/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // mathlib.c -- math primitives #include "stdafx.h" #include "cmdlib.h" #include "mathlib.h" vec3_t vec3_origin = {0.0f,0.0f,0.0f}; float VectorLength(vec3_t v) { int i; float length; length = 0.0f; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = (float)sqrt (length); return length; } qboolean VectorCompare (vec3_t v1, vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON) return false; return true; } vec_t Q_rint (vec_t in) { if (g_PrefsDlg.m_bNoClamp) return in; else return (float)floor (in + 0.5); } void VectorMA (vec3_t va, float scale, vec3_t vb, vec3_t vc) { vc[0] = va[0] + scale*vb[0]; vc[1] = va[1] + scale*vb[1]; vc[2] = va[2] + scale*vb[2]; } void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]-vb[0]; out[1] = va[1]-vb[1]; out[2] = va[2]-vb[2]; } void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } vec_t VectorNormalize (vec3_t v) { int i; float length; length = 0.0f; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = (float)sqrt (length); if (length == 0) return (vec_t)0; for (i=0 ; i< 3 ; i++) v[i] /= length; return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale (vec3_t v, vec_t scale, vec3_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; } void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out) { vec3_t vWork, va; VectorCopy(vIn, va); VectorCopy(va, vWork); int nIndex[3][2]; nIndex[0][0] = 1; nIndex[0][1] = 2; nIndex[1][0] = 2; nIndex[1][1] = 0; nIndex[2][0] = 0; nIndex[2][1] = 1; for (int i = 0; i < 3; i++) { if (vRotation[i] != 0) { double dAngle = vRotation[i] * Q_PI / 180.0; double c = cos(dAngle); double s = sin(dAngle); vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s; vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c; } VectorCopy(vWork, va); } VectorCopy(vWork, out); } void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out) { vec3_t vTemp, vTemp2; VectorSubtract(vIn, vOrigin, vTemp); VectorRotate(vTemp, vRotation, vTemp2); VectorAdd(vTemp2, vOrigin, out); } void VectorPolar(vec3_t v, float radius, float theta, float phi) { v[0]=float(radius * cos(theta) * cos(phi)); v[1]=float(radius * sin(theta) * cos(phi)); v[2]=float(radius * sin(phi)); } void VectorSnap(vec3_t v) { for (int i = 0; i < 3; i++) { v[i] = floor (v[i] + 0.5); } } void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; out[3] = va[3]+vb[3]; out[4] = va[4]+vb[4]; } void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; out[3] = v[3] * scale; out[4] = v[4] * scale; } void _Vector53Copy (vec5_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } // NOTE: added these from Ritual's Q3Radiant void ClearBounds (vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs) { int i; vec_t val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } } #define PITCH 0 // up / down #define YAW 1 // left / right #define ROLL 2 // fall over #ifndef M_PI #define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = -sr*sp*cy+cr*sy; right[1] = -sr*sp*sy-cr*cy; right[2] = -sr*cp; } if (up) { up[0] = cr*sp*cy+sr*sy; up[1] = cr*sp*sy-sr*cy; up[2] = cr*cp; } } void VectorToAngles( vec3_t vec, vec3_t angles ) { float forward; float yaw, pitch; if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) ) { yaw = 0; if ( vec[ 2 ] > 0 ) { pitch = 90; } else { pitch = 270; } } else { yaw = atan2( vec[ 1 ], vec[ 0 ] ) * 180 / M_PI; if ( yaw < 0 ) { yaw += 360; } forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] ); pitch = atan2( vec[ 2 ], forward ) * 180 / M_PI; if ( pitch < 0 ) { pitch += 360; } } angles[ 0 ] = pitch; angles[ 1 ] = yaw; angles[ 2 ] = 0; }