has no effect. But this malloc also supports other
-+ options in mallopt described below.
-+*/
-+#endif
-+
-+
-+/* ---------- description of public routines ------------ */
-+
-+/*
-+ malloc(size_t n)
-+ Returns a pointer to a newly allocated chunk of at least n bytes, or null
-+ if no space is available. Additionally, on failure, errno is
-+ set to ENOMEM on ANSI C systems.
-+
-+ If n is zero, malloc returns a minumum-sized chunk. (The minimum
-+ size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
-+ systems.) On most systems, size_t is an unsigned type, so calls
-+ with negative arguments are interpreted as requests for huge amounts
-+ of space, which will often fail. The maximum supported value of n
-+ differs across systems, but is in all cases less than the maximum
-+ representable value of a size_t.
-+*/
-+#if __STD_C
-+Void_t* public_mALLOc(size_t);
-+#else
-+Void_t* public_mALLOc();
-+#endif
-+
-+/*
-+ free(Void_t* p)
-+ Releases the chunk of memory pointed to by p, that had been previously
-+ allocated using malloc or a related routine such as realloc.
-+ It has no effect if p is null. It can have arbitrary (i.e., bad!)
-+ effects if p has already been freed.
-+
-+ Unless disabled (using mallopt), freeing very large spaces will
-+ when possible, automatically trigger operations that give
-+ back unused memory to the system, thus reducing program footprint.
-+*/
-+#if __STD_C
-+void public_fREe(Void_t*);
-+#else
-+void public_fREe();
-+#endif
-+
-+/*
-+ calloc(size_t n_elements, size_t element_size);
-+ Returns a pointer to n_elements * element_size bytes, with all locations
-+ set to zero.
-+*/
-+#if __STD_C
-+Void_t* public_cALLOc(size_t, size_t);
-+#else
-+Void_t* public_cALLOc();
-+#endif
-+
-+/*
-+ realloc(Void_t* p, size_t n)
-+ Returns a pointer to a chunk of size n that contains the same data
-+ as does chunk p up to the minimum of (n, p's size) bytes, or null
-+ if no space is available.
-+
-+ The returned pointer may or may not be the same as p. The algorithm
-+ prefers extending p when possible, otherwise it employs the
-+ equivalent of a malloc-copy-free sequence.
-+
-+ If p is null, realloc is equivalent to malloc.
-+
-+ If space is not available, realloc returns null, errno is set (if on
-+ ANSI) and p is NOT freed.
-+
-+ if n is for fewer bytes than already held by p, the newly unused
-+ space is lopped off and freed if possible. Unless the #define
-+ REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
-+ zero (re)allocates a minimum-sized chunk.
-+
-+ Large chunks that were internally obtained via mmap will always
-+ be reallocated using malloc-copy-free sequences unless
-+ the system supports MREMAP (currently only linux).
-+
-+ The old unix realloc convention of allowing the last-free'd chunk
-+ to be used as an argument to realloc is not supported.
-+*/
-+#if __STD_C
-+Void_t* public_rEALLOc(Void_t*, size_t);
-+#else
-+Void_t* public_rEALLOc();
-+#endif
-+
-+/*
-+ memalign(size_t alignment, size_t n);
-+ Returns a pointer to a newly allocated chunk of n bytes, aligned
-+ in accord with the alignment argument.
-+
-+ The alignment argument should be a power of two. If the argument is
-+ not a power of two, the nearest greater power is used.
-+ 8-byte alignment is guaranteed by normal malloc calls, so don't
-+ bother calling memalign with an argument of 8 or less.
-+
-+ Overreliance on memalign is a sure way to fragment space.
-+*/
-+#if __STD_C
-+Void_t* public_mEMALIGn(size_t, size_t);
-+#else
-+Void_t* public_mEMALIGn();
-+#endif
-+
-+/*
-+ valloc(size_t n);
-+ Equivalent to memalign(pagesize, n), where pagesize is the page
-+ size of the system. If the pagesize is unknown, 4096 is used.
-+*/
-+#if __STD_C
-+Void_t* public_vALLOc(size_t);
-+#else
-+Void_t* public_vALLOc();
-+#endif
-+
-+
-+
-+/*
-+ mallopt(int parameter_number, int parameter_value)
-+ Sets tunable parameters The format is to provide a
-+ (parameter-number, parameter-value) pair. mallopt then sets the
-+ corresponding parameter to the argument value if it can (i.e., so
-+ long as the value is meaningful), and returns 1 if successful else
-+ 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
-+ normally defined in malloc.h. Only one of these (M_MXFAST) is used
-+ in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
-+ so setting them has no effect. But this malloc also supports four
-+ other options in mallopt. See below for details. Briefly, supported
-+ parameters are as follows (listed defaults are for "typical"
-+ configurations).
-+
-+ Symbol param # default allowed param values
-+ M_MXFAST 1 64 0-80 (0 disables fastbins)
-+ M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
-+ M_TOP_PAD -2 0 any
-+ M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
-+ M_MMAP_MAX -4 65536 any (0 disables use of mmap)
-+*/
-+#if __STD_C
-+int public_mALLOPt(int, int);
-+#else
-+int public_mALLOPt();
-+#endif
-+
-+
-+/*
-+ mallinfo()
-+ Returns (by copy) a struct containing various summary statistics:
-+
-+ arena: current total non-mmapped bytes allocated from system
-+ ordblks: the number of free chunks
-+ smblks: the number of fastbin blocks (i.e., small chunks that
-+ have been freed but not use resused or consolidated)
-+ hblks: current number of mmapped regions
-+ hblkhd: total bytes held in mmapped regions
-+ usmblks: the maximum total allocated space. This will be greater
-+ than current total if trimming has occurred.
-+ fsmblks: total bytes held in fastbin blocks
-+ uordblks: current total allocated space (normal or mmapped)
-+ fordblks: total free space
-+ keepcost: the maximum number of bytes that could ideally be released
-+ back to system via malloc_trim. ("ideally" means that
-+ it ignores page restrictions etc.)
-+
-+ Because these fields are ints, but internal bookkeeping may
-+ be kept as longs, the reported values may wrap around zero and
-+ thus be inaccurate.
-+*/
-+#if __STD_C
-+struct mallinfo public_mALLINFo(void);
-+#else
-+struct mallinfo public_mALLINFo();
-+#endif
-+
-+/*
-+ independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
-+
-+ independent_calloc is similar to calloc, but instead of returning a
-+ single cleared space, it returns an array of pointers to n_elements
-+ independent elements that can hold contents of size elem_size, each
-+ of which starts out cleared, and can be independently freed,
-+ realloc'ed etc. The elements are guaranteed to be adjacently
-+ allocated (this is not guaranteed to occur with multiple callocs or
-+ mallocs), which may also improve cache locality in some
-+ applications.
-+
-+ The "chunks" argument is optional (i.e., may be null, which is
-+ probably the most typical usage). If it is null, the returned array
-+ is itself dynamically allocated and should also be freed when it is
-+ no longer needed. Otherwise, the chunks array must be of at least
-+ n_elements in length. It is filled in with the pointers to the
-+ chunks.
-+
-+ In either case, independent_calloc returns this pointer array, or
-+ null if the allocation failed. If n_elements is zero and "chunks"
-+ is null, it returns a chunk representing an array with zero elements
-+ (which should be freed if not wanted).
-+
-+ Each element must be individually freed when it is no longer
-+ needed. If you'd like to instead be able to free all at once, you
-+ should instead use regular calloc and assign pointers into this
-+ space to represent elements. (In this case though, you cannot
-+ independently free elements.)
-+
-+ independent_calloc simplifies and speeds up implementations of many
-+ kinds of pools. It may also be useful when constructing large data
-+ structures that initially have a fixed number of fixed-sized nodes,
-+ but the number is not known at compile time, and some of the nodes
-+ may later need to be freed. For example:
-+
-+ struct Node { int item; struct Node* next; };
-+
-+ struct Node* build_list() {
-+ struct Node** pool;
-+ int n = read_number_of_nodes_needed();
-+ if (n <= 0) return 0;
-+ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
-+ if (pool == 0) die();
-+ // organize into a linked list...
-+ struct Node* first = pool[0];
-+ for (i = 0; i < n-1; ++i)
-+ pool[i]->next = pool[i+1];
-+ free(pool); // Can now free the array (or not, if it is needed later)
-+ return first;
-+ }
-+*/
-+#if __STD_C
-+Void_t** public_iCALLOc(size_t, size_t, Void_t**);
-+#else
-+Void_t** public_iCALLOc();
-+#endif
-+
-+/*
-+ independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
-+
-+ independent_comalloc allocates, all at once, a set of n_elements
-+ chunks with sizes indicated in the "sizes" array. It returns
-+ an array of pointers to these elements, each of which can be
-+ independently freed, realloc'ed etc. The elements are guaranteed to
-+ be adjacently allocated (this is not guaranteed to occur with
-+ multiple callocs or mallocs), which may also improve cache locality
-+ in some applications.
-+
-+ The "chunks" argument is optional (i.e., may be null). If it is null
-+ the returned array is itself dynamically allocated and should also
-+ be freed when it is no longer needed. Otherwise, the chunks array
-+ must be of at least n_elements in length. It is filled in with the
-+ pointers to the chunks.
-+
-+ In either case, independent_comalloc returns this pointer array, or
-+ null if the allocation failed. If n_elements is zero and chunks is
-+ null, it returns a chunk representing an array with zero elements
-+ (which should be freed if not wanted).
-+
-+ Each element must be individually freed when it is no longer
-+ needed. If you'd like to instead be able to free all at once, you
-+ should instead use a single regular malloc, and assign pointers at
-+ particular offsets in the aggregate space. (In this case though, you
-+ cannot independently free elements.)
-+
-+ independent_comallac differs from independent_calloc in that each
-+ element may have a different size, and also that it does not
-+ automatically clear elements.
-+
-+ independent_comalloc can be used to speed up allocation in cases
-+ where several structs or objects must always be allocated at the
-+ same time. For example:
-+
-+ struct Head { ... }
-+ struct Foot { ... }
-+
-+ void send_message(char* msg) {
-+ int msglen = strlen(msg);
-+ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
-+ void* chunks[3];
-+ if (independent_comalloc(3, sizes, chunks) == 0)
-+ die();
-+ struct Head* head = (struct Head*)(chunks[0]);
-+ char* body = (char*)(chunks[1]);
-+ struct Foot* foot = (struct Foot*)(chunks[2]);
-+ // ...
-+ }
-+
-+ In general though, independent_comalloc is worth using only for
-+ larger values of n_elements. For small values, you probably won't
-+ detect enough difference from series of malloc calls to bother.
-+
-+ Overuse of independent_comalloc can increase overall memory usage,
-+ since it cannot reuse existing noncontiguous small chunks that
-+ might be available for some of the elements.
-+*/
-+#if __STD_C
-+Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
-+#else
-+Void_t** public_iCOMALLOc();
-+#endif
-+
-+
-+/*
-+ pvalloc(size_t n);
-+ Equivalent to valloc(minimum-page-that-holds(n)), that is,
-+ round up n to nearest pagesize.
-+ */
-+#if __STD_C
-+Void_t* public_pVALLOc(size_t);
-+#else
-+Void_t* public_pVALLOc();
-+#endif
-+
-+/*
-+ cfree(Void_t* p);
-+ Equivalent to free(p).
-+
-+ cfree is needed/defined on some systems that pair it with calloc,
-+ for odd historical reasons (such as: cfree is used in example
-+ code in the first edition of K&R).
-+*/
-+#if __STD_C
-+void public_cFREe(Void_t*);
-+#else
-+void public_cFREe();
-+#endif
-+
-+/*
-+ malloc_trim(size_t pad);
-+
-+ If possible, gives memory back to the system (via negative
-+ arguments to sbrk) if there is unused memory at the `high' end of
-+ the malloc pool. You can call this after freeing large blocks of
-+ memory to potentially reduce the system-level memory requirements
-+ of a program. However, it cannot guarantee to reduce memory. Under
-+ some allocation patterns, some large free blocks of memory will be
-+ locked between two used chunks, so they cannot be given back to
-+ the system.
-+
-+ The `pad' argument to malloc_trim represents the amount of free
-+ trailing space to leave untrimmed. If this argument is zero,
-+ only the minimum amount of memory to maintain internal data
-+ structures will be left (one page or less). Non-zero arguments
-+ can be supplied to maintain enough trailing space to service
-+ future expected allocations without having to re-obtain memory
-+ from the system.
-+
-+ Malloc_trim returns 1 if it actually released any memory, else 0.
-+ On systems that do not support "negative sbrks", it will always
-+ rreturn 0.
-+*/
-+#if __STD_C
-+int public_mTRIm(size_t);
-+#else
-+int public_mTRIm();
-+#endif
-+
-+/*
-+ malloc_usable_size(Void_t* p);
-+
-+ Returns the number of bytes you can actually use in
-+ an allocated chunk, which may be more than you requested (although
-+ often not) due to alignment and minimum size constraints.
-+ You can use this many bytes without worrying about
-+ overwriting other allocated objects. This is not a particularly great
-+ programming practice. malloc_usable_size can be more useful in
-+ debugging and assertions, for example:
-+
-+ p = malloc(n);
-+ assert(malloc_usable_size(p) >= 256);
-+
-+*/
-+#if __STD_C
-+size_t public_mUSABLe(Void_t*);
-+#else
-+size_t public_mUSABLe();
-+#endif
-+
-+/*
-+ malloc_stats();
-+ Prints on stderr the amount of space obtained from the system (both
-+ via sbrk and mmap), the maximum amount (which may be more than
-+ current if malloc_trim and/or munmap got called), and the current
-+ number of bytes allocated via malloc (or realloc, etc) but not yet
-+ freed. Note that this is the number of bytes allocated, not the
-+ number requested. It will be larger than the number requested
-+ because of alignment and bookkeeping overhead. Because it includes
-+ alignment wastage as being in use, this figure may be greater than
-+ zero even when no user-level chunks are allocated.
-+
-+ The reported current and maximum system memory can be inaccurate if
-+ a program makes other calls to system memory allocation functions
-+ (normally sbrk) outside of malloc.
-+
-+ malloc_stats prints only the most commonly interesting statistics.
-+ More information can be obtained by calling mallinfo.
-+
-+*/
-+#if __STD_C
-+void public_mSTATs();
-+#else
-+void public_mSTATs();
-+#endif
-+
-+/* mallopt tuning options */
-+
-+/*
-+ M_MXFAST is the maximum request size used for "fastbins", special bins
-+ that hold returned chunks without consolidating their spaces. This
-+ enables future requests for chunks of the same size to be handled
-+ very quickly, but can increase fragmentation, and thus increase the
-+ overall memory footprint of a program.
-+
-+ This malloc manages fastbins very conservatively yet still
-+ efficiently, so fragmentation is rarely a problem for values less
-+ than or equal to the default. The maximum supported value of MXFAST
-+ is 80. You wouldn't want it any higher than this anyway. Fastbins
-+ are designed especially for use with many small structs, objects or
-+ strings -- the default handles structs/objects/arrays with sizes up
-+ to 8 4byte fields, or small strings representing words, tokens,
-+ etc. Using fastbins for larger objects normally worsens
-+ fragmentation without improving speed.
-+
-+ M_MXFAST is set in REQUEST size units. It is internally used in
-+ chunksize units, which adds padding and alignment. You can reduce
-+ M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
-+ algorithm to be a closer approximation of fifo-best-fit in all cases,
-+ not just for larger requests, but will generally cause it to be
-+ slower.
-+*/
-+
-+
-+/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
-+#ifndef M_MXFAST
-+#define M_MXFAST 1
-+#endif
-+
-+#ifndef DEFAULT_MXFAST
-+#define DEFAULT_MXFAST 64
-+#endif
-+
-+
-+/*
-+ M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
-+ to keep before releasing via malloc_trim in free().
-+
-+ Automatic trimming is mainly useful in long-lived programs.
-+ Because trimming via sbrk can be slow on some systems, and can
-+ sometimes be wasteful (in cases where programs immediately
-+ afterward allocate more large chunks) the value should be high
-+ enough so that your overall system performance would improve by
-+ releasing this much memory.
-+
-+ The trim threshold and the mmap control parameters (see below)
-+ can be traded off with one another. Trimming and mmapping are
-+ two different ways of releasing unused memory back to the
-+ system. Between these two, it is often possible to keep
-+ system-level demands of a long-lived program down to a bare
-+ minimum. For example, in one test suite of sessions measuring
-+ the XF86 X server on Linux, using a trim threshold of 128K and a
-+ mmap threshold of 192K led to near-minimal long term resource
-+ consumption.
-+
-+ If you are using this malloc in a long-lived program, it should
-+ pay to experiment with these values. As a rough guide, you
-+ might set to a value close to the average size of a process
-+ (program) running on your system. Releasing this much memory
-+ would allow such a process to run in memory. Generally, it's
-+ worth it to tune for trimming rather tham memory mapping when a
-+ program undergoes phases where several large chunks are
-+ allocated and released in ways that can reuse each other's
-+ storage, perhaps mixed with phases where there are no such
-+ chunks at all. And in well-behaved long-lived programs,
-+ controlling release of large blocks via trimming versus mapping
-+ is usually faster.
-+
-+ However, in most programs, these parameters serve mainly as
-+ protection against the system-level effects of carrying around
-+ massive amounts of unneeded memory. Since frequent calls to
-+ sbrk, mmap, and munmap otherwise degrade performance, the default
-+ parameters are set to relatively high values that serve only as
-+ safeguards.
-+
-+ The trim value It must be greater than page size to have any useful
-+ effect. To disable trimming completely, you can set to
-+ (unsigned long)(-1)
-+
-+ Trim settings interact with fastbin (MXFAST) settings: Unless
-+ TRIM_FASTBINS is defined, automatic trimming never takes place upon
-+ freeing a chunk with size less than or equal to MXFAST. Trimming is
-+ instead delayed until subsequent freeing of larger chunks. However,
-+ you can still force an attempted trim by calling malloc_trim.
-+
-+ Also, trimming is not generally possible in cases where
-+ the main arena is obtained via mmap.
-+
-+ Note that the trick some people use of mallocing a huge space and
-+ then freeing it at program startup, in an attempt to reserve system
-+ memory, doesn't have the intended effect under automatic trimming,
-+ since that memory will immediately be returned to the system.
-+*/
-+
-+#define M_TRIM_THRESHOLD -1
-+
-+#ifndef DEFAULT_TRIM_THRESHOLD
-+#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
-+#endif
-+
-+/*
-+ M_TOP_PAD is the amount of extra `padding' space to allocate or
-+ retain whenever sbrk is called. It is used in two ways internally:
-+
-+ * When sbrk is called to extend the top of the arena to satisfy
-+ a new malloc request, this much padding is added to the sbrk
-+ request.
-+
-+ * When malloc_trim is called automatically from free(),
-+ it is used as the `pad' argument.
-+
-+ In both cases, the actual amount of padding is rounded
-+ so that the end of the arena is always a system page boundary.
-+
-+ The main reason for using padding is to avoid calling sbrk so
-+ often. Having even a small pad greatly reduces the likelihood
-+ that nearly every malloc request during program start-up (or
-+ after trimming) will invoke sbrk, which needlessly wastes
-+ time.
-+
-+ Automatic rounding-up to page-size units is normally sufficient
-+ to avoid measurable overhead, so the default is 0. However, in
-+ systems where sbrk is relatively slow, it can pay to increase
-+ this value, at the expense of carrying around more memory than
-+ the program needs.
-+*/
-+
-+#define M_TOP_PAD -2
-+
-+#ifndef DEFAULT_TOP_PAD
-+#define DEFAULT_TOP_PAD (0)
-+#endif
-+
-+/*
-+ M_MMAP_THRESHOLD is the request size threshold for using mmap()
-+ to service a request. Requests of at least this size that cannot
-+ be allocated using already-existing space will be serviced via mmap.
-+ (If enough normal freed space already exists it is used instead.)
-+
-+ Using mmap segregates relatively large chunks of memory so that
-+ they can be individually obtained and released from the host
-+ system. A request serviced through mmap is never reused by any
-+ other request (at least not directly; the system may just so
-+ happen to remap successive requests to the same locations).
-+
-+ Segregating space in this way has the benefits that:
-+
-+ 1. Mmapped space can ALWAYS be individually released back
-+ to the system, which helps keep the system level memory
-+ demands of a long-lived program low.
-+ 2. Mapped memory can never become `locked' between
-+ other chunks, as can happen with normally allocated chunks, which
-+ means that even trimming via malloc_trim would not release them.
-+ 3. On some systems with "holes" in address spaces, mmap can obtain
-+ memory that sbrk cannot.
-+
-+ However, it has the disadvantages that:
-+
-+ 1. The space cannot be reclaimed, consolidated, and then
-+ used to service later requests, as happens with normal chunks.
-+ 2. It can lead to more wastage because of mmap page alignment
-+ requirements
-+ 3. It causes malloc performance to be more dependent on host
-+ system memory management support routines which may vary in
-+ implementation quality and may impose arbitrary
-+ limitations. Generally, servicing a request via normal
-+ malloc steps is faster than going through a system's mmap.
-+
-+ The advantages of mmap nearly always outweigh disadvantages for
-+ "large" chunks, but the value of "large" varies across systems. The
-+ default is an empirically derived value that works well in most
-+ systems.
-+*/
-+
-+#define M_MMAP_THRESHOLD -3
-+
-+#ifndef DEFAULT_MMAP_THRESHOLD
-+#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
-+#endif
-+
-+/*
-+ M_MMAP_MAX is the maximum number of requests to simultaneously
-+ service using mmap. This parameter exists because
-+. Some systems have a limited number of internal tables for
-+ use by mmap, and using more than a few of them may degrade
-+ performance.
-+
-+ The default is set to a value that serves only as a safeguard.
-+ Setting to 0 disables use of mmap for servicing large requests. If
-+ HAVE_MMAP is not set, the default value is 0, and attempts to set it
-+ to non-zero values in mallopt will fail.
-+*/
-+
-+#define M_MMAP_MAX -4
-+
-+#ifndef DEFAULT_MMAP_MAX
-+#if HAVE_MMAP
-+#define DEFAULT_MMAP_MAX (65536)
-+#else
-+#define DEFAULT_MMAP_MAX (0)
-+#endif
-+#endif
-+
-+#ifdef __cplusplus
-+}; /* end of extern "C" */
-+#endif
-+
-+/*
-+ ========================================================================
-+ To make a fully customizable malloc.h header file, cut everything
-+ above this line, put into file malloc.h, edit to suit, and #include it
-+ on the next line, as well as in programs that use this malloc.
-+ ========================================================================
-+*/
-+
-+/* #include "malloc.h" */
-+
-+/* --------------------- public wrappers ---------------------- */
-+
-+#ifdef USE_PUBLIC_MALLOC_WRAPPERS
-+
-+/* Declare all routines as internal */
-+#if __STD_C
-+static Void_t* mALLOc(size_t);
-+static void fREe(Void_t*);
-+static Void_t* rEALLOc(Void_t*, size_t);
-+static Void_t* mEMALIGn(size_t, size_t);
-+static Void_t* vALLOc(size_t);
-+static Void_t* pVALLOc(size_t);
-+static Void_t* cALLOc(size_t, size_t);
-+static Void_t** iCALLOc(size_t, size_t, Void_t**);
-+static Void_t** iCOMALLOc(size_t, size_t*, Void_t**);
-+static void cFREe(Void_t*);
-+static int mTRIm(size_t);
-+static size_t mUSABLe(Void_t*);
-+static void mSTATs();
-+static int mALLOPt(int, int);
-+static struct mallinfo mALLINFo(void);
-+#else
-+static Void_t* mALLOc();
-+static void fREe();
-+static Void_t* rEALLOc();
-+static Void_t* mEMALIGn();
-+static Void_t* vALLOc();
-+static Void_t* pVALLOc();
-+static Void_t* cALLOc();
-+static Void_t** iCALLOc();
-+static Void_t** iCOMALLOc();
-+static void cFREe();
-+static int mTRIm();
-+static size_t mUSABLe();
-+static void mSTATs();
-+static int mALLOPt();
-+static struct mallinfo mALLINFo();
-+#endif
-+
-+/*
-+ MALLOC_PREACTION and MALLOC_POSTACTION should be
-+ defined to return 0 on success, and nonzero on failure.
-+ The return value of MALLOC_POSTACTION is currently ignored
-+ in wrapper functions since there is no reasonable default
-+ action to take on failure.
-+*/
-+
-+
-+#ifdef USE_MALLOC_LOCK
-+
-+#ifdef WIN32
-+
-+static int mALLOC_MUTEx;
-+#define MALLOC_PREACTION slwait(&mALLOC_MUTEx)
-+#define MALLOC_POSTACTION slrelease(&mALLOC_MUTEx)
-+
-+#else
-+
-+#if 0
-+#include <pthread.h>
-+
-+static pthread_mutex_t mALLOC_MUTEx = PTHREAD_MUTEX_INITIALIZER;
-+
-+#define MALLOC_PREACTION pthread_mutex_lock(&mALLOC_MUTEx)
-+#define MALLOC_POSTACTION pthread_mutex_unlock(&mALLOC_MUTEx)
-+
-+#else
-+
-+#ifdef KDE_MALLOC_X86
-+#include "x86.h"
-+#elif defined(KDE_MALLOC_AVR32)
-+
-+#include <sched.h>
-+#include <time.h>
-+
-+static __inline__ int q_atomic_swp(volatile unsigned int *ptr,
-+ unsigned int newval)
-+{
-+ register int ret;
-+ asm volatile("xchg %0,%1,%2"
-+ : "=&r"(ret)
-+ : "r"(ptr), "r"(newval)
-+ : "memory", "cc");
-+ return ret;
-+}
-+
-+typedef struct {
-+ volatile unsigned int lock;
-+ int pad0_;
-+} mutex_t;
-+
-+#define MUTEX_INITIALIZER { 0, 0 }
-+
-+static __inline__ int lock(mutex_t *m) {
-+ int cnt = 0;
-+ struct timespec tm;
-+
-+ for(;;) {
-+ if (q_atomic_swp(&m->lock, 1) == 0)
-+ return 0;
-+#ifdef _POSIX_PRIORITY_SCHEDULING
-+ if(cnt < 50) {
-+ sched_yield();
-+ cnt++;
-+ } else
-+#endif
-+ {
-+ tm.tv_sec = 0;
-+ tm.tv_nsec = 2000001;
-+ nanosleep(&tm, NULL);
-+ cnt = 0;
-+ }
-+ }
-+}
-+
-+static __inline__ int unlock(mutex_t *m) {
-+ m->lock = 0;
-+ return 0;
-+}
-+
-+#else
-+#error Unknown spinlock implementation
-+#endif
-+
-+static mutex_t spinlock = MUTEX_INITIALIZER;
-+
-+#define MALLOC_PREACTION lock( &spinlock )
-+#define MALLOC_POSTACTION unlock( &spinlock )
-+
-+#endif
-+
-+#endif /* USE_MALLOC_LOCK */
-+
-+#else
-+
-+/* Substitute anything you like for these */
-+
-+#define MALLOC_PREACTION (0)
-+#define MALLOC_POSTACTION (0)
-+
-+#endif
-+
-+#if 0
-+Void_t* public_mALLOc(size_t bytes) {
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = mALLOc(bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+void public_fREe(Void_t* m) {
-+ if (MALLOC_PREACTION != 0) {
-+ return;
-+ }
-+ fREe(m);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+}
-+
-+Void_t* public_rEALLOc(Void_t* m, size_t bytes) {
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = rEALLOc(m, bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+Void_t* public_mEMALIGn(size_t alignment, size_t bytes) {
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = mEMALIGn(alignment, bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+Void_t* public_vALLOc(size_t bytes) {
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = vALLOc(bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+Void_t* public_pVALLOc(size_t bytes) {
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = pVALLOc(bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+Void_t* public_cALLOc(size_t n, size_t elem_size) {
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = cALLOc(n, elem_size);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+
-+Void_t** public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks) {
-+ Void_t** m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = iCALLOc(n, elem_size, chunks);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+Void_t** public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks) {
-+ Void_t** m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = iCOMALLOc(n, sizes, chunks);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+void public_cFREe(Void_t* m) {
-+ if (MALLOC_PREACTION != 0) {
-+ return;
-+ }
-+ cFREe(m);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+}
-+
-+int public_mTRIm(size_t s) {
-+ int result;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ result = mTRIm(s);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return result;
-+}
-+
-+size_t public_mUSABLe(Void_t* m) {
-+ size_t result;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ result = mUSABLe(m);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return result;
-+}
-+
-+void public_mSTATs() {
-+ if (MALLOC_PREACTION != 0) {
-+ return;
-+ }
-+ mSTATs();
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+}
-+
-+struct mallinfo public_mALLINFo() {
-+ struct mallinfo m;
-+ if (MALLOC_PREACTION != 0) {
-+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
-+ return nm;
-+ }
-+ m = mALLINFo();
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+}
-+
-+int public_mALLOPt(int p, int v) {
-+ int result;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ result = mALLOPt(p, v);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return result;
-+}
-+#endif
-+
-+#endif
-+
-+
-+
-+/* ------------- Optional versions of memcopy ---------------- */
-+
-+
-+#if USE_MEMCPY
-+
-+/*
-+ Note: memcpy is ONLY invoked with non-overlapping regions,
-+ so the (usually slower) memmove is not needed.
-+*/
-+
-+#define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
-+#define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
-+
-+#else /* !USE_MEMCPY */
-+
-+/* Use Duff's device for good zeroing/copying performance. */
-+
-+#define MALLOC_ZERO(charp, nbytes) \
-+do { \
-+ INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
-+ unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
-+ long mcn; \
-+ if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
-+ switch (mctmp) { \
-+ case 0: for(;;) { *mzp++ = 0; \
-+ case 7: *mzp++ = 0; \
-+ case 6: *mzp++ = 0; \
-+ case 5: *mzp++ = 0; \
-+ case 4: *mzp++ = 0; \
-+ case 3: *mzp++ = 0; \
-+ case 2: *mzp++ = 0; \
-+ case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
-+ } \
-+} while(0)
-+
-+#define MALLOC_COPY(dest,src,nbytes) \
-+do { \
-+ INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
-+ INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
-+ unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
-+ long mcn; \
-+ if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
-+ switch (mctmp) { \
-+ case 0: for(;;) { *mcdst++ = *mcsrc++; \
-+ case 7: *mcdst++ = *mcsrc++; \
-+ case 6: *mcdst++ = *mcsrc++; \
-+ case 5: *mcdst++ = *mcsrc++; \
-+ case 4: *mcdst++ = *mcsrc++; \
-+ case 3: *mcdst++ = *mcsrc++; \
-+ case 2: *mcdst++ = *mcsrc++; \
-+ case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
-+ } \
-+} while(0)
-+
-+#endif
-+
-+/* ------------------ MMAP support ------------------ */
-+
-+
-+#if HAVE_MMAP
-+
-+#include <fcntl.h>
-+#ifndef LACKS_SYS_MMAN_H
-+#include <sys/mman.h>
-+#endif
-+
-+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-+#define MAP_ANONYMOUS MAP_ANON
-+#endif
-+
-+/*
-+ Nearly all versions of mmap support MAP_ANONYMOUS,
-+ so the following is unlikely to be needed, but is
-+ supplied just in case.
-+*/
-+
-+#ifndef MAP_ANONYMOUS
-+
-+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
-+
-+#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
-+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
-+ mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
-+ mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
-+
-+#else
-+
-+#define MMAP(addr, size, prot, flags) \
-+ (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
-+
-+#endif
-+
-+
-+#endif /* HAVE_MMAP */
-+
-+
-+/*
-+ ----------------------- Chunk representations -----------------------
-+*/
-+
-+
-+/*
-+ This struct declaration is misleading (but accurate and necessary).
-+ It declares a "view" into memory allowing access to necessary
-+ fields at known offsets from a given base. See explanation below.
-+*/
-+
-+struct malloc_chunk {
-+
-+ INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
-+ INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
-+
-+ struct malloc_chunk* fd; /* double links -- used only if free. */
-+ struct malloc_chunk* bk;
-+};
-+
-+
-+typedef struct malloc_chunk* mchunkptr;
-+
-+/*
-+ malloc_chunk details:
-+
-+ (The following includes lightly edited explanations by Colin Plumb.)
-+
-+ Chunks of memory are maintained using a `boundary tag' method as
-+ described in e.g., Knuth or Standish. (See the paper by Paul
-+ Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
-+ survey of such techniques.) Sizes of free chunks are stored both
-+ in the front of each chunk and at the end. This makes
-+ consolidating fragmented chunks into bigger chunks very fast. The
-+ size fields also hold bits representing whether chunks are free or
-+ in use.
-+
-+ An allocated chunk looks like this:
-+
-+
-+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Size of previous chunk, if allocated | |
-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Size of chunk, in bytes |P|
-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | User data starts here... .
-+ . .
-+ . (malloc_usable_space() bytes) .
-+ . |
-+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Size of chunk |
-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+
-+
-+ Where "chunk" is the front of the chunk for the purpose of most of
-+ the malloc code, but "mem" is the pointer that is returned to the
-+ user. "Nextchunk" is the beginning of the next contiguous chunk.
-+
-+ Chunks always begin on even word boundaries, so the mem portion
-+ (which is returned to the user) is also on an even word boundary, and
-+ thus at least double-word aligned.
-+
-+ Free chunks are stored in circular doubly-linked lists, and look like this:
-+
-+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Size of previous chunk |
-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ `head:' | Size of chunk, in bytes |P|
-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Forward pointer to next chunk in list |
-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Back pointer to previous chunk in list |
-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ | Unused space (may be 0 bytes long) .
-+ . .
-+ . |
-+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+ `foot:' | Size of chunk, in bytes |
-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-+
-+ The P (PREV_INUSE) bit, stored in the unused low-order bit of the
-+ chunk size (which is always a multiple of two words), is an in-use
-+ bit for the *previous* chunk. If that bit is *clear*, then the
-+ word before the current chunk size contains the previous chunk
-+ size, and can be used to find the front of the previous chunk.
-+ The very first chunk allocated always has this bit set,
-+ preventing access to non-existent (or non-owned) memory. If
-+ prev_inuse is set for any given chunk, then you CANNOT determine
-+ the size of the previous chunk, and might even get a memory
-+ addressing fault when trying to do so.
-+
-+ Note that the `foot' of the current chunk is actually represented
-+ as the prev_size of the NEXT chunk. This makes it easier to
-+ deal with alignments etc but can be very confusing when trying
-+ to extend or adapt this code.
-+
-+ The two exceptions to all this are
-+
-+ 1. The special chunk `top' doesn't bother using the
-+ trailing size field since there is no next contiguous chunk
-+ that would have to index off it. After initialization, `top'
-+ is forced to always exist. If it would become less than
-+ MINSIZE bytes long, it is replenished.
-+
-+ 2. Chunks allocated via mmap, which have the second-lowest-order
-+ bit (IS_MMAPPED) set in their size fields. Because they are
-+ allocated one-by-one, each must contain its own trailing size field.
-+
-+*/
-+
-+/*
-+ ---------- Size and alignment checks and conversions ----------
-+*/
-+
-+/* conversion from malloc headers to user pointers, and back */
-+
-+#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
-+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
-+
-+/* The smallest possible chunk */
-+#define MIN_CHUNK_SIZE (sizeof(struct malloc_chunk))
-+
-+/* The smallest size we can malloc is an aligned minimal chunk */
-+
-+#define MINSIZE \
-+ (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
-+
-+/* Check if m has acceptable alignment */
-+
-+#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
-+
-+
-+/*
-+ Check if a request is so large that it would wrap around zero when
-+ padded and aligned. To simplify some other code, the bound is made
-+ low enough so that adding MINSIZE will also not wrap around zero.
-+*/
-+
-+#define REQUEST_OUT_OF_RANGE(req) \
-+ ((unsigned long)(req) >= \
-+ (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
-+
-+/* pad request bytes into a usable size -- internal version */
-+
-+#define request2size(req) \
-+ (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
-+ MINSIZE : \
-+ ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
-+
-+/* Same, except also perform argument check */
-+
-+#define checked_request2size(req, sz) \
-+ if (REQUEST_OUT_OF_RANGE(req)) { \
-+ MALLOC_FAILURE_ACTION; \
-+ return 0; \
-+ } \
-+ (sz) = request2size(req);
-+
-+/*
-+ --------------- Physical chunk operations ---------------
-+*/
-+
-+
-+/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
-+#define PREV_INUSE 0x1
-+
-+/* extract inuse bit of previous chunk */
-+#define prev_inuse(p) ((p)->size & PREV_INUSE)
-+
-+
-+/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
-+#define IS_MMAPPED 0x2
-+
-+/* check for mmap()'ed chunk */
-+#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
-+
-+/*
-+ Bits to mask off when extracting size
-+
-+ Note: IS_MMAPPED is intentionally not masked off from size field in
-+ macros for which mmapped chunks should never be seen. This should
-+ cause helpful core dumps to occur if it is tried by accident by
-+ people extending or adapting this malloc.
-+*/
-+#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
-+
-+/* Get size, ignoring use bits */
-+#define chunksize(p) ((p)->size & ~(SIZE_BITS))
-+
-+
-+/* Ptr to next physical malloc_chunk. */
-+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
-+
-+/* Ptr to previous physical malloc_chunk */
-+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
-+
-+/* Treat space at ptr + offset as a chunk */
-+#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
-+
-+/* extract p's inuse bit */
-+#define inuse(p)\
-+((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
-+
-+/* set/clear chunk as being inuse without otherwise disturbing */
-+#define set_inuse(p)\
-+((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
-+
-+#define clear_inuse(p)\
-+((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
-+
-+
-+/* check/set/clear inuse bits in known places */
-+#define inuse_bit_at_offset(p, s)\
-+ (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
-+
-+#define set_inuse_bit_at_offset(p, s)\
-+ (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
-+
-+#define clear_inuse_bit_at_offset(p, s)\
-+ (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
-+
-+
-+/* Set size at head, without disturbing its use bit */
-+#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
-+
-+/* Set size/use field */
-+#define set_head(p, s) ((p)->size = (s))
-+
-+/* Set size at footer (only when chunk is not in use) */
-+#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
-+
-+
-+/*
-+ -------------------- Internal data structures --------------------
-+
-+ All internal state is held in an instance of malloc_state defined
-+ below. There are no other static variables, except in two optional
-+ cases:
-+ * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
-+ * If HAVE_MMAP is true, but mmap doesn't support
-+ MAP_ANONYMOUS, a dummy file descriptor for mmap.
-+
-+ Beware of lots of tricks that minimize the total bookkeeping space
-+ requirements. The result is a little over 1K bytes (for 4byte
-+ pointers and size_t.)
-+*/
-+
-+/*
-+ Bins
-+
-+ An array of bin headers for free chunks. Each bin is doubly
-+ linked. The bins are approximately proportionally (log) spaced.
-+ There are a lot of these bins (128). This may look excessive, but
-+ works very well in practice. Most bins hold sizes that are
-+ unusual as malloc request sizes, but are more usual for fragments
-+ and consolidated sets of chunks, which is what these bins hold, so
-+ they can be found quickly. All procedures maintain the invariant
-+ that no consolidated chunk physically borders another one, so each
-+ chunk in a list is known to be preceded and followed by either
-+ inuse chunks or the ends of memory.
-+
-+ Chunks in bins are kept in size order, with ties going to the
-+ approximately least recently used chunk. Ordering isn't needed
-+ for the small bins, which all contain the same-sized chunks, but
-+ facilitates best-fit allocation for larger chunks. These lists
-+ are just sequential. Keeping them in order almost never requires
-+ enough traversal to warrant using fancier ordered data
-+ structures.
-+
-+ Chunks of the same size are linked with the most
-+ recently freed at the front, and allocations are taken from the
-+ back. This results in LRU (FIFO) allocation order, which tends
-+ to give each chunk an equal opportunity to be consolidated with
-+ adjacent freed chunks, resulting in larger free chunks and less
-+ fragmentation.
-+
-+ To simplify use in double-linked lists, each bin header acts
-+ as a malloc_chunk. This avoids special-casing for headers.
-+ But to conserve space and improve locality, we allocate
-+ only the fd/bk pointers of bins, and then use repositioning tricks
-+ to treat these as the fields of a malloc_chunk*.
-+*/
-+
-+typedef struct malloc_chunk* mbinptr;
-+
-+/* addressing -- note that bin_at(0) does not exist */
-+#define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
-+
-+/* analog of ++bin */
-+#define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
-+
-+/* Reminders about list directionality within bins */
-+#define first(b) ((b)->fd)
-+#define last(b) ((b)->bk)
-+
-+/* Take a chunk off a bin list */
-+#define unlink(P, BK, FD) { \
-+ FD = P->fd; \
-+ BK = P->bk; \
-+ FD->bk = BK; \
-+ BK->fd = FD; \
-+}
-+
-+/*
-+ Indexing
-+
-+ Bins for sizes < 512 bytes contain chunks of all the same size, spaced
-+ 8 bytes apart. Larger bins are approximately logarithmically spaced:
-+
-+ 64 bins of size 8
-+ 32 bins of size 64
-+ 16 bins of size 512
-+ 8 bins of size 4096
-+ 4 bins of size 32768
-+ 2 bins of size 262144
-+ 1 bin of size what's left
-+
-+ There is actually a little bit of slop in the numbers in bin_index
-+ for the sake of speed. This makes no difference elsewhere.
-+
-+ The bins top out around 1MB because we expect to service large
-+ requests via mmap.
