Title: Communication and Reuse of Mathematical Models Author: bnewbold Date: 2020-06-28 Tags: modelthing Status: draft This post describes the potential for collaborative infrastructure to augment human research and understanding using mathematical models. These models, consisting of symbolic equations which are semantic and machine-readable, have historically been "unreasonably effective" at describing the natural world. A prototype exploring some of these ideas is running at [modelthing.org](https://modelthing.org). After describing why I am personally interested in this work, I will describe a vision of what augmentation systems might look like, describe some existing tools, then finally propose some specific tools to build and research questions to answer. ## Personal Backstory *Feel free to skip this section...* Much of my university (undergraduate) time studying physics was spent exploring computational packages and computer algebra systems to automate math. These included general purpose computer algebra or numerical computation systems like Mathematica, MATLAB, Numerical Recipes in C, SciPy, and Sage, as well as real-time data acquisition or simulation systems like LabView, ROOT, Geant4, and EPICS. I frequently used an online system called Hyperphysics to refresh my memory of basic physics and make quick calculations of things like Rayleigh scattering, and often wished I could contribute to and extend that website to more areas of math and physics. In some cases these computational resources made it possible to skip over learning the underlying methods and math. A symptom of this was submitting problem set solutions typeset on a computer (with LaTeX), then failing to solve the same problems with pen and paper in exams.
hyperphysics screenshot
Example record in Hyperphysics, which has been ported from Hypercard to the web
A particularly influential experience late in my education was taking a course on classical mechanics using the Scheme programming language, taught by the authors of "Structure and Interpretation of Classical Mechanics" (SICM). The pedagogy of this course really struck a chord with me. Instead of learning how to operate a complex or even proprietary software black box, students learned to build up these systems almost from scratch. Writing and debugging equations and simulations in this framework was usually more about correcting our confusion or misunderstanding of the physics than computer science. I came to believe while teaching another human is the *best* way to demonstrate deep knowledge of a subject, teaching to a *computer* can be a pretty good start. Some years later, I found myself at a junction in my career and looking for a larger project to dig in to. I think of myself as a narrative-motivated individual, and was struggling to make a connection between my specific skills and training with huge, abstract, world-level struggles and challenges confronting humanity. Bret Victor's "What Can A Technologist Do About Climate Change?" essay was full of connections between an inhumanly large and complicated planet-scale challenge and specific human-scale projects. The essay also makes the claim that systems modeling languages and tools have been under-invested in over time, and frames the question "What if there were an `npm` for scientific models?". The essay of course isn't a review or final word on this one subject, but it is encouraging to see somebody talking about similar ideas and finding the same state of research. Summary: computer math systems can be powerful for learning and understanding, but important that they are open, powerful, and well-designed for open exploration and unintended uses. TODO: * reinventing discovery * web-era collaborative projects * explorable interactive web things * really love these, but frustrated that the code/model is hard to get out; even more so when creating new models interactively! * eg, nytimes interactive, you can tweak parameters and interpret results quickly, but can't tweak the model itself * "kill math" ## Goals and Principles Core goal: advance the ability of humans to collaborate on large complex symbolic/computational models of natural systems * scale collaboration to more complex models * make digestion of knowledge faster/smoother: from primary source to secondary/tertiary faster Some best practices: * **Free Software workflows**: the entire ecosystem does not need to be free and open source software, but it is important that anybody can collaborate using only open tools * **Transferability**: should be possible to move models from project to project, even if using idfferent software platforms * **Versioning, typing, and forking**: lessons from sustainable distributed software development (as opposed to large-scale projects within a single organization) are that it must be possible to extend or make corrections to individual components with as little disruption to other components as possible. This means support for versioning, care about design of namespaces (when references are by name), and automation to help detect "breaking changes" and manage updates. * **Permissive licenses for content and metadata** to allow broad re-use. More restrictive open licenses (eg, GPL, Non-Commercial, Share-Alike) are acceptable (and often desirable) for software tools. * **Scale up and down** Examples of applying core goal: * "earth systems" and ecosystems * robotic control systems * "does veganism make sense" * COVID-19 modeling * systems biology * understand equilibrium finances of large companies/institutions, for the people inside those institutions (aka, "business model") ## Existing Ecosystem Similar tools (in doc): * modelica * wolfram world: alpha, mathematica, system modeling * strong type systems * mathhml * SBML ## Proposed System and Open Questions Proposed system to build: * simple intermediate format for math models => limited in scope and semantics; like regex * transpilers to/from this format to general programming and computer algebra languages => sort of like pandoc * tooling/systems to combine and build large compound models from components * public wiki-like catalog to collect and edit models Research questions: Will mathematics continue to be "unreasonably effective" in the natural sciences as we try to understand larger and more complex systems? Will technical and resource limits constrain symbolic analysis of complex systems? Eg, will there be scaling problems with algorithms when working with large models? ## References Structure and Interpretation of Classical Mechanics ("SICM") (book) [html](https://mitpress.mit.edu/sites/default/files/titles/content/sicm_edition_2/book.html) [wiki](https://openlibrary.org/works/OL16797774W/Structure_and_Interpretation_of_Classical_Mechanics) Functional Differential Geometry (book) [html](https://mitpress.mit.edu/books/functional-differential-geometry) Reinventing Discovery (book, Michael Nielsen) [openlibrary](https://openlibrary.org/works/OL15991453W/Reinventing_discovery) Hyperphysics (website) [url](http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/refr.html#c2) All Watched Over by Machines of Loving Grace (miniseries, Adam Curtis) [wiki](https://en.wikipedia.org/wiki/All_Watched_Over_by_Machines_of_Loving_Grace_(TV_series)) What Can A Technologist Do About Climate Change? (essay, Bret Victor, Nov 2015) [html](http://worrydream.com/ClimateChange/) More is Different (paper, 1972) Distilling Free-Form Natural Laws from Experimental Data (paper, 2009) [pdf](https://www.isi.edu/~gil/diw2012/statements/lipson.pdf) Symbolic Mathematics Finally Yields to Neural Networks (article, 2020) [html](https://www.quantamagazine.org/symbolic-mathematics-finally-yields-to-neural-networks-20200520/) The Unreasonable Effectiveness of Mathematics in the Natural Sciences (article, 1960) [html](http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html) [wiki](https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences)