aboutsummaryrefslogtreecommitdiffstats
path: root/code/jpeg-6/jdatasrc.c
blob: 0bf78660318dc8f786e6ab6050db473a0579a937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * jdatasrc.c
 *
 * Copyright (C) 1994, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains decompression data source routines for the case of
 * reading JPEG data from a file (or any stdio stream).  While these routines
 * are sufficient for most applications, some will want to use a different
 * source manager.
 * IMPORTANT: we assume that fread() will correctly transcribe an array of
 * JOCTETs from 8-bit-wide elements on external storage.  If char is wider
 * than 8 bits on your machine, you may need to do some tweaking.
 */


/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"


/* Expanded data source object for stdio input */

typedef struct {
  struct jpeg_source_mgr pub;	/* public fields */

  unsigned char *infile;		/* source stream */
  JOCTET * buffer;		/* start of buffer */
  boolean start_of_file;	/* have we gotten any data yet? */
} my_source_mgr;

typedef my_source_mgr * my_src_ptr;

#define INPUT_BUF_SIZE  4096	/* choose an efficiently fread'able size */


/*
 * Initialize source --- called by jpeg_read_header
 * before any data is actually read.
 */

METHODDEF void
init_source (j_decompress_ptr cinfo)
{
  my_src_ptr src = (my_src_ptr) cinfo->src;

  /* We reset the empty-input-file flag for each image,
   * but we don't clear the input buffer.
   * This is correct behavior for reading a series of images from one source.
   */
  src->start_of_file = TRUE;
}


/*
 * Fill the input buffer --- called whenever buffer is emptied.
 *
 * In typical applications, this should read fresh data into the buffer
 * (ignoring the current state of next_input_byte & bytes_in_buffer),
 * reset the pointer & count to the start of the buffer, and return TRUE
 * indicating that the buffer has been reloaded.  It is not necessary to
 * fill the buffer entirely, only to obtain at least one more byte.
 *
 * There is no such thing as an EOF return.  If the end of the file has been
 * reached, the routine has a choice of ERREXIT() or inserting fake data into
 * the buffer.  In most cases, generating a warning message and inserting a
 * fake EOI marker is the best course of action --- this will allow the
 * decompressor to output however much of the image is there.  However,
 * the resulting error message is misleading if the real problem is an empty
 * input file, so we handle that case specially.
 *
 * In applications that need to be able to suspend compression due to input
 * not being available yet, a FALSE return indicates that no more data can be
 * obtained right now, but more may be forthcoming later.  In this situation,
 * the decompressor will return to its caller (with an indication of the
 * number of scanlines it has read, if any).  The application should resume
 * decompression after it has loaded more data into the input buffer.  Note
 * that there are substantial restrictions on the use of suspension --- see
 * the documentation.
 *
 * When suspending, the decompressor will back up to a convenient restart point
 * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
 * indicate where the restart point will be if the current call returns FALSE.
 * Data beyond this point must be rescanned after resumption, so move it to
 * the front of the buffer rather than discarding it.
 */

METHODDEF boolean
fill_input_buffer (j_decompress_ptr cinfo)
{
  my_src_ptr src = (my_src_ptr) cinfo->src;

  memcpy( src->buffer, src->infile, INPUT_BUF_SIZE );

  src->infile += INPUT_BUF_SIZE;

  src->pub.next_input_byte = src->buffer;
  src->pub.bytes_in_buffer = INPUT_BUF_SIZE;
  src->start_of_file = FALSE;

  return TRUE;
}


/*
 * Skip data --- used to skip over a potentially large amount of
 * uninteresting data (such as an APPn marker).
 *
 * Writers of suspendable-input applications must note that skip_input_data
 * is not granted the right to give a suspension return.  If the skip extends
 * beyond the data currently in the buffer, the buffer can be marked empty so
 * that the next read will cause a fill_input_buffer call that can suspend.
 * Arranging for additional bytes to be discarded before reloading the input
 * buffer is the application writer's problem.
 */

METHODDEF void
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
{
  my_src_ptr src = (my_src_ptr) cinfo->src;

  /* Just a dumb implementation for now.  Could use fseek() except
   * it doesn't work on pipes.  Not clear that being smart is worth
   * any trouble anyway --- large skips are infrequent.
   */
  if (num_bytes > 0) {
    while (num_bytes > (long) src->pub.bytes_in_buffer) {
      num_bytes -= (long) src->pub.bytes_in_buffer;
      (void) fill_input_buffer(cinfo);
      /* note we assume that fill_input_buffer will never return FALSE,
       * so suspension need not be handled.
       */
    }
    src->pub.next_input_byte += (size_t) num_bytes;
    src->pub.bytes_in_buffer -= (size_t) num_bytes;
  }
}


/*
 * An additional method that can be provided by data source modules is the
 * resync_to_restart method for error recovery in the presence of RST markers.
 * For the moment, this source module just uses the default resync method
 * provided by the JPEG library.  That method assumes that no backtracking
 * is possible.
 */


/*
 * Terminate source --- called by jpeg_finish_decompress
 * after all data has been read.  Often a no-op.
 *
 * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
 * application must deal with any cleanup that should happen even
 * for error exit.
 */

METHODDEF void
term_source (j_decompress_ptr cinfo)
{
  /* no work necessary here */
}


/*
 * Prepare for input from a stdio stream.
 * The caller must have already opened the stream, and is responsible
 * for closing it after finishing decompression.
 */

GLOBAL void
jpeg_stdio_src (j_decompress_ptr cinfo, unsigned char *infile)
{
  my_src_ptr src;

  /* The source object and input buffer are made permanent so that a series
   * of JPEG images can be read from the same file by calling jpeg_stdio_src
   * only before the first one.  (If we discarded the buffer at the end of
   * one image, we'd likely lose the start of the next one.)
   * This makes it unsafe to use this manager and a different source
   * manager serially with the same JPEG object.  Caveat programmer.
   */
  if (cinfo->src == NULL) {	/* first time for this JPEG object? */
    cinfo->src = (struct jpeg_source_mgr *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
				  SIZEOF(my_source_mgr));
    src = (my_src_ptr) cinfo->src;
    src->buffer = (JOCTET *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
				  INPUT_BUF_SIZE * SIZEOF(JOCTET));
  }

  src = (my_src_ptr) cinfo->src;
  src->pub.init_source = init_source;
  src->pub.fill_input_buffer = fill_input_buffer;
  src->pub.skip_input_data = skip_input_data;
  src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
  src->pub.term_source = term_source;
  src->infile = infile;
  src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
  src->pub.next_input_byte = NULL; /* until buffer loaded */
}