-+*/
-+
-+#define NBINS 128
-+#define NSMALLBINS 64
-+#define SMALLBIN_WIDTH 8
-+#define MIN_LARGE_SIZE 512
-+
-+#define in_smallbin_range(sz) \
-+ ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
-+
-+#define smallbin_index(sz) (((unsigned)(sz)) >> 3)
-+
-+#define largebin_index(sz) \
-+(((((unsigned long)(sz)) >> 6) <= 32)? 56 + (((unsigned long)(sz)) >> 6): \
-+ ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
-+ ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
-+ ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
-+ ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
-+ 126)
-+
-+#define bin_index(sz) \
-+ ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
-+
-+
-+/*
-+ Unsorted chunks
-+
-+ All remainders from chunk splits, as well as all returned chunks,
-+ are first placed in the "unsorted" bin. They are then placed
-+ in regular bins after malloc gives them ONE chance to be used before
-+ binning. So, basically, the unsorted_chunks list acts as a queue,
-+ with chunks being placed on it in free (and malloc_consolidate),
-+ and taken off (to be either used or placed in bins) in malloc.
-+*/
-+
-+/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
-+#define unsorted_chunks(M) (bin_at(M, 1))
-+
-+/*
-+ Top
-+
-+ The top-most available chunk (i.e., the one bordering the end of
-+ available memory) is treated specially. It is never included in
-+ any bin, is used only if no other chunk is available, and is
-+ released back to the system if it is very large (see
-+ M_TRIM_THRESHOLD). Because top initially
-+ points to its own bin with initial zero size, thus forcing
-+ extension on the first malloc request, we avoid having any special
-+ code in malloc to check whether it even exists yet. But we still
-+ need to do so when getting memory from system, so we make
-+ initial_top treat the bin as a legal but unusable chunk during the
-+ interval between initialization and the first call to
-+ sYSMALLOc. (This is somewhat delicate, since it relies on
-+ the 2 preceding words to be zero during this interval as well.)
-+*/
-+
-+/* Conveniently, the unsorted bin can be used as dummy top on first call */
-+#define initial_top(M) (unsorted_chunks(M))
-+
-+/*
-+ Binmap
-+
-+ To help compensate for the large number of bins, a one-level index
-+ structure is used for bin-by-bin searching. `binmap' is a
-+ bitvector recording whether bins are definitely empty so they can
-+ be skipped over during during traversals. The bits are NOT always
-+ cleared as soon as bins are empty, but instead only
-+ when they are noticed to be empty during traversal in malloc.
-+*/
-+
-+/* Conservatively use 32 bits per map word, even if on 64bit system */
-+#define BINMAPSHIFT 5
-+#define BITSPERMAP (1U << BINMAPSHIFT)
-+#define BINMAPSIZE (NBINS / BITSPERMAP)
-+
-+#define idx2block(i) ((i) >> BINMAPSHIFT)
-+#define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
-+
-+#define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
-+#define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
-+#define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
-+
-+/*
-+ Fastbins
-+
-+ An array of lists holding recently freed small chunks. Fastbins
-+ are not doubly linked. It is faster to single-link them, and
-+ since chunks are never removed from the middles of these lists,
-+ double linking is not necessary. Also, unlike regular bins, they
-+ are not even processed in FIFO order (they use faster LIFO) since
-+ ordering doesn't much matter in the transient contexts in which
-+ fastbins are normally used.
-+
-+ Chunks in fastbins keep their inuse bit set, so they cannot
-+ be consolidated with other free chunks. malloc_consolidate
-+ releases all chunks in fastbins and consolidates them with
-+ other free chunks.
-+*/
-+
-+typedef struct malloc_chunk* mfastbinptr;
-+
-+/* offset 2 to use otherwise unindexable first 2 bins */
-+#define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2)
-+
-+/* The maximum fastbin request size we support */
-+#define MAX_FAST_SIZE 80
-+
-+#define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
-+
-+/*
-+ FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
-+ that triggers automatic consolidation of possibly-surrounding
-+ fastbin chunks. This is a heuristic, so the exact value should not
-+ matter too much. It is defined at half the default trim threshold as a
-+ compromise heuristic to only attempt consolidation if it is likely
-+ to lead to trimming. However, it is not dynamically tunable, since
-+ consolidation reduces fragmentation surrounding loarge chunks even
-+ if trimming is not used.
-+*/
-+
-+#define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
-+
-+/*
-+ Since the lowest 2 bits in max_fast don't matter in size comparisons,
-+ they are used as flags.
-+*/
-+
-+/*
-+ FASTCHUNKS_BIT held in max_fast indicates that there are probably
-+ some fastbin chunks. It is set true on entering a chunk into any
-+ fastbin, and cleared only in malloc_consolidate.
-+
-+ The truth value is inverted so that have_fastchunks will be true
-+ upon startup (since statics are zero-filled), simplifying
-+ initialization checks.
-+*/
-+
-+#define FASTCHUNKS_BIT (1U)
-+
-+#define have_fastchunks(M) (((M)->max_fast & FASTCHUNKS_BIT) == 0)
-+#define clear_fastchunks(M) ((M)->max_fast |= FASTCHUNKS_BIT)
-+#define set_fastchunks(M) ((M)->max_fast &= ~FASTCHUNKS_BIT)
-+
-+/*
-+ NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
-+ regions. Otherwise, contiguity is exploited in merging together,
-+ when possible, results from consecutive MORECORE calls.
-+
-+ The initial value comes from MORECORE_CONTIGUOUS, but is
-+ changed dynamically if mmap is ever used as an sbrk substitute.
-+*/
-+
-+#define NONCONTIGUOUS_BIT (2U)
-+
-+#define contiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) == 0)
-+#define noncontiguous(M) (((M)->max_fast & NONCONTIGUOUS_BIT) != 0)
-+#define set_noncontiguous(M) ((M)->max_fast |= NONCONTIGUOUS_BIT)
-+#define set_contiguous(M) ((M)->max_fast &= ~NONCONTIGUOUS_BIT)
-+
-+/*
-+ Set value of max_fast.
-+ Use impossibly small value if 0.
-+ Precondition: there are no existing fastbin chunks.
-+ Setting the value clears fastchunk bit but preserves noncontiguous bit.
-+*/
-+
-+#define set_max_fast(M, s) \
-+ (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \
-+ FASTCHUNKS_BIT | \
-+ ((M)->max_fast & NONCONTIGUOUS_BIT)
-+
-+
-+/*
-+ ----------- Internal state representation and initialization -----------
-+*/
-+
-+struct malloc_state {
-+
-+ /* The maximum chunk size to be eligible for fastbin */
-+ INTERNAL_SIZE_T max_fast; /* low 2 bits used as flags */
-+
-+ /* Fastbins */
-+ mfastbinptr fastbins[NFASTBINS];
-+
-+ /* Base of the topmost chunk -- not otherwise kept in a bin */
-+ mchunkptr top;
-+
-+ /* The remainder from the most recent split of a small request */
-+ mchunkptr last_remainder;
-+
-+ /* Normal bins packed as described above */
-+ mchunkptr bins[NBINS * 2];
-+
-+ /* Bitmap of bins */
-+ unsigned int binmap[BINMAPSIZE];
-+
-+ /* Tunable parameters */
-+ unsigned long trim_threshold;
-+ INTERNAL_SIZE_T top_pad;
-+ INTERNAL_SIZE_T mmap_threshold;
-+
-+ /* Memory map support */
-+ int n_mmaps;
-+ int n_mmaps_max;
-+ int max_n_mmaps;
-+
-+ /* Cache malloc_getpagesize */
-+ unsigned int pagesize;
-+
-+ /* Statistics */
-+ INTERNAL_SIZE_T mmapped_mem;
-+ INTERNAL_SIZE_T sbrked_mem;
-+ INTERNAL_SIZE_T max_sbrked_mem;
-+ INTERNAL_SIZE_T max_mmapped_mem;
-+ INTERNAL_SIZE_T max_total_mem;
-+};
-+
-+typedef struct malloc_state *mstate;
-+
-+/*
-+ There is exactly one instance of this struct in this malloc.
-+ If you are adapting this malloc in a way that does NOT use a static
-+ malloc_state, you MUST explicitly zero-fill it before using. This
-+ malloc relies on the property that malloc_state is initialized to
-+ all zeroes (as is true of C statics).
-+*/
-+
-+static struct malloc_state av_; /* never directly referenced */
-+
-+/*
-+ All uses of av_ are via get_malloc_state().
-+ At most one "call" to get_malloc_state is made per invocation of
-+ the public versions of malloc and free, but other routines
-+ that in turn invoke malloc and/or free may call more then once.
-+ Also, it is called in check* routines if DEBUG is set.
-+*/
-+
-+#define get_malloc_state() (&(av_))
-+
-+/*
-+ Initialize a malloc_state struct.
-+
-+ This is called only from within malloc_consolidate, which needs
-+ be called in the same contexts anyway. It is never called directly
-+ outside of malloc_consolidate because some optimizing compilers try
-+ to inline it at all call points, which turns out not to be an
-+ optimization at all. (Inlining it in malloc_consolidate is fine though.)
-+*/
-+
-+#if __STD_C
-+static void malloc_init_state(mstate av)
-+#else
-+static void malloc_init_state(av) mstate av;
-+#endif
-+{
-+ int i;
-+ mbinptr bin;
-+
-+ /* Establish circular links for normal bins */
-+ for (i = 1; i < NBINS; ++i) {
-+ bin = bin_at(av,i);
-+ bin->fd = bin->bk = bin;
-+ }
-+
-+ av->top_pad = DEFAULT_TOP_PAD;
-+ av->n_mmaps_max = DEFAULT_MMAP_MAX;
-+ av->mmap_threshold = DEFAULT_MMAP_THRESHOLD;
-+ av->trim_threshold = DEFAULT_TRIM_THRESHOLD;
-+
-+#if !MORECORE_CONTIGUOUS
-+ set_noncontiguous(av);
-+#endif
-+
-+ set_max_fast(av, DEFAULT_MXFAST);
-+
-+ av->top = initial_top(av);
-+ av->pagesize = malloc_getpagesize;
-+}
-+
-+/*
-+ Other internal utilities operating on mstates
-+*/
-+
-+#if __STD_C
-+static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
-+static int sYSTRIm(size_t, mstate);
-+static void malloc_consolidate(mstate);
-+static Void_t** iALLOc(size_t, size_t*, int, Void_t**);
-+#else
-+static Void_t* sYSMALLOc();
-+static int sYSTRIm();
-+static void malloc_consolidate();
-+static Void_t** iALLOc();
-+#endif
-+
-+/*
-+ Debugging support
-+
-+ These routines make a number of assertions about the states
-+ of data structures that should be true at all times. If any
-+ are not true, it's very likely that a user program has somehow
-+ trashed memory. (It's also possible that there is a coding error
-+ in malloc. In which case, please report it!)
-+*/
-+
-+#ifndef DEBUG
-+
-+#define check_chunk(P)
-+#define check_free_chunk(P)
-+#define check_inuse_chunk(P)
-+#define check_remalloced_chunk(P,N)
-+#define check_malloced_chunk(P,N)
-+#define check_malloc_state()
-+
-+#else
-+#define check_chunk(P) do_check_chunk(P)
-+#define check_free_chunk(P) do_check_free_chunk(P)
-+#define check_inuse_chunk(P) do_check_inuse_chunk(P)
-+#define check_remalloced_chunk(P,N) do_check_remalloced_chunk(P,N)
-+#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
-+#define check_malloc_state() do_check_malloc_state()
-+
-+/*
-+ Properties of all chunks
-+*/
-+
-+INLINE
-+#if __STD_C
-+static void do_check_chunk(mchunkptr p)
-+#else
-+static void do_check_chunk(p) mchunkptr p;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+ unsigned long sz = chunksize(p);
-+ /* min and max possible addresses assuming contiguous allocation */
-+ char* max_address = (char*)(av->top) + chunksize(av->top);
-+ char* min_address = max_address - av->sbrked_mem;
-+
-+ if (!chunk_is_mmapped(p)) {
-+
-+ /* Has legal address ... */
-+ if (p != av->top) {
-+ if (contiguous(av)) {
-+ assert(((char*)p) >= min_address);
-+ assert(((char*)p + sz) <= ((char*)(av->top)));
-+ }
-+ }
-+ else {
-+ /* top size is always at least MINSIZE */
-+ assert((unsigned long)(sz) >= MINSIZE);
-+ /* top predecessor always marked inuse */
-+ assert(prev_inuse(p));
-+ }
-+
-+ }
-+ else {
-+#if HAVE_MMAP
-+ /* address is outside main heap */
-+ if (contiguous(av) && av->top != initial_top(av)) {
-+ assert(((char*)p) < min_address || ((char*)p) > max_address);
-+ }
-+ /* chunk is page-aligned */
-+ assert(((p->prev_size + sz) & (av->pagesize-1)) == 0);
-+ /* mem is aligned */
-+ assert(aligned_OK(chunk2mem(p)));
-+#else
-+ /* force an appropriate assert violation if debug set */
-+ assert(!chunk_is_mmapped(p));
-+#endif
-+ }
-+}
-+
-+/*
-+ Properties of free chunks
-+*/
-+
-+INLINE
-+#if __STD_C
-+static void do_check_free_chunk(mchunkptr p)
-+#else
-+static void do_check_free_chunk(p) mchunkptr p;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+
-+ INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
-+ mchunkptr next = chunk_at_offset(p, sz);
-+
-+ do_check_chunk(p);
-+
-+ /* Chunk must claim to be free ... */
-+ assert(!inuse(p));
-+ assert (!chunk_is_mmapped(p));
-+
-+ /* Unless a special marker, must have OK fields */
-+ if ((unsigned long)(sz) >= MINSIZE)
-+ {
-+ assert((sz & MALLOC_ALIGN_MASK) == 0);
-+ assert(aligned_OK(chunk2mem(p)));
-+ /* ... matching footer field */
-+ assert(next->prev_size == sz);
-+ /* ... and is fully consolidated */
-+ assert(prev_inuse(p));
-+ assert (next == av->top || inuse(next));
-+
-+ /* ... and has minimally sane links */
-+ assert(p->fd->bk == p);
-+ assert(p->bk->fd == p);
-+ }
-+ else /* markers are always of size SIZE_SZ */
-+ assert(sz == SIZE_SZ);
-+}
-+
-+/*
-+ Properties of inuse chunks
-+*/
-+
-+INLINE
-+#if __STD_C
-+static void do_check_inuse_chunk(mchunkptr p)
-+#else
-+static void do_check_inuse_chunk(p) mchunkptr p;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+ mchunkptr next;
-+ do_check_chunk(p);
-+
-+ if (chunk_is_mmapped(p))
-+ return; /* mmapped chunks have no next/prev */
-+
-+ /* Check whether it claims to be in use ... */
-+ assert(inuse(p));
-+
-+ next = next_chunk(p);
-+
-+ /* ... and is surrounded by OK chunks.
-+ Since more things can be checked with free chunks than inuse ones,
-+ if an inuse chunk borders them and debug is on, it's worth doing them.
-+ */
-+ if (!prev_inuse(p)) {
-+ /* Note that we cannot even look at prev unless it is not inuse */
-+ mchunkptr prv = prev_chunk(p);
-+ assert(next_chunk(prv) == p);
-+ do_check_free_chunk(prv);
-+ }
-+
-+ if (next == av->top) {
-+ assert(prev_inuse(next));
-+ assert(chunksize(next) >= MINSIZE);
-+ }
-+ else if (!inuse(next))
-+ do_check_free_chunk(next);
-+}
-+
-+/*
-+ Properties of chunks recycled from fastbins
-+*/
-+
-+INLINE
-+#if __STD_C
-+static void do_check_remalloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
-+#else
-+static void do_check_remalloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
-+#endif
-+{
-+ INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
-+
-+ do_check_inuse_chunk(p);
-+
-+ /* Legal size ... */
-+ assert((sz & MALLOC_ALIGN_MASK) == 0);
-+ assert((unsigned long)(sz) >= MINSIZE);
-+ /* ... and alignment */
-+ assert(aligned_OK(chunk2mem(p)));
-+ /* chunk is less than MINSIZE more than request */
-+ assert((long)(sz) - (long)(s) >= 0);
-+ assert((long)(sz) - (long)(s + MINSIZE) < 0);
-+}
-+
-+/*
-+ Properties of nonrecycled chunks at the point they are malloced
-+*/
-+
-+INLINE
-+#if __STD_C
-+static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
-+#else
-+static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
-+#endif
-+{
-+ /* same as recycled case ... */
-+ do_check_remalloced_chunk(p, s);
-+
-+ /*
-+ ... plus, must obey implementation invariant that prev_inuse is
-+ always true of any allocated chunk; i.e., that each allocated
-+ chunk borders either a previously allocated and still in-use
-+ chunk, or the base of its memory arena. This is ensured
-+ by making all allocations from the the `lowest' part of any found
-+ chunk. This does not necessarily hold however for chunks
-+ recycled via fastbins.
-+ */
-+
-+ assert(prev_inuse(p));
-+}
-+
-+
-+/*
-+ Properties of malloc_state.
-+
-+ This may be useful for debugging malloc, as well as detecting user
-+ programmer errors that somehow write into malloc_state.
-+
-+ If you are extending or experimenting with this malloc, you can
-+ probably figure out how to hack this routine to print out or
-+ display chunk addresses, sizes, bins, and other instrumentation.
-+*/
-+
-+static void do_check_malloc_state()
-+{
-+ mstate av = get_malloc_state();
-+ int i;
-+ mchunkptr p;
-+ mchunkptr q;
-+ mbinptr b;
-+ unsigned int binbit;
-+ int empty;
-+ unsigned int idx;
-+ INTERNAL_SIZE_T size;
-+ unsigned long total = 0;
-+ int max_fast_bin;
-+
-+ /* internal size_t must be no wider than pointer type */
-+ assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
-+
-+ /* alignment is a power of 2 */
-+ assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
-+
-+ /* cannot run remaining checks until fully initialized */
-+ if (av->top == 0 || av->top == initial_top(av))
-+ return;
-+
-+ /* pagesize is a power of 2 */
-+ assert((av->pagesize & (av->pagesize-1)) == 0);
-+
-+ /* properties of fastbins */
-+
-+ /* max_fast is in allowed range */
-+ assert((av->max_fast & ~1) <= request2size(MAX_FAST_SIZE));
-+
-+ max_fast_bin = fastbin_index(av->max_fast);
-+
-+ for (i = 0; i < NFASTBINS; ++i) {
-+ p = av->fastbins[i];
-+
-+ /* all bins past max_fast are empty */
-+ if (i > max_fast_bin)
-+ assert(p == 0);
-+
-+ while (p != 0) {
-+ /* each chunk claims to be inuse */
-+ do_check_inuse_chunk(p);
-+ total += chunksize(p);
-+ /* chunk belongs in this bin */
-+ assert(fastbin_index(chunksize(p)) == i);
-+ p = p->fd;
-+ }
-+ }
-+
-+ if (total != 0)
-+ assert(have_fastchunks(av));
-+ else if (!have_fastchunks(av))
-+ assert(total == 0);
-+
-+ /* check normal bins */
-+ for (i = 1; i < NBINS; ++i) {
-+ b = bin_at(av,i);
-+
-+ /* binmap is accurate (except for bin 1 == unsorted_chunks) */
-+ if (i >= 2) {
-+ binbit = get_binmap(av,i);
-+ empty = last(b) == b;
-+ if (!binbit)
-+ assert(empty);
-+ else if (!empty)
-+ assert(binbit);
-+ }
-+
-+ for (p = last(b); p != b; p = p->bk) {
-+ /* each chunk claims to be free */
-+ do_check_free_chunk(p);
-+ size = chunksize(p);
-+ total += size;
-+ if (i >= 2) {
-+ /* chunk belongs in bin */
-+ idx = bin_index(size);
-+ assert(idx == i);
-+ /* lists are sorted */
-+ assert(p->bk == b ||
-+ (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
-+ }
-+ /* chunk is followed by a legal chain of inuse chunks */
-+ for (q = next_chunk(p);
-+ (q != av->top && inuse(q) &&
-+ (unsigned long)(chunksize(q)) >= MINSIZE);
-+ q = next_chunk(q))
-+ do_check_inuse_chunk(q);
-+ }
-+ }
-+
-+ /* top chunk is OK */
-+ check_chunk(av->top);
-+
-+ /* sanity checks for statistics */
-+
-+ assert(total <= (unsigned long)(av->max_total_mem));
-+ assert(av->n_mmaps >= 0);
-+ assert(av->n_mmaps <= av->n_mmaps_max);
-+ assert(av->n_mmaps <= av->max_n_mmaps);
-+
-+ assert((unsigned long)(av->sbrked_mem) <=
-+ (unsigned long)(av->max_sbrked_mem));
-+
-+ assert((unsigned long)(av->mmapped_mem) <=
-+ (unsigned long)(av->max_mmapped_mem));
-+
-+ assert((unsigned long)(av->max_total_mem) >=
-+ (unsigned long)(av->mmapped_mem) + (unsigned long)(av->sbrked_mem));
-+}
-+#endif
-+
-+
-+/* ----------- Routines dealing with system allocation -------------- */
-+
-+/*
-+ sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
-+ to the system (via negative arguments to sbrk) if there is unused
-+ memory at the `high' end of the malloc pool. It is called
-+ automatically by free() when top space exceeds the trim
-+ threshold. It is also called by the public malloc_trim routine. It
-+ returns 1 if it actually released any memory, else 0.
-+*/
-+
-+INLINE
-+#if __STD_C
-+static int sYSTRIm(size_t pad, mstate av)
-+#else
-+static int sYSTRIm(pad, av) size_t pad; mstate av;
-+#endif
-+{
-+ long top_size; /* Amount of top-most memory */
-+ long extra; /* Amount to release */
-+ long released; /* Amount actually released */
-+ char* current_brk; /* address returned by pre-check sbrk call */
-+ char* new_brk; /* address returned by post-check sbrk call */
-+ size_t pagesz;
-+
-+ pagesz = av->pagesize;
-+ top_size = chunksize(av->top);
-+
-+ /* Release in pagesize units, keeping at least one page */
-+ extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
-+
-+ if (extra > 0) {
-+
-+ /*
-+ Only proceed if end of memory is where we last set it.
-+ This avoids problems if there were foreign sbrk calls.
-+ */
-+ current_brk = (char*)(MORECORE(0));
-+ if (current_brk == (char*)(av->top) + top_size) {
-+
-+ /*
-+ Attempt to release memory. We ignore MORECORE return value,
-+ and instead call again to find out where new end of memory is.
-+ This avoids problems if first call releases less than we asked,
-+ of if failure somehow altered brk value. (We could still
-+ encounter problems if it altered brk in some very bad way,
-+ but the only thing we can do is adjust anyway, which will cause
-+ some downstream failure.)
-+ */
-+
-+ MORECORE(-extra);
-+ new_brk = (char*)(MORECORE(0));
-+
-+ if (new_brk != (char*)MORECORE_FAILURE) {
-+ released = (long)(current_brk - new_brk);
-+
-+ if (released != 0) {
-+ /* Success. Adjust top. */
-+ av->sbrked_mem -= released;
-+ set_head(av->top, (top_size - released) | PREV_INUSE);
-+ check_malloc_state();
-+ return 1;
-+ }
-+ }
-+ }
-+ }
-+ return 0;
-+}
-+
-+/*
-+ ------------------------- malloc_consolidate -------------------------
-+
-+ malloc_consolidate is a specialized version of free() that tears
-+ down chunks held in fastbins. Free itself cannot be used for this
-+ purpose since, among other things, it might place chunks back onto
-+ fastbins. So, instead, we need to use a minor variant of the same
-+ code.
-+
-+ Also, because this routine needs to be called the first time through
-+ malloc anyway, it turns out to be the perfect place to trigger
-+ initialization code.
-+*/
-+
-+INLINE
-+#if __STD_C
-+static void malloc_consolidate(mstate av)
-+#else
-+static void malloc_consolidate(av) mstate av;
-+#endif
-+{
-+ mfastbinptr* fb; /* current fastbin being consolidated */
-+ mfastbinptr* maxfb; /* last fastbin (for loop control) */
-+ mchunkptr p; /* current chunk being consolidated */
-+ mchunkptr nextp; /* next chunk to consolidate */
-+ mchunkptr unsorted_bin; /* bin header */
-+ mchunkptr first_unsorted; /* chunk to link to */
-+
-+ /* These have same use as in free() */
-+ mchunkptr nextchunk;
-+ INTERNAL_SIZE_T size;
-+ INTERNAL_SIZE_T nextsize;
-+ INTERNAL_SIZE_T prevsize;
-+ int nextinuse;
-+ mchunkptr bck;
-+ mchunkptr fwd;
-+
-+ /*
-+ If max_fast is 0, we know that av hasn't
-+ yet been initialized, in which case do so below
-+ */
-+
-+ if (av->max_fast != 0) {
-+ clear_fastchunks(av);
-+
-+ unsorted_bin = unsorted_chunks(av);
-+
-+ /*
-+ Remove each chunk from fast bin and consolidate it, placing it
-+ then in unsorted bin. Among other reasons for doing this,
-+ placing in unsorted bin avoids needing to calculate actual bins
-+ until malloc is sure that chunks aren't immediately going to be
-+ reused anyway.
-+ */
-+
-+ maxfb = &(av->fastbins[fastbin_index(av->max_fast)]);
-+ fb = &(av->fastbins[0]);
-+ do {
-+ if ( (p = *fb) != 0) {
-+ *fb = 0;
-+
-+ do {
-+ check_inuse_chunk(p);
-+ nextp = p->fd;
-+
-+ /* Slightly streamlined version of consolidation code in free() */
-+ size = p->size & ~PREV_INUSE;
-+ nextchunk = chunk_at_offset(p, size);
-+ nextsize = chunksize(nextchunk);
-+
-+ if (!prev_inuse(p)) {
-+ prevsize = p->prev_size;
-+ size += prevsize;
-+ p = chunk_at_offset(p, -((long) prevsize));
-+ unlink(p, bck, fwd);
-+ }
-+
-+ if (nextchunk != av->top) {
-+ nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
-+ set_head(nextchunk, nextsize);
-+
-+ if (!nextinuse) {
-+ size += nextsize;
-+ unlink(nextchunk, bck, fwd);
-+ }
-+
-+ first_unsorted = unsorted_bin->fd;
-+ unsorted_bin->fd = p;
-+ first_unsorted->bk = p;
-+
-+ set_head(p, size | PREV_INUSE);
-+ p->bk = unsorted_bin;
-+ p->fd = first_unsorted;
-+ set_foot(p, size);
-+ }
-+
-+ else {
-+ size += nextsize;
-+ set_head(p, size | PREV_INUSE);
-+ av->top = p;
-+ }
-+
-+ } while ( (p = nextp) != 0);
-+
-+ }
-+ } while (fb++ != maxfb);
-+ }
-+ else {
-+ malloc_init_state(av);
-+ check_malloc_state();
-+ }
-+}
-+
-+/*
-+ ------------------------------ free ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+void fREe(Void_t* mem)
-+#else
-+void fREe(mem) Void_t* mem;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+
-+ mchunkptr p; /* chunk corresponding to mem */
-+ INTERNAL_SIZE_T size; /* its size */
-+ mfastbinptr* fb; /* associated fastbin */
-+ mchunkptr nextchunk; /* next contiguous chunk */
-+ INTERNAL_SIZE_T nextsize; /* its size */
-+ int nextinuse; /* true if nextchunk is used */
-+ INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
-+ mchunkptr bck; /* misc temp for linking */
-+ mchunkptr fwd; /* misc temp for linking */
-+
-+
-+ /* free(0) has no effect */
-+ if (mem != 0) {
-+ p = mem2chunk(mem);
-+ size = chunksize(p);
-+
-+ check_inuse_chunk(p);
-+
-+ /*
-+ If eligible, place chunk on a fastbin so it can be found
-+ and used quickly in malloc.
-+ */
-+
-+ if ((unsigned long)(size) <= (unsigned long)(av->max_fast)
-+
-+#if TRIM_FASTBINS
-+ /*
-+ If TRIM_FASTBINS set, don't place chunks
-+ bordering top into fastbins
-+ */
-+ && (chunk_at_offset(p, size) != av->top)
-+#endif
-+ ) {
-+
-+ set_fastchunks(av);
-+ fb = &(av->fastbins[fastbin_index(size)]);
-+ p->fd = *fb;
-+ *fb = p;
-+ }
-+
-+ /*
-+ Consolidate other non-mmapped chunks as they arrive.
-+ */
-+
-+ else if (!chunk_is_mmapped(p)) {
-+ nextchunk = chunk_at_offset(p, size);
-+ nextsize = chunksize(nextchunk);
-+
-+ /* consolidate backward */
-+ if (!prev_inuse(p)) {
-+ prevsize = p->prev_size;
-+ size += prevsize;
-+ p = chunk_at_offset(p, -((long) prevsize));
-+ unlink(p, bck, fwd);
-+ }
-+
-+ if (nextchunk != av->top) {
-+ /* get and clear inuse bit */
-+ nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
-+ set_head(nextchunk, nextsize);
-+
-+ /* consolidate forward */
-+ if (!nextinuse) {
-+ unlink(nextchunk, bck, fwd);
-+ size += nextsize;
-+ }
-+
-+ /*
-+ Place the chunk in unsorted chunk list. Chunks are
-+ not placed into regular bins until after they have
-+ been given one chance to be used in malloc.
-+ */
-+
-+ bck = unsorted_chunks(av);
-+ fwd = bck->fd;
-+ p->bk = bck;
-+ p->fd = fwd;
-+ bck->fd = p;
-+ fwd->bk = p;
-+
-+ set_head(p, size | PREV_INUSE);
-+ set_foot(p, size);
-+
-+ check_free_chunk(p);
-+ }
-+
-+ /*
-+ If the chunk borders the current high end of memory,
-+ consolidate into top
-+ */
-+
-+ else {
-+ size += nextsize;
-+ set_head(p, size | PREV_INUSE);
-+ av->top = p;
-+ check_chunk(p);
-+ }
-+
-+ /*
-+ If freeing a large space, consolidate possibly-surrounding
-+ chunks. Then, if the total unused topmost memory exceeds trim
-+ threshold, ask malloc_trim to reduce top.
-+
-+ Unless max_fast is 0, we don't know if there are fastbins
-+ bordering top, so we cannot tell for sure whether threshold
-+ has been reached unless fastbins are consolidated. But we
-+ don't want to consolidate on each free. As a compromise,
-+ consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
-+ is reached.
-+ */
-+
-+ if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
-+ if (have_fastchunks(av))
-+ malloc_consolidate(av);
-+
-+#ifndef MORECORE_CANNOT_TRIM
-+ if ((unsigned long)(chunksize(av->top)) >=
-+ (unsigned long)(av->trim_threshold))
-+ sYSTRIm(av->top_pad, av);
-+#endif
-+ }
-+
-+ }
-+ /*
-+ If the chunk was allocated via mmap, release via munmap()
-+ Note that if HAVE_MMAP is false but chunk_is_mmapped is
-+ true, then user must have overwritten memory. There's nothing
-+ we can do to catch this error unless DEBUG is set, in which case
-+ check_inuse_chunk (above) will have triggered error.
-+ */
-+
-+ else {
-+#if HAVE_MMAP
-+ int ret;
-+ INTERNAL_SIZE_T offset = p->prev_size;
-+ av->n_mmaps--;
-+ av->mmapped_mem -= (size + offset);
-+ ret = munmap((char*)p - offset, size + offset);
-+ /* munmap returns non-zero on failure */
-+ assert(ret == 0);
-+#endif
-+ }
-+ }
-+}
-+
-+/*
-+ sysmalloc handles malloc cases requiring more memory from the system.
-+ On entry, it is assumed that av->top does not have enough
-+ space to service request for nb bytes, thus requiring that av->top
-+ be extended or replaced.
-+*/
-+
-+INLINE
-+#if __STD_C
-+static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
-+#else
-+static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
-+#endif
-+{
-+ mchunkptr old_top; /* incoming value of av->top */
-+ INTERNAL_SIZE_T old_size; /* its size */
-+ char* old_end; /* its end address */
-+
-+ long size; /* arg to first MORECORE or mmap call */
-+ char* brk; /* return value from MORECORE */
-+
-+ long correction; /* arg to 2nd MORECORE call */
-+ char* snd_brk; /* 2nd return val */
-+
-+ INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
-+ INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
-+ char* aligned_brk; /* aligned offset into brk */
-+
-+ mchunkptr p; /* the allocated/returned chunk */
-+ mchunkptr remainder; /* remainder from allocation */
-+ unsigned long remainder_size; /* its size */
-+
-+ unsigned long sum; /* for updating stats */
-+
-+ size_t pagemask = av->pagesize - 1;
-+
-+
-+#if HAVE_MMAP
-+
-+ /*
-+ If have mmap, and the request size meets the mmap threshold, and
-+ the system supports mmap, and there are few enough currently
-+ allocated mmapped regions, try to directly map this request
-+ rather than expanding top.
-+ */
-+
-+ if ((unsigned long)(nb) >= (unsigned long)(av->mmap_threshold) &&
-+ (av->n_mmaps < av->n_mmaps_max)) {
-+
-+ char* mm; /* return value from mmap call*/
-+
-+ /*
-+ Round up size to nearest page. For mmapped chunks, the overhead
-+ is one SIZE_SZ unit larger than for normal chunks, because there
-+ is no following chunk whose prev_size field could be used.
-+ */
-+ size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
-+
-+ /* Don't try if size wraps around 0 */
-+ if ((unsigned long)(size) > (unsigned long)(nb)) {
-+
-+ mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
-+
-+ if (mm != (char*)(MORECORE_FAILURE)) {
-+
-+ /*
-+ The offset to the start of the mmapped region is stored
-+ in the prev_size field of the chunk. This allows us to adjust
-+ returned start address to meet alignment requirements here
-+ and in memalign(), and still be able to compute proper
-+ address argument for later munmap in free() and realloc().
-+ */
-+
-+ front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
-+ if (front_misalign > 0) {
-+ correction = MALLOC_ALIGNMENT - front_misalign;
-+ p = (mchunkptr)(mm + correction);
-+ p->prev_size = correction;
-+ set_head(p, (size - correction) |IS_MMAPPED);
-+ }
-+ else {
-+ p = (mchunkptr)mm;
-+ p->prev_size = 0;
-+ set_head(p, size|IS_MMAPPED);
-+ }
-+
-+ /* update statistics */
-+
-+ if (++av->n_mmaps > av->max_n_mmaps)
-+ av->max_n_mmaps = av->n_mmaps;
-+
-+ sum = av->mmapped_mem += size;
-+ if (sum > (unsigned long)(av->max_mmapped_mem))
-+ av->max_mmapped_mem = sum;
-+ sum += av->sbrked_mem;
-+ if (sum > (unsigned long)(av->max_total_mem))
-+ av->max_total_mem = sum;
-+
-+ check_chunk(p);
-+
-+ return chunk2mem(p);
-+ }
-+ }
-+ }
-+#endif
-+
-+ /* Record incoming configuration of top */
-+
-+ old_top = av->top;
-+ old_size = chunksize(old_top);
-+ old_end = (char*)(chunk_at_offset(old_top, old_size));
-+
-+ brk = snd_brk = (char*)(MORECORE_FAILURE);
-+
-+ /*
-+ If not the first time through, we require old_size to be
-+ at least MINSIZE and to have prev_inuse set.
-+ */
-+
-+ assert((old_top == initial_top(av) && old_size == 0) ||
-+ ((unsigned long) (old_size) >= MINSIZE &&
-+ prev_inuse(old_top)));
-+
-+ /* Precondition: not enough current space to satisfy nb request */
-+ assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
-+
-+ /* Precondition: all fastbins are consolidated */
-+ assert(!have_fastchunks(av));
-+
-+
-+ /* Request enough space for nb + pad + overhead */
-+
-+ size = nb + av->top_pad + MINSIZE;
-+
-+ /*
-+ If contiguous, we can subtract out existing space that we hope to
-+ combine with new space. We add it back later only if
-+ we don't actually get contiguous space.
-+ */
-+
-+ if (contiguous(av))
-+ size -= old_size;
-+
-+ /*
-+ Round to a multiple of page size.
-+ If MORECORE is not contiguous, this ensures that we only call it
-+ with whole-page arguments. And if MORECORE is contiguous and
-+ this is not first time through, this preserves page-alignment of
-+ previous calls. Otherwise, we correct to page-align below.
-+ */
-+
-+ size = (size + pagemask) & ~pagemask;
-+
-+ /*
-+ Don't try to call MORECORE if argument is so big as to appear
-+ negative. Note that since mmap takes size_t arg, it may succeed
-+ below even if we cannot call MORECORE.
-+ */
-+
-+ if (size > 0)
-+ brk = (char*)(MORECORE(size));
-+
-+ /*
-+ If have mmap, try using it as a backup when MORECORE fails or
-+ cannot be used. This is worth doing on systems that have "holes" in
-+ address space, so sbrk cannot extend to give contiguous space, but
-+ space is available elsewhere. Note that we ignore mmap max count
-+ and threshold limits, since the space will not be used as a
-+ segregated mmap region.
-+ */
-+
-+#if HAVE_MMAP
-+ if (brk == (char*)(MORECORE_FAILURE)) {
-+
-+ /* Cannot merge with old top, so add its size back in */
-+ if (contiguous(av))
-+ size = (size + old_size + pagemask) & ~pagemask;
-+
-+ /* If we are relying on mmap as backup, then use larger units */
-+ if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
-+ size = MMAP_AS_MORECORE_SIZE;
-+
-+ /* Don't try if size wraps around 0 */
-+ if ((unsigned long)(size) > (unsigned long)(nb)) {
-+
-+ brk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
-+
-+ if (brk != (char*)(MORECORE_FAILURE)) {
-+
-+ /* We do not need, and cannot use, another sbrk call to find end */
-+ snd_brk = brk + size;
-+
-+ /*
-+ Record that we no longer have a contiguous sbrk region.
-+ After the first time mmap is used as backup, we do not
-+ ever rely on contiguous space since this could incorrectly
-+ bridge regions.
-+ */
-+ set_noncontiguous(av);
-+ }
-+ }
-+ }
-+#endif
-+
-+ if (brk != (char*)(MORECORE_FAILURE)) {
-+ av->sbrked_mem += size;
-+
-+ /*
-+ If MORECORE extends previous space, we can likewise extend top size.
-+ */
-+
-+ if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE)) {
-+ set_head(old_top, (size + old_size) | PREV_INUSE);
-+ }
-+
-+ /*
-+ Otherwise, make adjustments:
-+
-+ * If the first time through or noncontiguous, we need to call sbrk
-+ just to find out where the end of memory lies.
-+
-+ * We need to ensure that all returned chunks from malloc will meet
-+ MALLOC_ALIGNMENT
-+
-+ * If there was an intervening foreign sbrk, we need to adjust sbrk
-+ request size to account for fact that we will not be able to
-+ combine new space with existing space in old_top.
-+
-+ * Almost all systems internally allocate whole pages at a time, in
-+ which case we might as well use the whole last page of request.
-+ So we allocate enough more memory to hit a page boundary now,
-+ which in turn causes future contiguous calls to page-align.
-+ */
-+
-+ else {
-+ front_misalign = 0;
-+ end_misalign = 0;
-+ correction = 0;
-+ aligned_brk = brk;
-+
-+ /* handle contiguous cases */
-+ if (contiguous(av)) {
-+
-+ /* Guarantee alignment of first new chunk made from this space */
-+
-+ front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
-+ if (front_misalign > 0) {
-+
-+ /*
-+ Skip over some bytes to arrive at an aligned position.
-+ We don't need to specially mark these wasted front bytes.
-+ They will never be accessed anyway because
-+ prev_inuse of av->top (and any chunk created from its start)
-+ is always true after initialization.
-+ */
-+
-+ correction = MALLOC_ALIGNMENT - front_misalign;
-+ aligned_brk += correction;
-+ }
-+
-+ /*
-+ If this isn't adjacent to existing space, then we will not
-+ be able to merge with old_top space, so must add to 2nd request.
-+ */
-+
-+ correction += old_size;
-+
-+ /* Extend the end address to hit a page boundary */
-+ end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
-+ correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
-+
-+ assert(correction >= 0);
-+ snd_brk = (char*)(MORECORE(correction));
-+
-+ /*
-+ If can't allocate correction, try to at least find out current
-+ brk. It might be enough to proceed without failing.
-+
-+ Note that if second sbrk did NOT fail, we assume that space
-+ is contiguous with first sbrk. This is a safe assumption unless
-+ program is multithreaded but doesn't use locks and a foreign sbrk
-+ occurred between our first and second calls.
-+ */
-+
-+ if (snd_brk == (char*)(MORECORE_FAILURE)) {
-+ correction = 0;
-+ snd_brk = (char*)(MORECORE(0));
-+ }
-+ }
-+
-+ /* handle non-contiguous cases */
-+ else {
-+ /* MORECORE/mmap must correctly align */
-+ assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
-+
-+ /* Find out current end of memory */
-+ if (snd_brk == (char*)(MORECORE_FAILURE)) {
-+ snd_brk = (char*)(MORECORE(0));
-+ }
-+ }
-+
-+ /* Adjust top based on results of second sbrk */
-+ if (snd_brk != (char*)(MORECORE_FAILURE)) {
-+ av->top = (mchunkptr)aligned_brk;
-+ set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
-+ av->sbrked_mem += correction;
-+
-+ /*
-+ If not the first time through, we either have a
-+ gap due to foreign sbrk or a non-contiguous region. Insert a
-+ double fencepost at old_top to prevent consolidation with space
-+ we don't own. These fenceposts are artificial chunks that are
-+ marked as inuse and are in any case too small to use. We need
-+ two to make sizes and alignments work out.
-+ */
-+
-+ if (old_size != 0) {
-+ /*
-+ Shrink old_top to insert fenceposts, keeping size a
-+ multiple of MALLOC_ALIGNMENT. We know there is at least
-+ enough space in old_top to do this.
-+ */
-+ old_size = (old_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
-+ set_head(old_top, old_size | PREV_INUSE);
-+
-+ /*
-+ Note that the following assignments completely overwrite
-+ old_top when old_size was previously MINSIZE. This is
-+ intentional. We need the fencepost, even if old_top otherwise gets
-+ lost.
-+ */
-+ chunk_at_offset(old_top, old_size )->size =
-+ SIZE_SZ|PREV_INUSE;
-+
-+ chunk_at_offset(old_top, old_size + SIZE_SZ)->size =
-+ SIZE_SZ|PREV_INUSE;
-+
-+ /* If possible, release the rest. */
-+ if (old_size >= MINSIZE) {
-+ fREe(chunk2mem(old_top));
-+ }
-+
-+ }
-+ }
-+ }
-+
-+ /* Update statistics */
-+ sum = av->sbrked_mem;
-+ if (sum > (unsigned long)(av->max_sbrked_mem))
-+ av->max_sbrked_mem = sum;
-+
-+ sum += av->mmapped_mem;
-+ if (sum > (unsigned long)(av->max_total_mem))
-+ av->max_total_mem = sum;
-+
-+ check_malloc_state();
-+
-+ /* finally, do the allocation */
-+ p = av->top;
-+ size = chunksize(p);
-+
-+ /* check that one of the above allocation paths succeeded */
-+ if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
-+ remainder_size = size - nb;
-+ remainder = chunk_at_offset(p, nb);
-+ av->top = remainder;
-+ set_head(p, nb | PREV_INUSE);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+ check_malloced_chunk(p, nb);
-+ return chunk2mem(p);
-+ }
-+ }
-+
-+ /* catch all failure paths */
-+ MALLOC_FAILURE_ACTION;
-+ return 0;
-+}
-+
-+
-+/*
-+ ------------------------------ malloc ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+Void_t* mALLOc(size_t bytes)
-+#else
-+ Void_t* mALLOc(bytes) size_t bytes;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+
-+ INTERNAL_SIZE_T nb; /* normalized request size */
-+ unsigned int idx; /* associated bin index */
-+ mbinptr bin; /* associated bin */
-+ mfastbinptr* fb; /* associated fastbin */
-+
-+ mchunkptr victim; /* inspected/selected chunk */
-+ INTERNAL_SIZE_T size; /* its size */
-+ int victim_index; /* its bin index */
-+
-+ mchunkptr remainder; /* remainder from a split */
-+ unsigned long remainder_size; /* its size */
-+
-+ unsigned int block; /* bit map traverser */
-+ unsigned int bit; /* bit map traverser */
-+ unsigned int map; /* current word of binmap */
-+
-+ mchunkptr fwd; /* misc temp for linking */
-+ mchunkptr bck; /* misc temp for linking */
-+
-+ /*
-+ Convert request size to internal form by adding SIZE_SZ bytes
-+ overhead plus possibly more to obtain necessary alignment and/or
-+ to obtain a size of at least MINSIZE, the smallest allocatable
-+ size. Also, checked_request2size traps (returning 0) request sizes
-+ that are so large that they wrap around zero when padded and
-+ aligned.
-+ */
-+
-+ checked_request2size(bytes, nb);
-+
-+ /*
-+ If the size qualifies as a fastbin, first check corresponding bin.
-+ This code is safe to execute even if av is not yet initialized, so we
-+ can try it without checking, which saves some time on this fast path.
-+ */
-+
-+ if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) {
-+ fb = &(av->fastbins[(fastbin_index(nb))]);
-+ if ( (victim = *fb) != 0) {
-+ *fb = victim->fd;
-+ check_remalloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+ }
-+
-+ /*
-+ If a small request, check regular bin. Since these "smallbins"
-+ hold one size each, no searching within bins is necessary.
-+ (For a large request, we need to wait until unsorted chunks are
-+ processed to find best fit. But for small ones, fits are exact
-+ anyway, so we can check now, which is faster.)
-+ */
-+
-+ if (in_smallbin_range(nb)) {
-+ idx = smallbin_index(nb);
-+ bin = bin_at(av,idx);
-+
-+ if ( (victim = last(bin)) != bin) {
-+ if (victim == 0) /* initialization check */
-+ malloc_consolidate(av);
-+ else {
-+ bck = victim->bk;
-+ set_inuse_bit_at_offset(victim, nb);
-+ bin->bk = bck;
-+ bck->fd = bin;
-+
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+ }
-+ }
-+
-+ /*
-+ If this is a large request, consolidate fastbins before continuing.
-+ While it might look excessive to kill all fastbins before
-+ even seeing if there is space available, this avoids
-+ fragmentation problems normally associated with fastbins.
-+ Also, in practice, programs tend to have runs of either small or
-+ large requests, but less often mixtures, so consolidation is not
-+ invoked all that often in most programs. And the programs that
-+ it is called frequently in otherwise tend to fragment.
-+ */
-+
-+ else {
-+ idx = largebin_index(nb);
-+ if (have_fastchunks(av))
-+ malloc_consolidate(av);
-+ }
-+
-+ /*
-+ Process recently freed or remaindered chunks, taking one only if
-+ it is exact fit, or, if this a small request, the chunk is remainder from
-+ the most recent non-exact fit. Place other traversed chunks in
-+ bins. Note that this step is the only place in any routine where
-+ chunks are placed in bins.
-+
-+ The outer loop here is needed because we might not realize until
-+ near the end of malloc that we should have consolidated, so must
-+ do so and retry. This happens at most once, and only when we would
-+ otherwise need to expand memory to service a "small" request.
-+ */
-+
-+ for(;;) {
-+
-+ while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
-+ bck = victim->bk;
-+ size = chunksize(victim);
-+
-+ /*
-+ If a small request, try to use last remainder if it is the
-+ only chunk in unsorted bin. This helps promote locality for
-+ runs of consecutive small requests. This is the only
-+ exception to best-fit, and applies only when there is
-+ no exact fit for a small chunk.
-+ */
-+
-+ if (in_smallbin_range(nb) &&
-+ bck == unsorted_chunks(av) &&
-+ victim == av->last_remainder &&
-+ (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
-+
-+ /* split and reattach remainder */
-+ remainder_size = size - nb;
-+ remainder = chunk_at_offset(victim, nb);
-+ unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-+ av->last_remainder = remainder;
-+ remainder->bk = remainder->fd = unsorted_chunks(av);
-+
-+ set_head(victim, nb | PREV_INUSE);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+ set_foot(remainder, remainder_size);
-+
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+
-+ /* remove from unsorted list */
-+ unsorted_chunks(av)->bk = bck;
-+ bck->fd = unsorted_chunks(av);
-+
-+ /* Take now instead of binning if exact fit */
-+
-+ if (size == nb) {
-+ set_inuse_bit_at_offset(victim, size);
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+
-+ /* place chunk in bin */
-+
-+ if (in_smallbin_range(size)) {
-+ victim_index = smallbin_index(size);
-+ bck = bin_at(av, victim_index);
-+ fwd = bck->fd;
-+ }
-+ else {
-+ victim_index = largebin_index(size);
-+ bck = bin_at(av, victim_index);
-+ fwd = bck->fd;
-+
-+ /* maintain large bins in sorted order */
-+ if (fwd != bck) {
-+ size |= PREV_INUSE; /* Or with inuse bit to speed comparisons */
-+ /* if smaller than smallest, bypass loop below */
-+ if ((unsigned long)(size) <= (unsigned long)(bck->bk->size)) {
-+ fwd = bck;
-+ bck = bck->bk;
-+ }
-+ else {
-+ while ((unsigned long)(size) < (unsigned long)(fwd->size))
-+ fwd = fwd->fd;
-+ bck = fwd->bk;
-+ }
-+ }
-+ }
-+
-+ mark_bin(av, victim_index);
-+ victim->bk = bck;
-+ victim->fd = fwd;
-+ fwd->bk = victim;
-+ bck->fd = victim;
-+ }
-+
-+ /*
-+ If a large request, scan through the chunks of current bin in
-+ sorted order to find smallest that fits. This is the only step
-+ where an unbounded number of chunks might be scanned without doing
-+ anything useful with them. However the lists tend to be short.
-+ */
-+
-+ if (!in_smallbin_range(nb)) {
-+ bin = bin_at(av, idx);
-+
-+ /* skip scan if empty or largest chunk is too small */
-+ if ((victim = last(bin)) != bin &&
-+ (unsigned long)(first(bin)->size) >= (unsigned long)(nb)) {
-+
-+ while (((unsigned long)(size = chunksize(victim)) <
-+ (unsigned long)(nb)))
-+ victim = victim->bk;
-+
-+ remainder_size = size - nb;
-+ unlink(victim, bck, fwd);
-+
-+ /* Exhaust */
-+ if (remainder_size < MINSIZE) {
-+ set_inuse_bit_at_offset(victim, size);
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+ /* Split */
-+ else {
-+ remainder = chunk_at_offset(victim, nb);
-+ unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-+ remainder->bk = remainder->fd = unsorted_chunks(av);
-+ set_head(victim, nb | PREV_INUSE);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+ set_foot(remainder, remainder_size);
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+ }
-+ }
-+
-+ /*
-+ Search for a chunk by scanning bins, starting with next largest
-+ bin. This search is strictly by best-fit; i.e., the smallest
-+ (with ties going to approximately the least recently used) chunk
-+ that fits is selected.
-+
-+ The bitmap avoids needing to check that most blocks are nonempty.
-+ The particular case of skipping all bins during warm-up phases
-+ when no chunks have been returned yet is faster than it might look.
-+ */
-+
-+ ++idx;
-+ bin = bin_at(av,idx);
-+ block = idx2block(idx);
-+ map = av->binmap[block];
-+ bit = idx2bit(idx);
-+
-+ for (;;) {
-+
-+ /* Skip rest of block if there are no more set bits in this block. */
-+ if (bit > map || bit == 0) {
-+ do {
-+ if (++block >= BINMAPSIZE) /* out of bins */
-+ goto use_top;
-+ } while ( (map = av->binmap[block]) == 0);
-+
-+ bin = bin_at(av, (block << BINMAPSHIFT));
-+ bit = 1;
-+ }
-+
-+ /* Advance to bin with set bit. There must be one. */
-+ while ((bit & map) == 0) {
-+ bin = next_bin(bin);
-+ bit <<= 1;
-+ assert(bit != 0);
-+ }
-+
-+ /* Inspect the bin. It is likely to be non-empty */
-+ victim = last(bin);
-+
-+ /* If a false alarm (empty bin), clear the bit. */
-+ if (victim == bin) {
-+ av->binmap[block] = map &= ~bit; /* Write through */
-+ bin = next_bin(bin);
-+ bit <<= 1;
-+ }
-+
-+ else {
-+ size = chunksize(victim);
-+
-+ /* We know the first chunk in this bin is big enough to use. */
-+ assert((unsigned long)(size) >= (unsigned long)(nb));
-+
-+ remainder_size = size - nb;
-+
-+ /* unlink */
-+ bck = victim->bk;
-+ bin->bk = bck;
-+ bck->fd = bin;
-+
-+ /* Exhaust */
-+ if (remainder_size < MINSIZE) {
-+ set_inuse_bit_at_offset(victim, size);
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+
-+ /* Split */
-+ else {
-+ remainder = chunk_at_offset(victim, nb);
-+
-+ unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-+ remainder->bk = remainder->fd = unsorted_chunks(av);
-+ /* advertise as last remainder */
-+ if (in_smallbin_range(nb))
-+ av->last_remainder = remainder;
-+
-+ set_head(victim, nb | PREV_INUSE);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+ set_foot(remainder, remainder_size);
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+ }
-+ }
-+
-+ use_top:
-+ /*
-+ If large enough, split off the chunk bordering the end of memory
-+ (held in av->top). Note that this is in accord with the best-fit
-+ search rule. In effect, av->top is treated as larger (and thus
-+ less well fitting) than any other available chunk since it can
-+ be extended to be as large as necessary (up to system
-+ limitations).
-+
-+ We require that av->top always exists (i.e., has size >=
-+ MINSIZE) after initialization, so if it would otherwise be
-+ exhuasted by current request, it is replenished. (The main
-+ reason for ensuring it exists is that we may need MINSIZE space
-+ to put in fenceposts in sysmalloc.)
-+ */
-+
-+ victim = av->top;
-+ size = chunksize(victim);
-+
-+ if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
-+ remainder_size = size - nb;
-+ remainder = chunk_at_offset(victim, nb);
-+ av->top = remainder;
-+ set_head(victim, nb | PREV_INUSE);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+
-+ check_malloced_chunk(victim, nb);
-+ return chunk2mem(victim);
-+ }
-+
-+ /*
-+ If there is space available in fastbins, consolidate and retry,
-+ to possibly avoid expanding memory. This can occur only if nb is
-+ in smallbin range so we didn't consolidate upon entry.
-+ */
-+
-+ else if (have_fastchunks(av)) {
-+ assert(in_smallbin_range(nb));
-+ malloc_consolidate(av);
-+ idx = smallbin_index(nb); /* restore original bin index */
-+ }
-+
-+ /*
-+ Otherwise, relay to handle system-dependent cases
-+ */
-+ else
-+ return sYSMALLOc(nb, av);
-+ }
-+}
-+
-+/*
-+ ------------------------------ realloc ------------------------------
-+*/
-+
-+
-+INLINE
-+#if __STD_C
-+Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
-+#else
-+Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+
-+ INTERNAL_SIZE_T nb; /* padded request size */
-+
-+ mchunkptr oldp; /* chunk corresponding to oldmem */
-+ INTERNAL_SIZE_T oldsize; /* its size */
-+
-+ mchunkptr newp; /* chunk to return */
-+ INTERNAL_SIZE_T newsize; /* its size */
-+ Void_t* newmem; /* corresponding user mem */
-+
-+ mchunkptr next; /* next contiguous chunk after oldp */
-+
-+ mchunkptr remainder; /* extra space at end of newp */
-+ unsigned long remainder_size; /* its size */
-+
-+ mchunkptr bck; /* misc temp for linking */
-+ mchunkptr fwd; /* misc temp for linking */
-+
-+ unsigned long copysize; /* bytes to copy */
-+ unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
-+ INTERNAL_SIZE_T* s; /* copy source */
-+ INTERNAL_SIZE_T* d; /* copy destination */
-+
-+
-+#ifdef REALLOC_ZERO_BYTES_FREES
-+ if (bytes == 0) {
-+ fREe(oldmem);
-+ return 0;
-+ }
-+#endif
-+
-+ /* realloc of null is supposed to be same as malloc */
-+ if (oldmem == 0) return mALLOc(bytes);
-+
-+ checked_request2size(bytes, nb);
-+
-+ oldp = mem2chunk(oldmem);
-+ oldsize = chunksize(oldp);
-+
-+ check_inuse_chunk(oldp);
-+
-+ if (!chunk_is_mmapped(oldp)) {
-+
-+ if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
-+ /* already big enough; split below */
-+ newp = oldp;
-+ newsize = oldsize;
-+ }
-+
-+ else {
-+ next = chunk_at_offset(oldp, oldsize);
-+
-+ /* Try to expand forward into top */
-+ if (next == av->top &&
-+ (unsigned long)(newsize = oldsize + chunksize(next)) >=
-+ (unsigned long)(nb + MINSIZE)) {
-+ set_head_size(oldp, nb);
-+ av->top = chunk_at_offset(oldp, nb);
-+ set_head(av->top, (newsize - nb) | PREV_INUSE);
-+ return chunk2mem(oldp);
-+ }
-+
-+ /* Try to expand forward into next chunk; split off remainder below */
-+ else if (next != av->top &&
-+ !inuse(next) &&
-+ (unsigned long)(newsize = oldsize + chunksize(next)) >=
-+ (unsigned long)(nb)) {
-+ newp = oldp;
-+ unlink(next, bck, fwd);
-+ }
-+
-+ /* allocate, copy, free */
-+ else {
-+ newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
-+ if (newmem == 0)
-+ return 0; /* propagate failure */
-+
-+ newp = mem2chunk(newmem);
-+ newsize = chunksize(newp);
-+
-+ /*
-+ Avoid copy if newp is next chunk after oldp.
-+ */
-+ if (newp == next) {
-+ newsize += oldsize;
-+ newp = oldp;
-+ }
-+ else {
-+ /*
-+ Unroll copy of <= 36 bytes (72 if 8byte sizes)
-+ We know that contents have an odd number of
-+ INTERNAL_SIZE_T-sized words; minimally 3.
-+ */
-+
-+ copysize = oldsize - SIZE_SZ;
-+ s = (INTERNAL_SIZE_T*)(oldmem);
-+ d = (INTERNAL_SIZE_T*)(newmem);
-+ ncopies = copysize / sizeof(INTERNAL_SIZE_T);
-+ assert(ncopies >= 3);
-+
-+ if (ncopies > 9)
-+ MALLOC_COPY(d, s, copysize);
-+
-+ else {
-+ *(d+0) = *(s+0);
-+ *(d+1) = *(s+1);
-+ *(d+2) = *(s+2);
-+ if (ncopies > 4) {
-+ *(d+3) = *(s+3);
-+ *(d+4) = *(s+4);
-+ if (ncopies > 6) {
-+ *(d+5) = *(s+5);
-+ *(d+6) = *(s+6);
-+ if (ncopies > 8) {
-+ *(d+7) = *(s+7);
-+ *(d+8) = *(s+8);
-+ }
-+ }
-+ }
-+ }
-+
-+ fREe(oldmem);
-+ check_inuse_chunk(newp);
-+ return chunk2mem(newp);
-+ }
-+ }
-+ }
-+
-+ /* If possible, free extra space in old or extended chunk */
-+
-+ assert((unsigned long)(newsize) >= (unsigned long)(nb));
-+
-+ remainder_size = newsize - nb;
-+
-+ if (remainder_size < MINSIZE) { /* not enough extra to split off */
-+ set_head_size(newp, newsize);
-+ set_inuse_bit_at_offset(newp, newsize);
-+ }
-+ else { /* split remainder */
-+ remainder = chunk_at_offset(newp, nb);
-+ set_head_size(newp, nb);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+ /* Mark remainder as inuse so free() won't complain */
-+ set_inuse_bit_at_offset(remainder, remainder_size);
-+ fREe(chunk2mem(remainder));
-+ }
-+
-+ check_inuse_chunk(newp);
-+ return chunk2mem(newp);
-+ }
-+
-+ /*
-+ Handle mmap cases
-+ */
-+
-+ else {
-+#if HAVE_MMAP
-+
-+#if HAVE_MREMAP
-+ INTERNAL_SIZE_T offset = oldp->prev_size;
-+ size_t pagemask = av->pagesize - 1;
-+ char *cp;
-+ unsigned long sum;
-+
-+ /* Note the extra SIZE_SZ overhead */
-+ newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
-+
-+ /* don't need to remap if still within same page */
-+ if (oldsize == newsize - offset)
-+ return oldmem;
-+
-+ cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
-+
-+ if (cp != (char*)MORECORE_FAILURE) {
-+
-+ newp = (mchunkptr)(cp + offset);
-+ set_head(newp, (newsize - offset)|IS_MMAPPED);
-+
-+ assert(aligned_OK(chunk2mem(newp)));
-+ assert((newp->prev_size == offset));
-+
-+ /* update statistics */
-+ sum = av->mmapped_mem += newsize - oldsize;
-+ if (sum > (unsigned long)(av->max_mmapped_mem))
-+ av->max_mmapped_mem = sum;
-+ sum += av->sbrked_mem;
-+ if (sum > (unsigned long)(av->max_total_mem))
-+ av->max_total_mem = sum;
-+
-+ return chunk2mem(newp);
-+ }
-+#endif
-+
-+ /* Note the extra SIZE_SZ overhead. */
-+ if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
-+ newmem = oldmem; /* do nothing */
-+ else {
-+ /* Must alloc, copy, free. */
-+ newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
-+ if (newmem != 0) {
-+ MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
-+ fREe(oldmem);
-+ }
-+ }
-+ return newmem;
-+
-+#else
-+ /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
-+ check_malloc_state();
-+ MALLOC_FAILURE_ACTION;
-+ return 0;
-+#endif
-+ }
-+}
-+
-+/*
-+ ------------------------------ memalign ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+Void_t* mEMALIGn(size_t alignment, size_t bytes)
-+#else
-+Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
-+#endif
-+{
-+ INTERNAL_SIZE_T nb; /* padded request size */
-+ char* m; /* memory returned by malloc call */
-+ mchunkptr p; /* corresponding chunk */
-+ char* brk; /* alignment point within p */
-+ mchunkptr newp; /* chunk to return */
-+ INTERNAL_SIZE_T newsize; /* its size */
-+ INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
-+ mchunkptr remainder; /* spare room at end to split off */
-+ unsigned long remainder_size; /* its size */
-+ INTERNAL_SIZE_T size;
-+
-+ /* If need less alignment than we give anyway, just relay to malloc */
-+
-+ if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
-+
-+ /* Otherwise, ensure that it is at least a minimum chunk size */
-+
-+ if (alignment < MINSIZE) alignment = MINSIZE;
-+
-+ /* Make sure alignment is power of 2 (in case MINSIZE is not). */
-+ if ((alignment & (alignment - 1)) != 0) {
-+ size_t a = MALLOC_ALIGNMENT * 2;
-+ while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
-+ alignment = a;
-+ }
-+
-+ checked_request2size(bytes, nb);
-+
-+ /*
-+ Strategy: find a spot within that chunk that meets the alignment
-+ request, and then possibly free the leading and trailing space.
-+ */
-+
-+
-+ /* Call malloc with worst case padding to hit alignment. */
-+
-+ m = (char*)(mALLOc(nb + alignment + MINSIZE));
-+
-+ if (m == 0) return 0; /* propagate failure */
-+
-+ p = mem2chunk(m);
-+
-+ if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
-+
-+ /*
-+ Find an aligned spot inside chunk. Since we need to give back
-+ leading space in a chunk of at least MINSIZE, if the first
-+ calculation places us at a spot with less than MINSIZE leader,
-+ we can move to the next aligned spot -- we've allocated enough
-+ total room so that this is always possible.
-+ */
-+
-+ brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
-+ -((signed long) alignment));
-+ if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
-+ brk += alignment;
-+
-+ newp = (mchunkptr)brk;
-+ leadsize = brk - (char*)(p);
-+ newsize = chunksize(p) - leadsize;
-+
-+ /* For mmapped chunks, just adjust offset */
-+ if (chunk_is_mmapped(p)) {
-+ newp->prev_size = p->prev_size + leadsize;
-+ set_head(newp, newsize|IS_MMAPPED);
-+ return chunk2mem(newp);
-+ }
-+
-+ /* Otherwise, give back leader, use the rest */
-+ set_head(newp, newsize | PREV_INUSE);
-+ set_inuse_bit_at_offset(newp, newsize);
-+ set_head_size(p, leadsize);
-+ fREe(chunk2mem(p));
-+ p = newp;
-+
-+ assert (newsize >= nb &&
-+ (((unsigned long)(chunk2mem(p))) % alignment) == 0);
-+ }
-+
-+ /* Also give back spare room at the end */
-+ if (!chunk_is_mmapped(p)) {
-+ size = chunksize(p);
-+ if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
-+ remainder_size = size - nb;
-+ remainder = chunk_at_offset(p, nb);
-+ set_head(remainder, remainder_size | PREV_INUSE);
-+ set_head_size(p, nb);
-+ fREe(chunk2mem(remainder));
-+ }
-+ }
-+
-+ check_inuse_chunk(p);
-+ return chunk2mem(p);
-+}
-+
-+/*
-+ ------------------------------ calloc ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+Void_t* cALLOc(size_t n_elements, size_t elem_size)
-+#else
-+Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
-+#endif
-+{
-+ mchunkptr p;
-+ unsigned long clearsize;
-+ unsigned long nclears;
-+ INTERNAL_SIZE_T* d;
-+
-+ Void_t* mem = mALLOc(n_elements * elem_size);
-+
-+ if (mem != 0) {
-+ p = mem2chunk(mem);
-+
-+ if (!chunk_is_mmapped(p))
-+ {
-+ /*
-+ Unroll clear of <= 36 bytes (72 if 8byte sizes)
-+ We know that contents have an odd number of
-+ INTERNAL_SIZE_T-sized words; minimally 3.
-+ */
-+
-+ d = (INTERNAL_SIZE_T*)mem;
-+ clearsize = chunksize(p) - SIZE_SZ;
-+ nclears = clearsize / sizeof(INTERNAL_SIZE_T);
-+ assert(nclears >= 3);
-+
-+ if (nclears > 9)
-+ MALLOC_ZERO(d, clearsize);
-+
-+ else {
-+ *(d+0) = 0;
-+ *(d+1) = 0;
-+ *(d+2) = 0;
-+ if (nclears > 4) {
-+ *(d+3) = 0;
-+ *(d+4) = 0;
-+ if (nclears > 6) {
-+ *(d+5) = 0;
-+ *(d+6) = 0;
-+ if (nclears > 8) {
-+ *(d+7) = 0;
-+ *(d+8) = 0;
-+ }
-+ }
-+ }
-+ }
-+ }
-+#if ! MMAP_CLEARS
-+ else
-+ {
-+ d = (INTERNAL_SIZE_T*)mem;
-+ clearsize = chunksize(p) - 2 * SIZE_SZ;
-+ MALLOC_ZERO(d, clearsize);
-+ }
-+#endif
-+ }
-+ return mem;
-+}
-+
-+/*
-+ ------------------------------ cfree ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+void cFREe(Void_t *mem)
-+#else
-+void cFREe(mem) Void_t *mem;
-+#endif
-+{
-+ fREe(mem);
-+}
-+
-+/*
-+ ------------------------------ ialloc ------------------------------
-+ ialloc provides common support for independent_X routines, handling all of
-+ the combinations that can result.
-+
-+ The opts arg has:
-+ bit 0 set if all elements are same size (using sizes[0])
-+ bit 1 set if elements should be zeroed
-+*/
-+
-+
-+INLINE
-+#if __STD_C
-+static Void_t** iALLOc(size_t n_elements,
-+ size_t* sizes,
-+ int opts,
-+ Void_t* chunks[])
-+#else
-+static Void_t** iALLOc(n_elements, sizes, opts, chunks) size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+ INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
-+ INTERNAL_SIZE_T contents_size; /* total size of elements */
-+ INTERNAL_SIZE_T array_size; /* request size of pointer array */
-+ Void_t* mem; /* malloced aggregate space */
-+ mchunkptr p; /* corresponding chunk */
-+ INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
-+ Void_t** marray; /* either "chunks" or malloced ptr array */
-+ mchunkptr array_chunk; /* chunk for malloced ptr array */
-+ int mmx; /* to disable mmap */
-+ INTERNAL_SIZE_T size;
-+ size_t i;
-+
-+ /* Ensure initialization/consolidation */
-+ if (have_fastchunks(av)) malloc_consolidate(av);
-+
-+ /* compute array length, if needed */
-+ if (chunks != 0) {
-+ if (n_elements == 0)
-+ return chunks; /* nothing to do */
-+ marray = chunks;
-+ array_size = 0;
-+ }
-+ else {
-+ /* if empty req, must still return chunk representing empty array */
-+ if (n_elements == 0)
-+ return (Void_t**) mALLOc(0);
-+ marray = 0;
-+ array_size = request2size(n_elements * (sizeof(Void_t*)));
-+ }
-+
-+ /* compute total element size */
-+ if (opts & 0x1) { /* all-same-size */
-+ element_size = request2size(*sizes);
-+ contents_size = n_elements * element_size;
-+ }
-+ else { /* add up all the sizes */
-+ element_size = 0;
-+ contents_size = 0;
-+ for (i = 0; i != n_elements; ++i)
-+ contents_size += request2size(sizes[i]);
-+ }
-+
-+ /* subtract out alignment bytes from total to minimize overallocation */
-+ size = contents_size + array_size - MALLOC_ALIGN_MASK;
-+
-+ /*
-+ Allocate the aggregate chunk.
-+ But first disable mmap so malloc won't use it, since
-+ we would not be able to later free/realloc space internal
-+ to a segregated mmap region.
-+ */
-+ mmx = av->n_mmaps_max; /* disable mmap */
-+ av->n_mmaps_max = 0;
-+ mem = mALLOc(size);
-+ av->n_mmaps_max = mmx; /* reset mmap */
-+ if (mem == 0)
-+ return 0;
-+
-+ p = mem2chunk(mem);
-+ assert(!chunk_is_mmapped(p));
-+ remainder_size = chunksize(p);
-+
-+ if (opts & 0x2) { /* optionally clear the elements */
-+ MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
-+ }
-+
-+ /* If not provided, allocate the pointer array as final part of chunk */
-+ if (marray == 0) {
-+ array_chunk = chunk_at_offset(p, contents_size);
-+ marray = (Void_t**) (chunk2mem(array_chunk));
-+ set_head(array_chunk, (remainder_size - contents_size) | PREV_INUSE);
-+ remainder_size = contents_size;
-+ }
-+
-+ /* split out elements */
-+ for (i = 0; ; ++i) {
-+ marray[i] = chunk2mem(p);
-+ if (i != n_elements-1) {
-+ if (element_size != 0)
-+ size = element_size;
-+ else
-+ size = request2size(sizes[i]);
-+ remainder_size -= size;
-+ set_head(p, size | PREV_INUSE);
-+ p = chunk_at_offset(p, size);
-+ }
-+ else { /* the final element absorbs any overallocation slop */
-+ set_head(p, remainder_size | PREV_INUSE);
-+ break;
-+ }
-+ }
-+
-+#ifdef DEBUG
-+ if (marray != chunks) {
-+ /* final element must have exactly exhausted chunk */
-+ if (element_size != 0)
-+ assert(remainder_size == element_size);
-+ else
-+ assert(remainder_size == request2size(sizes[i]));
-+ check_inuse_chunk(mem2chunk(marray));
-+ }
-+
-+ for (i = 0; i != n_elements; ++i)
-+ check_inuse_chunk(mem2chunk(marray[i]));
-+#endif
-+
-+ return marray;
-+}
-+
-+
-+/*
-+ ------------------------- independent_calloc -------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+Void_t** iCALLOc(size_t n_elements, size_t elem_size, Void_t* chunks[])
-+#else
-+Void_t** iCALLOc(n_elements, elem_size, chunks) size_t n_elements; size_t elem_size; Void_t* chunks[];
-+#endif
-+{
-+ size_t sz = elem_size; /* serves as 1-element array */
-+ /* opts arg of 3 means all elements are same size, and should be cleared */
-+ return iALLOc(n_elements, &sz, 3, chunks);
-+}
-+
-+/*
-+ ------------------------- independent_comalloc -------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+Void_t** iCOMALLOc(size_t n_elements, size_t sizes[], Void_t* chunks[])
-+#else
-+Void_t** iCOMALLOc(n_elements, sizes, chunks) size_t n_elements; size_t sizes[]; Void_t* chunks[];
-+#endif
-+{
-+ return iALLOc(n_elements, sizes, 0, chunks);
-+}
-+
-+
-+/*
-+ ------------------------------ valloc ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+Void_t* vALLOc(size_t bytes)
-+#else
-+Void_t* vALLOc(bytes) size_t bytes;
-+#endif
-+{
-+ /* Ensure initialization/consolidation */
-+ mstate av = get_malloc_state();
-+ if (have_fastchunks(av)) malloc_consolidate(av);
-+ return mEMALIGn(av->pagesize, bytes);
-+}
-+
-+/*
-+ ------------------------------ pvalloc ------------------------------
-+*/
-+
-+
-+#if __STD_C
-+Void_t* pVALLOc(size_t bytes)
-+#else
-+Void_t* pVALLOc(bytes) size_t bytes;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+ size_t pagesz;
-+
-+ /* Ensure initialization/consolidation */
-+ if (have_fastchunks(av)) malloc_consolidate(av);
-+ pagesz = av->pagesize;
-+ return mEMALIGn(pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
-+}
-+
-+
-+/*
-+ ------------------------------ malloc_trim ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+int mTRIm(size_t pad)
-+#else
-+int mTRIm(pad) size_t pad;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+ /* Ensure initialization/consolidation */
-+ malloc_consolidate(av);
-+
-+#ifndef MORECORE_CANNOT_TRIM
-+ return sYSTRIm(pad, av);
-+#else
-+ return 0;
-+#endif
-+}
-+
-+
-+/*
-+ ------------------------- malloc_usable_size -------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+size_t mUSABLe(Void_t* mem)
-+#else
-+size_t mUSABLe(mem) Void_t* mem;
-+#endif
-+{
-+ mchunkptr p;
-+ if (mem != 0) {
-+ p = mem2chunk(mem);
-+ if (chunk_is_mmapped(p))
-+ return chunksize(p) - 2*SIZE_SZ;
-+ else if (inuse(p))
-+ return chunksize(p) - SIZE_SZ;
-+ }
-+ return 0;
-+}
-+
-+/*
-+ ------------------------------ mallinfo ------------------------------
-+*/
-+
-+struct mallinfo mALLINFo()
-+{
-+ mstate av = get_malloc_state();
-+ struct mallinfo mi;
-+ unsigned int i;
-+ mbinptr b;
-+ mchunkptr p;
-+ INTERNAL_SIZE_T avail;
-+ INTERNAL_SIZE_T fastavail;
-+ int nblocks;
-+ int nfastblocks;
-+
-+ /* Ensure initialization */
-+ if (av->top == 0) malloc_consolidate(av);
-+
-+ check_malloc_state();
-+
-+ /* Account for top */
-+ avail = chunksize(av->top);
-+ nblocks = 1; /* top always exists */
-+
-+ /* traverse fastbins */
-+ nfastblocks = 0;
-+ fastavail = 0;
-+
-+ for (i = 0; i < NFASTBINS; ++i) {
-+ for (p = av->fastbins[i]; p != 0; p = p->fd) {
-+ ++nfastblocks;
-+ fastavail += chunksize(p);
-+ }
-+ }
-+
-+ avail += fastavail;
-+
-+ /* traverse regular bins */
-+ for (i = 1; i < NBINS; ++i) {
-+ b = bin_at(av, i);
-+ for (p = last(b); p != b; p = p->bk) {
-+ ++nblocks;
-+ avail += chunksize(p);
-+ }
-+ }
-+
-+ mi.smblks = nfastblocks;
-+ mi.ordblks = nblocks;
-+ mi.fordblks = avail;
-+ mi.uordblks = av->sbrked_mem - avail;
-+ mi.arena = av->sbrked_mem;
-+ mi.hblks = av->n_mmaps;
-+ mi.hblkhd = av->mmapped_mem;
-+ mi.fsmblks = fastavail;
-+ mi.keepcost = chunksize(av->top);
-+ mi.usmblks = av->max_total_mem;
-+ return mi;
-+}
-+
-+/*
-+ ------------------------------ malloc_stats ------------------------------
-+*/
-+
-+void mSTATs()
-+{
-+ struct mallinfo mi = mALLINFo();
-+
-+#ifdef WIN32
-+ {
-+ unsigned long free, reserved, committed;
-+ vminfo (&free, &reserved, &committed);
-+ fprintf(stderr, "free bytes = %10lu\n",
-+ free);
-+ fprintf(stderr, "reserved bytes = %10lu\n",
-+ reserved);
-+ fprintf(stderr, "committed bytes = %10lu\n",
-+ committed);
-+ }
-+#endif
-+
-+
-+ fprintf(stderr, "max system bytes = %10lu\n",
-+ (unsigned long)(mi.usmblks));
-+ fprintf(stderr, "system bytes = %10lu\n",
-+ (unsigned long)(mi.arena + mi.hblkhd));
-+ fprintf(stderr, "in use bytes = %10lu\n",
-+ (unsigned long)(mi.uordblks + mi.hblkhd));
-+
-+
-+#ifdef WIN32
-+ {
-+ unsigned long kernel, user;
-+ if (cpuinfo (TRUE, &kernel, &user)) {
-+ fprintf(stderr, "kernel ms = %10lu\n",
-+ kernel);
-+ fprintf(stderr, "user ms = %10lu\n",
-+ user);
-+ }
-+ }
-+#endif
-+}
-+
-+
-+/*
-+ ------------------------------ mallopt ------------------------------
-+*/
-+
-+INLINE
-+#if __STD_C
-+int mALLOPt(int param_number, int value)
-+#else
-+int mALLOPt(param_number, value) int param_number; int value;
-+#endif
-+{
-+ mstate av = get_malloc_state();
-+ /* Ensure initialization/consolidation */
-+ malloc_consolidate(av);
-+
-+ switch(param_number) {
-+ case M_MXFAST:
-+ if (value >= 0 && value <= MAX_FAST_SIZE) {
-+ set_max_fast(av, value);
-+ return 1;
-+ }
-+ else
-+ return 0;
-+
-+ case M_TRIM_THRESHOLD:
-+ av->trim_threshold = value;
-+ return 1;
-+
-+ case M_TOP_PAD:
-+ av->top_pad = value;
-+ return 1;
-+
-+ case M_MMAP_THRESHOLD:
-+ av->mmap_threshold = value;
-+ return 1;
-+
-+ case M_MMAP_MAX:
-+#if !HAVE_MMAP
-+ if (value != 0)
-+ return 0;
-+#endif
-+ av->n_mmaps_max = value;
-+ return 1;
-+
-+ default:
-+ return 0;
-+ }
-+}
-+
-+
-+/*
-+ -------------------- Alternative MORECORE functions --------------------
-+*/
-+
-+
-+/*
-+ General Requirements for MORECORE.
-+
-+ The MORECORE function must have the following properties:
-+
-+ If MORECORE_CONTIGUOUS is false:
-+
-+ * MORECORE must allocate in multiples of pagesize. It will
-+ only be called with arguments that are multiples of pagesize.
-+
-+ * MORECORE(0) must return an address that is at least
-+ MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
-+
-+ else (i.e. If MORECORE_CONTIGUOUS is true):
-+
-+ * Consecutive calls to MORECORE with positive arguments
-+ return increasing addresses, indicating that space has been
-+ contiguously extended.
-+
-+ * MORECORE need not allocate in multiples of pagesize.
-+ Calls to MORECORE need not have args of multiples of pagesize.
-+
-+ * MORECORE need not page-align.
-+
-+ In either case:
-+
-+ * MORECORE may allocate more memory than requested. (Or even less,
-+ but this will generally result in a malloc failure.)
-+
-+ * MORECORE must not allocate memory when given argument zero, but
-+ instead return one past the end address of memory from previous
-+ nonzero call. This malloc does NOT call MORECORE(0)
-+ until at least one call with positive arguments is made, so
-+ the initial value returned is not important.
-+
-+ * Even though consecutive calls to MORECORE need not return contiguous
-+ addresses, it must be OK for malloc'ed chunks to span multiple
-+ regions in those cases where they do happen to be contiguous.
-+
-+ * MORECORE need not handle negative arguments -- it may instead
-+ just return MORECORE_FAILURE when given negative arguments.
-+ Negative arguments are always multiples of pagesize. MORECORE
-+ must not misinterpret negative args as large positive unsigned
-+ args. You can suppress all such calls from even occurring by defining
-+ MORECORE_CANNOT_TRIM,
-+
-+ There is some variation across systems about the type of the
-+ argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
-+ actually be size_t, because sbrk supports negative args, so it is
-+ normally the signed type of the same width as size_t (sometimes
-+ declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
-+ matter though. Internally, we use "long" as arguments, which should
-+ work across all reasonable possibilities.
-+
-+ Additionally, if MORECORE ever returns failure for a positive
-+ request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
-+ system allocator. This is a useful backup strategy for systems with
-+ holes in address spaces -- in this case sbrk cannot contiguously
-+ expand the heap, but mmap may be able to map noncontiguous space.
-+
-+ If you'd like mmap to ALWAYS be used, you can define MORECORE to be
-+ a function that always returns MORECORE_FAILURE.
-+
-+ If you are using this malloc with something other than sbrk (or its
-+ emulation) to supply memory regions, you probably want to set
-+ MORECORE_CONTIGUOUS as false. As an example, here is a custom
-+ allocator kindly contributed for pre-OSX macOS. It uses virtually
-+ but not necessarily physically contiguous non-paged memory (locked
-+ in, present and won't get swapped out). You can use it by
-+ uncommenting this section, adding some #includes, and setting up the
-+ appropriate defines above:
-+
-+ #define MORECORE osMoreCore
-+ #define MORECORE_CONTIGUOUS 0
-+
-+ There is also a shutdown routine that should somehow be called for
-+ cleanup upon program exit.
-+
-+ #define MAX_POOL_ENTRIES 100
-+ #define MINIMUM_MORECORE_SIZE (64 * 1024)
-+ static int next_os_pool;
-+ void *our_os_pools[MAX_POOL_ENTRIES];
-+
-+ void *osMoreCore(int size)
-+ {
-+ void *ptr = 0;
-+ static void *sbrk_top = 0;
-+
-+ if (size > 0)
-+ {
-+ if (size < MINIMUM_MORECORE_SIZE)
-+ size = MINIMUM_MORECORE_SIZE;
-+ if (CurrentExecutionLevel() == kTaskLevel)
-+ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
-+ if (ptr == 0)
-+ {
-+ return (void *) MORECORE_FAILURE;
-+ }
-+ // save ptrs so they can be freed during cleanup
-+ our_os_pools[next_os_pool] = ptr;
-+ next_os_pool++;
-+ ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
-+ sbrk_top = (char *) ptr + size;
-+ return ptr;
-+ }
-+ else if (size < 0)
-+ {
-+ // we don't currently support shrink behavior
-+ return (void *) MORECORE_FAILURE;
-+ }
-+ else
-+ {
-+ return sbrk_top;
-+ }
-+ }
-+
-+ // cleanup any allocated memory pools
-+ // called as last thing before shutting down driver
-+
-+ void osCleanupMem(void)
-+ {
-+ void **ptr;
-+
-+ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
-+ if (*ptr)
-+ {
-+ PoolDeallocate(*ptr);
-+ *ptr = 0;
-+ }
-+ }
-+
-+*/
-+
-+
-+/*
-+ --------------------------------------------------------------
-+
-+ Emulation of sbrk for win32.
-+ Donated by J. Walter <Walter@GeNeSys-e.de>.
-+ For additional information about this code, and malloc on Win32, see
-+ http://www.genesys-e.de/jwalter/
-+*/
-+
-+
-+#ifdef WIN32
-+
-+#ifdef _DEBUG
-+/* #define TRACE */
-+#endif
-+
-+/* Support for USE_MALLOC_LOCK */
-+#ifdef USE_MALLOC_LOCK
-+
-+/* Wait for spin lock */
-+static int slwait (int *sl) {
-+ while (InterlockedCompareExchange ((void **) sl, (void *) 1, (void *) 0) != 0)
-+ Sleep (0);
-+ return 0;
-+}
-+
-+/* Release spin lock */
-+static int slrelease (int *sl) {
-+ InterlockedExchange (sl, 0);
-+ return 0;
-+}
-+
-+#ifdef NEEDED
-+/* Spin lock for emulation code */
-+static int g_sl;
-+#endif
-+
-+#endif /* USE_MALLOC_LOCK */
-+
-+/* getpagesize for windows */
-+static long getpagesize (void) {
-+ static long g_pagesize = 0;
-+ if (! g_pagesize) {
-+ SYSTEM_INFO system_info;
-+ GetSystemInfo (&system_info);
-+ g_pagesize = system_info.dwPageSize;
-+ }
-+ return g_pagesize;
-+}
-+static long getregionsize (void) {
-+ static long g_regionsize = 0;
-+ if (! g_regionsize) {
-+ SYSTEM_INFO system_info;
-+ GetSystemInfo (&system_info);
-+ g_regionsize = system_info.dwAllocationGranularity;
-+ }
-+ return g_regionsize;
-+}
-+
-+/* A region list entry */
-+typedef struct _region_list_entry {
-+ void *top_allocated;
-+ void *top_committed;
-+ void *top_reserved;
-+ long reserve_size;
-+ struct _region_list_entry *previous;
-+} region_list_entry;
-+
-+/* Allocate and link a region entry in the region list */
-+static int region_list_append (region_list_entry **last, void *base_reserved, long reserve_size) {
-+ region_list_entry *next = HeapAlloc (GetProcessHeap (), 0, sizeof (region_list_entry));
-+ if (! next)
-+ return FALSE;
-+ next->top_allocated = (char *) base_reserved;
-+ next->top_committed = (char *) base_reserved;
-+ next->top_reserved = (char *) base_reserved + reserve_size;
-+ next->reserve_size = reserve_size;
-+ next->previous = *last;
-+ *last = next;
-+ return TRUE;
-+}
-+/* Free and unlink the last region entry from the region list */
-+static int region_list_remove (region_list_entry **last) {
-+ region_list_entry *previous = (*last)->previous;
-+ if (! HeapFree (GetProcessHeap (), sizeof (region_list_entry), *last))
-+ return FALSE;
-+ *last = previous;
-+ return TRUE;
-+}
-+
-+#define CEIL(size,to) (((size)+(to)-1)&~((to)-1))
-+#define FLOOR(size,to) ((size)&~((to)-1))
-+
-+#define SBRK_SCALE 0
-+/* #define SBRK_SCALE 1 */
-+/* #define SBRK_SCALE 2 */
-+/* #define SBRK_SCALE 4 */
-+
-+/* sbrk for windows */
-+static void *sbrk (long size) {
-+ static long g_pagesize, g_my_pagesize;
-+ static long g_regionsize, g_my_regionsize;
-+ static region_list_entry *g_last;
-+ void *result = (void *) MORECORE_FAILURE;
-+#ifdef TRACE
-+ printf ("sbrk %d\n", size);
-+#endif
-+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-+ /* Wait for spin lock */
-+ slwait (&g_sl);
-+#endif
-+ /* First time initialization */
-+ if (! g_pagesize) {
-+ g_pagesize = getpagesize ();
-+ g_my_pagesize = g_pagesize << SBRK_SCALE;
-+ }
-+ if (! g_regionsize) {
-+ g_regionsize = getregionsize ();
-+ g_my_regionsize = g_regionsize << SBRK_SCALE;
-+ }
-+ if (! g_last) {
-+ if (! region_list_append (&g_last, 0, 0))
-+ goto sbrk_exit;
-+ }
-+ /* Assert invariants */
-+ assert (g_last);
-+ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated &&
-+ g_last->top_allocated <= g_last->top_committed);
-+ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed &&
-+ g_last->top_committed <= g_last->top_reserved &&
-+ (unsigned) g_last->top_committed % g_pagesize == 0);
-+ assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
-+ assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
-+ /* Allocation requested? */
-+ if (size >= 0) {
-+ /* Allocation size is the requested size */
-+ long allocate_size = size;
-+ /* Compute the size to commit */
-+ long to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
-+ /* Do we reach the commit limit? */
-+ if (to_commit > 0) {
-+ /* Round size to commit */
-+ long commit_size = CEIL (to_commit, g_my_pagesize);
-+ /* Compute the size to reserve */
-+ long to_reserve = (char *) g_last->top_committed + commit_size - (char *) g_last->top_reserved;
-+ /* Do we reach the reserve limit? */
-+ if (to_reserve > 0) {
-+ /* Compute the remaining size to commit in the current region */
-+ long remaining_commit_size = (char *) g_last->top_reserved - (char *) g_last->top_committed;
-+ if (remaining_commit_size > 0) {
-+ /* Assert preconditions */
-+ assert ((unsigned) g_last->top_committed % g_pagesize == 0);
-+ assert (0 < remaining_commit_size && remaining_commit_size % g_pagesize == 0); {
-+ /* Commit this */
-+ void *base_committed = VirtualAlloc (g_last->top_committed, remaining_commit_size,
-+ MEM_COMMIT, PAGE_READWRITE);
-+ /* Check returned pointer for consistency */
-+ if (base_committed != g_last->top_committed)
-+ goto sbrk_exit;
-+ /* Assert postconditions */
-+ assert ((unsigned) base_committed % g_pagesize == 0);
-+#ifdef TRACE
-+ printf ("Commit %p %d\n", base_committed, remaining_commit_size);
-+#endif
-+ /* Adjust the regions commit top */
-+ g_last->top_committed = (char *) base_committed + remaining_commit_size;
-+ }
-+ } {
-+ /* Now we are going to search and reserve. */
-+ int contiguous = -1;
-+ int found = FALSE;
-+ MEMORY_BASIC_INFORMATION memory_info;
-+ void *base_reserved;
-+ long reserve_size;
-+ do {
-+ /* Assume contiguous memory */
-+ contiguous = TRUE;
-+ /* Round size to reserve */
-+ reserve_size = CEIL (to_reserve, g_my_regionsize);
-+ /* Start with the current region's top */
-+ memory_info.BaseAddress = g_last->top_reserved;
-+ /* Assert preconditions */
-+ assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
-+ assert (0 < reserve_size && reserve_size % g_regionsize == 0);
-+ while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) {
-+ /* Assert postconditions */
-+ assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
-+#ifdef TRACE
-+ printf ("Query %p %d %s\n", memory_info.BaseAddress, memory_info.RegionSize,
-+ memory_info.State == MEM_FREE ? "FREE":
-+ (memory_info.State == MEM_RESERVE ? "RESERVED":
-+ (memory_info.State == MEM_COMMIT ? "COMMITTED": "?")));
-+#endif
-+ /* Region is free, well aligned and big enough: we are done */
-+ if (memory_info.State == MEM_FREE &&
-+ (unsigned) memory_info.BaseAddress % g_regionsize == 0 &&
-+ memory_info.RegionSize >= (unsigned) reserve_size) {
-+ found = TRUE;
-+ break;
-+ }
-+ /* From now on we can't get contiguous memory! */
-+ contiguous = FALSE;
-+ /* Recompute size to reserve */
-+ reserve_size = CEIL (allocate_size, g_my_regionsize);
-+ memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize;
-+ /* Assert preconditions */
-+ assert ((unsigned) memory_info.BaseAddress % g_pagesize == 0);
-+ assert (0 < reserve_size && reserve_size % g_regionsize == 0);
-+ }
-+ /* Search failed? */
-+ if (! found)
-+ goto sbrk_exit;
-+ /* Assert preconditions */
-+ assert ((unsigned) memory_info.BaseAddress % g_regionsize == 0);
-+ assert (0 < reserve_size && reserve_size % g_regionsize == 0);
-+ /* Try to reserve this */
-+ base_reserved = VirtualAlloc (memory_info.BaseAddress, reserve_size,
-+ MEM_RESERVE, PAGE_NOACCESS);
-+ if (! base_reserved) {
-+ int rc = GetLastError ();
-+ if (rc != ERROR_INVALID_ADDRESS)
-+ goto sbrk_exit;
-+ }
-+ /* A null pointer signals (hopefully) a race condition with another thread. */
-+ /* In this case, we try again. */
-+ } while (! base_reserved);
-+ /* Check returned pointer for consistency */
-+ if (memory_info.BaseAddress && base_reserved != memory_info.BaseAddress)
-+ goto sbrk_exit;
-+ /* Assert postconditions */
-+ assert ((unsigned) base_reserved % g_regionsize == 0);
-+#ifdef TRACE
-+ printf ("Reserve %p %d\n", base_reserved, reserve_size);
-+#endif
-+ /* Did we get contiguous memory? */
-+ if (contiguous) {
-+ long start_size = (char *) g_last->top_committed - (char *) g_last->top_allocated;
-+ /* Adjust allocation size */
-+ allocate_size -= start_size;
-+ /* Adjust the regions allocation top */
-+ g_last->top_allocated = g_last->top_committed;
-+ /* Recompute the size to commit */
-+ to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
-+ /* Round size to commit */
-+ commit_size = CEIL (to_commit, g_my_pagesize);
-+ }
-+ /* Append the new region to the list */
-+ if (! region_list_append (&g_last, base_reserved, reserve_size))
-+ goto sbrk_exit;
-+ /* Didn't we get contiguous memory? */
-+ if (! contiguous) {
-+ /* Recompute the size to commit */
-+ to_commit = (char *) g_last->top_allocated + allocate_size - (char *) g_last->top_committed;
-+ /* Round size to commit */
-+ commit_size = CEIL (to_commit, g_my_pagesize);
-+ }
-+ }
-+ }
-+ /* Assert preconditions */
-+ assert ((unsigned) g_last->top_committed % g_pagesize == 0);
-+ assert (0 < commit_size && commit_size % g_pagesize == 0); {
-+ /* Commit this */
-+ void *base_committed = VirtualAlloc (g_last->top_committed, commit_size,
-+ MEM_COMMIT, PAGE_READWRITE);
-+ /* Check returned pointer for consistency */
-+ if (base_committed != g_last->top_committed)
-+ goto sbrk_exit;
-+ /* Assert postconditions */
-+ assert ((unsigned) base_committed % g_pagesize == 0);
-+#ifdef TRACE
-+ printf ("Commit %p %d\n", base_committed, commit_size);
-+#endif
-+ /* Adjust the regions commit top */
-+ g_last->top_committed = (char *) base_committed + commit_size;
-+ }
-+ }
-+ /* Adjust the regions allocation top */
-+ g_last->top_allocated = (char *) g_last->top_allocated + allocate_size;
-+ result = (char *) g_last->top_allocated - size;
-+ /* Deallocation requested? */
-+ } else if (size < 0) {
-+ long deallocate_size = - size;
-+ /* As long as we have a region to release */
-+ while ((char *) g_last->top_allocated - deallocate_size < (char *) g_last->top_reserved - g_last->reserve_size) {
-+ /* Get the size to release */
-+ long release_size = g_last->reserve_size;
-+ /* Get the base address */
-+ void *base_reserved = (char *) g_last->top_reserved - release_size;
-+ /* Assert preconditions */
-+ assert ((unsigned) base_reserved % g_regionsize == 0);
-+ assert (0 < release_size && release_size % g_regionsize == 0); {
-+ /* Release this */
-+ int rc = VirtualFree (base_reserved, 0,
-+ MEM_RELEASE);
-+ /* Check returned code for consistency */
-+ if (! rc)
-+ goto sbrk_exit;
-+#ifdef TRACE
-+ printf ("Release %p %d\n", base_reserved, release_size);
-+#endif
-+ }
-+ /* Adjust deallocation size */
-+ deallocate_size -= (char *) g_last->top_allocated - (char *) base_reserved;
-+ /* Remove the old region from the list */
-+ if (! region_list_remove (&g_last))
-+ goto sbrk_exit;
-+ } {
-+ /* Compute the size to decommit */
-+ long to_decommit = (char *) g_last->top_committed - ((char *) g_last->top_allocated - deallocate_size);
-+ if (to_decommit >= g_my_pagesize) {
-+ /* Compute the size to decommit */
-+ long decommit_size = FLOOR (to_decommit, g_my_pagesize);
-+ /* Compute the base address */
-+ void *base_committed = (char *) g_last->top_committed - decommit_size;
-+ /* Assert preconditions */
-+ assert ((unsigned) base_committed % g_pagesize == 0);
-+ assert (0 < decommit_size && decommit_size % g_pagesize == 0); {
-+ /* Decommit this */
-+ int rc = VirtualFree ((char *) base_committed, decommit_size,
-+ MEM_DECOMMIT);
-+ /* Check returned code for consistency */
-+ if (! rc)
-+ goto sbrk_exit;
-+#ifdef TRACE
-+ printf ("Decommit %p %d\n", base_committed, decommit_size);
-+#endif
-+ }
-+ /* Adjust deallocation size and regions commit and allocate top */
-+ deallocate_size -= (char *) g_last->top_allocated - (char *) base_committed;
-+ g_last->top_committed = base_committed;
-+ g_last->top_allocated = base_committed;
-+ }
-+ }
-+ /* Adjust regions allocate top */
-+ g_last->top_allocated = (char *) g_last->top_allocated - deallocate_size;
-+ /* Check for underflow */
-+ if ((char *) g_last->top_reserved - g_last->reserve_size > (char *) g_last->top_allocated ||
-+ g_last->top_allocated > g_last->top_committed) {
-+ /* Adjust regions allocate top */
-+ g_last->top_allocated = (char *) g_last->top_reserved - g_last->reserve_size;
-+ goto sbrk_exit;
-+ }
-+ result = g_last->top_allocated;
-+ }
-+ /* Assert invariants */
-+ assert (g_last);
-+ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_allocated &&
-+ g_last->top_allocated <= g_last->top_committed);
-+ assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) g_last->top_committed &&
-+ g_last->top_committed <= g_last->top_reserved &&
-+ (unsigned) g_last->top_committed % g_pagesize == 0);
-+ assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
-+ assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
-+
-+sbrk_exit:
-+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-+ /* Release spin lock */
-+ slrelease (&g_sl);
-+#endif
-+ return result;
-+}
-+
-+/* mmap for windows */
-+static void *mmap (void *ptr, long size, long prot, long type, long handle, long arg) {
-+ static long g_pagesize;
-+ static long g_regionsize;
-+#ifdef TRACE
-+ printf ("mmap %d\n", size);
-+#endif
-+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-+ /* Wait for spin lock */
-+ slwait (&g_sl);
-+#endif
-+ /* First time initialization */
-+ if (! g_pagesize)
-+ g_pagesize = getpagesize ();
-+ if (! g_regionsize)
-+ g_regionsize = getregionsize ();
-+ /* Assert preconditions */
-+ assert ((unsigned) ptr % g_regionsize == 0);
-+ assert (size % g_pagesize == 0);
-+ /* Allocate this */
-+ ptr = VirtualAlloc (ptr, size,
-+ MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN, PAGE_READWRITE);
-+ if (! ptr) {
-+ ptr = (void *) MORECORE_FAILURE;
-+ goto mmap_exit;
-+ }
-+ /* Assert postconditions */
-+ assert ((unsigned) ptr % g_regionsize == 0);
-+#ifdef TRACE
-+ printf ("Commit %p %d\n", ptr, size);
-+#endif
-+mmap_exit:
-+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-+ /* Release spin lock */
-+ slrelease (&g_sl);
-+#endif
-+ return ptr;
-+}
-+
-+/* munmap for windows */
-+static long munmap (void *ptr, long size) {
-+ static long g_pagesize;
-+ static long g_regionsize;
-+ int rc = MUNMAP_FAILURE;
-+#ifdef TRACE
-+ printf ("munmap %p %d\n", ptr, size);
-+#endif
-+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-+ /* Wait for spin lock */
-+ slwait (&g_sl);
-+#endif
-+ /* First time initialization */
-+ if (! g_pagesize)
-+ g_pagesize = getpagesize ();
-+ if (! g_regionsize)
-+ g_regionsize = getregionsize ();
-+ /* Assert preconditions */
-+ assert ((unsigned) ptr % g_regionsize == 0);
-+ assert (size % g_pagesize == 0);
-+ /* Free this */
-+ if (! VirtualFree (ptr, 0,
-+ MEM_RELEASE))
-+ goto munmap_exit;
-+ rc = 0;
-+#ifdef TRACE
-+ printf ("Release %p %d\n", ptr, size);
-+#endif
-+munmap_exit:
-+#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-+ /* Release spin lock */
-+ slrelease (&g_sl);
-+#endif
-+ return rc;
-+}
-+
-+static void vminfo (unsigned long *free, unsigned long *reserved, unsigned long *committed) {
-+ MEMORY_BASIC_INFORMATION memory_info;
-+ memory_info.BaseAddress = 0;
-+ *free = *reserved = *committed = 0;
-+ while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof (memory_info))) {
-+ switch (memory_info.State) {
-+ case MEM_FREE:
-+ *free += memory_info.RegionSize;
-+ break;
-+ case MEM_RESERVE:
-+ *reserved += memory_info.RegionSize;
-+ break;
-+ case MEM_COMMIT:
-+ *committed += memory_info.RegionSize;
-+ break;
-+ }
-+ memory_info.BaseAddress = (char *) memory_info.BaseAddress + memory_info.RegionSize;
-+ }
-+}
-+
-+static int cpuinfo (int whole, unsigned long *kernel, unsigned long *user) {
-+ if (whole) {
-+ __int64 creation64, exit64, kernel64, user64;
-+ int rc = GetProcessTimes (GetCurrentProcess (),
-+ (FILETIME *) &creation64,
-+ (FILETIME *) &exit64,
-+ (FILETIME *) &kernel64,
-+ (FILETIME *) &user64);
-+ if (! rc) {
-+ *kernel = 0;
-+ *user = 0;
-+ return FALSE;
-+ }
-+ *kernel = (unsigned long) (kernel64 / 10000);
-+ *user = (unsigned long) (user64 / 10000);
-+ return TRUE;
-+ } else {
-+ __int64 creation64, exit64, kernel64, user64;
-+ int rc = GetThreadTimes (GetCurrentThread (),
-+ (FILETIME *) &creation64,
-+ (FILETIME *) &exit64,
-+ (FILETIME *) &kernel64,
-+ (FILETIME *) &user64);
-+ if (! rc) {
-+ *kernel = 0;
-+ *user = 0;
-+ return FALSE;
-+ }
-+ *kernel = (unsigned long) (kernel64 / 10000);
-+ *user = (unsigned long) (user64 / 10000);
-+ return TRUE;
-+ }
-+}
-+
-+#endif /* WIN32 */
-+
-+/* ------------------------------------------------------------
-+History:
-+
-+ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
-+ * Introduce independent_comalloc and independent_calloc.
-+ Thanks to Michael Pachos for motivation and help.
-+ * Make optional .h file available
-+ * Allow > 2GB requests on 32bit systems.
-+ * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
-+ Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
-+ and Anonymous.
-+ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
-+ helping test this.)
-+ * memalign: check alignment arg
-+ * realloc: don't try to shift chunks backwards, since this
-+ leads to more fragmentation in some programs and doesn't
-+ seem to help in any others.
-+ * Collect all cases in malloc requiring system memory into sYSMALLOc
-+ * Use mmap as backup to sbrk
-+ * Place all internal state in malloc_state
-+ * Introduce fastbins (although similar to 2.5.1)
-+ * Many minor tunings and cosmetic improvements
-+ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
-+ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
-+ Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
-+ * Include errno.h to support default failure action.
-+
-+ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
-+ * return null for negative arguments
-+ * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
-+ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
-+ (e.g. WIN32 platforms)
-+ * Cleanup header file inclusion for WIN32 platforms
-+ * Cleanup code to avoid Microsoft Visual C++ compiler complaints
-+ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
-+ memory allocation routines
-+ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
-+ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
-+ usage of 'assert' in non-WIN32 code
-+ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
-+ avoid infinite loop
-+ * Always call 'fREe()' rather than 'free()'
-+
-+ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
-+ * Fixed ordering problem with boundary-stamping
-+
-+ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
-+ * Added pvalloc, as recommended by H.J. Liu
-+ * Added 64bit pointer support mainly from Wolfram Gloger
-+ * Added anonymously donated WIN32 sbrk emulation
-+ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
-+ * malloc_extend_top: fix mask error that caused wastage after
-+ foreign sbrks
-+ * Add linux mremap support code from HJ Liu
-+
-+ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
-+ * Integrated most documentation with the code.
-+ * Add support for mmap, with help from
-+ Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
-+ * Use last_remainder in more cases.
-+ * Pack bins using idea from colin@nyx10.cs.du.edu
-+ * Use ordered bins instead of best-fit threshold
-+ * Eliminate block-local decls to simplify tracing and debugging.
-+ * Support another case of realloc via move into top
-+ * Fix error occurring when initial sbrk_base not word-aligned.
-+ * Rely on page size for units instead of SBRK_UNIT to
-+ avoid surprises about sbrk alignment conventions.
-+ * Add mallinfo, mallopt. Thanks to Raymond Nijssen
-+ (raymond@es.ele.tue.nl) for the suggestion.
-+ * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
-+ * More precautions for cases where other routines call sbrk,
-+ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
-+ * Added macros etc., allowing use in linux libc from
-+ H.J. Lu (hjl@gnu.ai.mit.edu)
-+ * Inverted this history list
-+
-+ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
-+ * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
-+ * Removed all preallocation code since under current scheme
-+ the work required to undo bad preallocations exceeds
-+ the work saved in good cases for most test programs.
-+ * No longer use return list or unconsolidated bins since
-+ no scheme using them consistently outperforms those that don't
-+ given above changes.
-+ * Use best fit for very large chunks to prevent some worst-cases.
-+ * Added some support for debugging
-+
-+ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
-+ * Removed footers when chunks are in use. Thanks to
-+ Paul Wilson (wilson@cs.texas.edu) for the suggestion.
-+
-+ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
-+ * Added malloc_trim, with help from Wolfram Gloger
-+ (wmglo@Dent.MED.Uni-Muenchen.DE).
-+
-+ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
-+
-+ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
-+ * realloc: try to expand in both directions
-+ * malloc: swap order of clean-bin strategy;
-+ * realloc: only conditionally expand backwards
-+ * Try not to scavenge used bins
-+ * Use bin counts as a guide to preallocation
-+ * Occasionally bin return list chunks in first scan
-+ * Add a few optimizations from colin@nyx10.cs.du.edu
-+
-+ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
-+ * faster bin computation & slightly different binning
-+ * merged all consolidations to one part of malloc proper
-+ (eliminating old malloc_find_space & malloc_clean_bin)
-+ * Scan 2 returns chunks (not just 1)
-+ * Propagate failure in realloc if malloc returns 0
-+ * Add stuff to allow compilation on non-ANSI compilers
-+ from kpv@research.att.com
-+
-+ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
-+ * removed potential for odd address access in prev_chunk
-+ * removed dependency on getpagesize.h
-+ * misc cosmetics and a bit more internal documentation
-+ * anticosmetics: mangled names in macros to evade debugger strangeness
-+ * tested on sparc, hp-700, dec-mips, rs6000
-+ with gcc & native cc (hp, dec only) allowing
-+ Detlefs & Zorn comparison study (in SIGPLAN Notices.)
-+
-+ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
-+ * Based loosely on libg++-1.2X malloc. (It retains some of the overall
-+ structure of old version, but most details differ.)
-+
-+*/
-+
-+#ifdef USE_PUBLIC_MALLOC_WRAPPERS
-+
-+#ifndef KDE_MALLOC_FULL
-+
-+#ifdef KDE_MALLOC_GLIBC
-+#include "glibc.h"
-+#else
-+/* cannot use dlsym(RTLD_NEXT,...) here, it calls malloc()*/
-+#error Unknown libc
-+#endif
-+
-+/* 0 - uninitialized
-+ 1 - this malloc
-+ 2 - standard libc malloc*/
-+extern char* getenv(const char*);
-+static int malloc_type = 0;
-+static void init_malloc_type(void)
-+ {
-+ const char* const env = getenv( "KDE_MALLOC" );
-+ if( env == NULL )
-+ malloc_type = 1;
-+ else if( env[ 0 ] == '0' || env[ 0 ] == 'n' || env[ 0 ] == 'N' )
-+ malloc_type = 2;
-+ else
-+ malloc_type = 1;
-+ }
-+
-+#endif
-+
-+Void_t* public_mALLOc(size_t bytes) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = mALLOc(bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_malloc( bytes );
-+ init_malloc_type();
-+ return public_mALLOc( bytes );
-+#endif
-+}
-+
-+void public_fREe(Void_t* m) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ if (MALLOC_PREACTION != 0) {
-+ return;
-+ }
-+ fREe(m);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+#ifndef KDE_MALLOC_FULL
-+ return;
-+ }
-+ if( malloc_type == 2 )
-+ {
-+ libc_free( m );
-+ return;
-+ }
-+ init_malloc_type();
-+ public_fREe( m );
-+#endif
-+}
-+
-+Void_t* public_rEALLOc(Void_t* m, size_t bytes) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = rEALLOc(m, bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_realloc( m, bytes );
-+ init_malloc_type();
-+ return public_rEALLOc( m, bytes );
-+#endif
-+}
-+
-+Void_t* public_mEMALIGn(size_t alignment, size_t bytes) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = mEMALIGn(alignment, bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_memalign( alignment, bytes );
-+ init_malloc_type();
-+ return public_mEMALIGn( alignment, bytes );
-+#endif
-+}
-+
-+Void_t* public_vALLOc(size_t bytes) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = vALLOc(bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_valloc( bytes );
-+ init_malloc_type();
-+ return public_vALLOc( bytes );
-+#endif
-+}
-+
-+Void_t* public_pVALLOc(size_t bytes) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = pVALLOc(bytes);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_pvalloc( bytes );
-+ init_malloc_type();
-+ return public_pVALLOc( bytes );
-+#endif
-+}
-+
-+Void_t* public_cALLOc(size_t n, size_t elem_size) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ Void_t* m;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ m = cALLOc(n, elem_size);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_calloc( n, elem_size );
-+ init_malloc_type();
-+ return public_cALLOc( n, elem_size );
-+#endif
-+}
-+
-+void public_cFREe(Void_t* m) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ if (MALLOC_PREACTION != 0) {
-+ return;
-+ }
-+ cFREe(m);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+#ifndef KDE_MALLOC_FULL
-+ return;
-+ }
-+ if( malloc_type == 2 )
-+ {
-+ libc_cfree( m );
-+ return;
-+ }
-+ init_malloc_type();
-+ public_cFREe( m );
-+#endif
-+}
-+
-+struct mallinfo public_mALLINFo() {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ struct mallinfo m;
-+ if (MALLOC_PREACTION != 0) {
-+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
-+ return nm;
-+ }
-+ m = mALLINFo();
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return m;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_mallinfo();
-+ init_malloc_type();
-+ return public_mALLINFo();
-+#endif
-+}
-+
-+int public_mALLOPt(int p, int v) {
-+#ifndef KDE_MALLOC_FULL
-+ if( malloc_type == 1 )
-+ {
-+#endif
-+ int result;
-+ if (MALLOC_PREACTION != 0) {
-+ return 0;
-+ }
-+ result = mALLOPt(p, v);
-+ if (MALLOC_POSTACTION != 0) {
-+ }
-+ return result;
-+#ifndef KDE_MALLOC_FULL
-+ }
-+ if( malloc_type == 2 )
-+ return libc_mallopt( p, v );
-+ init_malloc_type();
-+ return public_mALLOPt( p, v );
-+#endif
-+}
-+#endif
-+
-+int
-+posix_memalign (void **memptr, size_t alignment, size_t size)
-+{
-+ void *mem;
-+
-+ /* Test whether the SIZE argument is valid. It must be a power of
-+ two multiple of sizeof (void *). */
-+ if (size % sizeof (void *) != 0 || (size & (size - 1)) != 0)
-+ return EINVAL;
-+
-+ mem = memalign (alignment, size);
-+
-+ if (mem != NULL) {
-+ *memptr = mem;
-+ return 0;
-+ }
-+
-+ return ENOMEM;
-+}
-+
-+#else
-+/* Some linkers (Solaris 2.6) don't like empty archives, but for
-+ easier Makefile's we want to link against libklmalloc.la every time,
-+ so simply make it non-empty. */
-+void kde_malloc_dummy_function ()
-+{
-+ return;
-+}
-+#endif
-diff -Nupr a/src/corelib/arch/avr32/qatomic.cpp b/src/corelib/arch/avr32/qatomic.cpp
---- a/src/corelib/arch/avr32/qatomic.cpp 1970-01-01 01:00:00.000000000 +0100
-+++ b/src/corelib/arch/avr32/qatomic.cpp 2006-07-26 11:02:43.000000000 +0200
-@@ -0,0 +1,24 @@
-+/****************************************************************************
-+**
-+** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.
-+**
-+** This file is part of the QtCore module of the Qt Toolkit.
-+**
-+** Licensees holding valid Qt Preview licenses may use this file in
-+** accordance with the Qt Preview License Agreement provided with the
-+** Software.
-+**
-+** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
-+** information about Qt Commercial License Agreements.
-+**
-+** Contact info@trolltech.com if any conditions of this licensing are
-+** not clear to you.
-+**
-+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
-+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-+**
-+****************************************************************************/
-+
-+#include "QtCore/qatomic_avr32.h"
-+
-+Q_CORE_EXPORT long q_atomic_lock = 0;
-diff -Nupr a/src/corelib/arch/qatomic_arch.h b/src/corelib/arch/qatomic_arch.h
---- a/src/corelib/arch/qatomic_arch.h 2006-06-30 09:49:44.000000000 +0200
-+++ b/src/corelib/arch/qatomic_arch.h 2006-07-27 12:42:58.000000000 +0200
-@@ -32,6 +32,8 @@ QT_BEGIN_HEADER
- # include "QtCore/qatomic_alpha.h"
- #elif defined(QT_ARCH_ARM)
- # include "QtCore/qatomic_arm.h"
-+#elif defined(QT_ARCH_AVR32)
-+# include "QtCore/qatomic_avr32.h"
- #elif defined(QT_ARCH_BOUNDSCHECKER)
- # include "QtCore/qatomic_boundschecker.h"
- #elif defined(QT_ARCH_GENERIC)
-diff -Nupr a/src/corelib/arch/qatomic_avr32.h b/src/corelib/arch/qatomic_avr32.h
---- a/src/corelib/arch/qatomic_avr32.h 1970-01-01 01:00:00.000000000 +0100
-+++ b/src/corelib/arch/qatomic_avr32.h 2006-07-28 10:30:08.000000000 +0200
-@@ -0,0 +1,113 @@
-+/****************************************************************************
-+**
-+** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.
-+**
-+** This file is part of the QtCore module of the Qt Toolkit.
-+**
-+** Licensees holding valid Qt Preview licenses may use this file in
-+** accordance with the Qt Preview License Agreement provided with the
-+** Software.
-+**
-+** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
-+** information about Qt Commercial License Agreements.
-+**
-+** Contact info@trolltech.com if any conditions of this licensing are
-+** not clear to you.
-+**
-+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
-+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-+**
-+****************************************************************************/
-+
-+#ifndef AVR32_QATOMIC_H
-+#define AVR32_QATOMIC_H
-+
-+#include <QtCore/qglobal.h>
-+
-+QT_BEGIN_HEADER
-+
-+extern Q_CORE_EXPORT long q_atomic_lock;
-+
-+inline long q_atomic_swp(volatile long *ptr, long newval)
-+{
-+ register int ret;
-+ asm volatile("xchg %0,%1,%2"
-+ : "=&r"(ret)
-+ : "r"(ptr), "r"(newval)
-+ : "memory", "cc");
-+ return ret;
-+}
-+
-+inline int q_atomic_test_and_set_int(volatile int *ptr, int expected, int newval)
-+{
-+ int ret = 0;
-+ while (q_atomic_swp(&q_atomic_lock, ~0) != 0);
-+ if (*ptr == expected) {
-+ *ptr = newval;
-+ ret = 1;
-+ }
-+ q_atomic_swp(&q_atomic_lock, 0);
-+ return ret;
-+}
-+
-+inline int q_atomic_test_and_set_acquire_int(volatile int *ptr, int expected, int newval)
-+{
-+ return q_atomic_test_and_set_int(ptr, expected, newval);
-+}
-+
-+inline int q_atomic_test_and_set_release_int(volatile int *ptr, int expected, int newval)
-+{
-+ return q_atomic_test_and_set_int(ptr, expected, newval);
-+}
-+
-+inline int q_atomic_test_and_set_ptr(volatile void *ptr, void *expected, void *newval)
-+{
-+ int ret = 0;
-+ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
-+ if (*reinterpret_cast<void * volatile *>(ptr) == expected) {
-+ *reinterpret_cast<void * volatile *>(ptr) = newval;
-+ ret = 1;
-+ }
-+ q_atomic_swp(&q_atomic_lock, 0);
-+ return ret;
-+}
-+
-+inline int q_atomic_increment(volatile int *ptr)
-+{
-+ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
-+ int originalValue = *ptr;
-+ *ptr = originalValue + 1;
-+ q_atomic_swp(&q_atomic_lock, 0);
-+ return originalValue != -1;
-+}
-+
-+inline int q_atomic_decrement(volatile int *ptr)
-+{
-+ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
-+ int originalValue = *ptr;
-+ *ptr = originalValue - 1;
-+ q_atomic_swp(&q_atomic_lock, 0);
-+ return originalValue != 1;
-+}
-+
-+inline int q_atomic_set_int(volatile int *ptr, int newval)
-+{
-+ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
-+ int originalValue = *ptr;
-+ *ptr = newval;
-+ q_atomic_swp(&q_atomic_lock, 0);
-+ return originalValue;
-+}
-+
-+inline void *q_atomic_set_ptr(volatile void *ptr, void *newval)
-+{
-+ while (q_atomic_swp(&q_atomic_lock, ~0) != 0) ;
-+ void *originalValue = *reinterpret_cast<void * volatile *>(ptr);
-+ *reinterpret_cast<void * volatile *>(ptr) = newval;
-+ q_atomic_swp(&q_atomic_lock, 0);
-+ return originalValue;
-+}
-+
-+QT_END_HEADER
-+
-+#endif // AVR32_QATOMIC_H
-diff -Nupr a/src/corelib/io/qfilesystemwatcher_inotify.cpp b/src/corelib/io/qfilesystemwatcher_inotify.cpp
---- a/src/corelib/io/qfilesystemwatcher_inotify.cpp 2006-06-30 09:49:45.000000000 +0200
-+++ b/src/corelib/io/qfilesystemwatcher_inotify.cpp 2006-07-27 13:24:27.000000000 +0200
-@@ -72,6 +72,10 @@
- # define __NR_inotify_init 316
- # define __NR_inotify_add_watch 317
- # define __NR_inotify_rm_watch 318
-+#elif defined (__avr32__)
-+# define __NR_inotify_init 240
-+# define __NR_inotify_add_watch 241
-+# define __NR_inotify_rm_watch 242
- #elif defined (__SH4__)
- # define __NR_inotify_init 290
- # define __NR_inotify_add_watch 291
-diff -uprN a/mkspecs/qws/linux-avr32-g++/qmake.conf b/mkspecs/qws/linux-avr32-g++/qmake.conf
---- a/mkspecs/qws/linux-avr32-g++/qmake.conf 1970-01-01 01:00:00.000000000 +0100
-+++ b/mkspecs/qws/linux-avr32-g++/qmake.conf 2006-08-01 08:47:12.000000000 +0200
-@@ -0,0 +1,85 @@
-+#
-+# qmake configuration for linux-g++ using the avr32-linux-g++ crosscompiler
-+#
-+
-+MAKEFILE_GENERATOR = UNIX
-+TEMPLATE = app
-+CONFIG += qt warn_on release link_prl
-+QT += core gui network
-+QMAKE_INCREMENTAL_STYLE = sublib
-+
-+QMAKE_CC = avr32-linux-gcc
-+QMAKE_LEX = flex
-+QMAKE_LEXFLAGS =
-+QMAKE_YACC = yacc
-+QMAKE_YACCFLAGS = -d
-+QMAKE_CFLAGS = -pipe
-+QMAKE_CFLAGS_WARN_ON = -Wall -W
-+QMAKE_CFLAGS_WARN_OFF =
-+QMAKE_CFLAGS_RELEASE = -O2
-+QMAKE_CFLAGS_DEBUG = -g -O2
-+QMAKE_CFLAGS_SHLIB = -fPIC
-+QMAKE_CFLAGS_YACC = -Wno-unused -Wno-parentheses
-+QMAKE_CFLAGS_THREAD = -D_REENTRANT
-+QMAKE_CFLAGS_HIDESYMS = -fvisibility=hidden
-+
-+QMAKE_CXX = avr32-linux-g++
-+QMAKE_CXXFLAGS = $$QMAKE_CFLAGS -fno-exceptions
-+QMAKE_CXXFLAGS_WARN_ON = $$QMAKE_CFLAGS_WARN_ON
-+QMAKE_CXXFLAGS_WARN_OFF = $$QMAKE_CFLAGS_WARN_OFF
-+QMAKE_CXXFLAGS_RELEASE = $$QMAKE_CFLAGS_RELEASE
-+QMAKE_CXXFLAGS_DEBUG = $$QMAKE_CFLAGS_DEBUG
-+QMAKE_CXXFLAGS_SHLIB = $$QMAKE_CFLAGS_SHLIB
-+QMAKE_CXXFLAGS_YACC = $$QMAKE_CFLAGS_YACC
-+QMAKE_CXXFLAGS_THREAD = $$QMAKE_CFLAGS_THREAD
-+QMAKE_CXXFLAGS_HIDESYMS = $$QMAKE_CFLAGS_HIDESYMS -fvisibility-inlines-hidden
-+
-+QMAKE_INCDIR =
-+QMAKE_LIBDIR =
-+QMAKE_INCDIR_X11 =
-+QMAKE_LIBDIR_X11 =
-+QMAKE_INCDIR_QT = $$[QT_INSTALL_HEADERS]
-+QMAKE_LIBDIR_QT = $$[QT_INSTALL_LIBS]
-+QMAKE_INCDIR_OPENGL =
-+QMAKE_LIBDIR_OPENGL =
-+QMAKE_INCDIR_QTOPIA = $(QPEDIR)/include
-+QMAKE_LIBDIR_QTOPIA = $(QPEDIR)/lib
-+
-+QMAKE_LINK = avr32-linux-g++
-+QMAKE_LINK_SHLIB = avr32-linux-g++
-+QMAKE_LFLAGS =
-+QMAKE_LFLAGS_RELEASE =
-+QMAKE_LFLAGS_DEBUG =
-+QMAKE_LFLAGS_SHLIB = -shared
-+QMAKE_LFLAGS_PLUGIN = $$QMAKE_LFLAGS_SHLIB
-+QMAKE_LFLAGS_SONAME = -Wl,-soname,
-+QMAKE_LFLAGS_THREAD =
-+QMAKE_RPATH = -Wl,-rpath,
-+
-+QMAKE_LIBS =
-+QMAKE_LIBS_DYNLOAD = -ldl
-+QMAKE_LIBS_X11 =
-+QMAKE_LIBS_X11SM =
-+QMAKE_LIBS_QT = -lqte
-+QMAKE_LIBS_QT_THREAD = -lqte-mt
-+QMAKE_LIBS_QT_OPENGL = -lqgl
-+QMAKE_LIBS_QTOPIA = -lqpe -lqtopia
-+QMAKE_LIBS_THREAD = -lpthread
-+
-+QMAKE_MOC = $$[QT_INSTALL_BINS]/moc
-+QMAKE_UIC = $$[QT_INSTALL_BINS]/uic
-+
-+QMAKE_AR = avr32-linux-ar cqs
-+QMAKE_RANLIB = avr32-linux-ranlib
-+
-+QMAKE_TAR = tar -cf
-+QMAKE_GZIP = gzip -9f
-+
-+QMAKE_COPY = cp -f
-+QMAKE_MOVE = mv -f
-+QMAKE_DEL_FILE = rm -f
-+QMAKE_DEL_DIR = rmdir
-+QMAKE_STRIP = avr32-linux-strip
-+QMAKE_CHK_DIR_EXISTS = test -d
-+QMAKE_MKDIR = mkdir -p
-+load(qt_config)
-diff -uprN a/mkspecs/qws/linux-avr32-g++/qplatformdefs.h b/mkspecs/qws/linux-avr32-g++/qplatformdefs.h
---- a/mkspecs/qws/linux-avr32-g++/qplatformdefs.h 1970-01-01 01:00:00.000000000 +0100
-+++ b/mkspecs/qws/linux-avr32-g++/qplatformdefs.h 2006-07-26 09:16:52.000000000 +0200
-@@ -0,0 +1,22 @@
-+/****************************************************************************
-+**
-+** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.
-+**
-+** This file is part of the qmake spec of the Qt Toolkit.
-+**
-+** Licensees holding valid Qt Preview licenses may use this file in
-+** accordance with the Qt Preview License Agreement provided with the
-+** Software.
-+**
-+** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
-+** information about Qt Commercial License Agreements.
-+**
-+** Contact info@trolltech.com if any conditions of this licensing are
-+** not clear to you.
-+**
-+** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
-+** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-+**
-+****************************************************************************/
-+
-+#include "../../linux-g++/qplatformdefs.h"