/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #ifndef __MATH_MATRIX_H__ #define __MATH_MATRIX_H__ #include #include "math_vector.h" #ifndef ID_INLINE #ifdef _WIN32 #define ID_INLINE __inline #else #define ID_INLINE inline #endif #endif class quat_t; class angles_t; class mat3_t { public: idVec3_t mat[ 3 ]; mat3_t(); mat3_t( float src[ 3 ][ 3 ] ); mat3_t( idVec3_t const &x, idVec3_t const &y, idVec3_t const &z ); mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz ); friend void toMatrix( quat_t const &src, mat3_t &dst ); friend void toMatrix( angles_t const &src, mat3_t &dst ); friend void toMatrix( idVec3_t const &src, mat3_t &dst ); idVec3_t operator[]( int index ) const; idVec3_t &operator[]( int index ); idVec3_t operator*( const idVec3_t &vec ) const; mat3_t operator*( const mat3_t &a ) const; mat3_t operator*( float a ) const; mat3_t operator+( mat3_t const &a ) const; mat3_t operator-( mat3_t const &a ) const; friend idVec3_t operator*( const idVec3_t &vec, const mat3_t &mat ); friend mat3_t operator*( float a, mat3_t const &b ); mat3_t &operator*=( float a ); mat3_t &operator+=( mat3_t const &a ); mat3_t &operator-=( mat3_t const &a ); void Clear( void ); void ProjectVector( const idVec3_t &src, idVec3_t &dst ) const; void UnprojectVector( const idVec3_t &src, idVec3_t &dst ) const; void OrthoNormalize( void ); void Transpose( mat3_t &matrix ); void Transpose( void ); mat3_t Inverse( void ) const; void Identity( void ); friend void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst ); friend mat3_t SkewSymmetric( idVec3_t const &src ); }; ID_INLINE mat3_t::mat3_t() { } ID_INLINE mat3_t::mat3_t( float src[ 3 ][ 3 ] ) { memcpy( mat, src, sizeof( src ) ); } ID_INLINE mat3_t::mat3_t( idVec3_t const &x, idVec3_t const &y, idVec3_t const &z ) { mat[ 0 ].x = x.x; mat[ 0 ].y = x.y; mat[ 0 ].z = x.z; mat[ 1 ].x = y.x; mat[ 1 ].y = y.y; mat[ 1 ].z = y.z; mat[ 2 ].x = z.x; mat[ 2 ].y = z.y; mat[ 2 ].z = z.z; } ID_INLINE mat3_t::mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz ) { mat[ 0 ].x = xx; mat[ 0 ].y = xy; mat[ 0 ].z = xz; mat[ 1 ].x = yx; mat[ 1 ].y = yy; mat[ 1 ].z = yz; mat[ 2 ].x = zx; mat[ 2 ].y = zy; mat[ 2 ].z = zz; } ID_INLINE idVec3_t mat3_t::operator[]( int index ) const { assert( ( index >= 0 ) && ( index < 3 ) ); return mat[ index ]; } ID_INLINE idVec3_t& mat3_t::operator[]( int index ) { assert( ( index >= 0 ) && ( index < 3 ) ); return mat[ index ]; } ID_INLINE idVec3_t mat3_t::operator*( const idVec3_t &vec ) const { return idVec3_t( mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z, mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z, mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z ); } ID_INLINE mat3_t mat3_t::operator*( const mat3_t &a ) const { return mat3_t( mat[0].x * a[0].x + mat[0].y * a[1].x + mat[0].z * a[2].x, mat[0].x * a[0].y + mat[0].y * a[1].y + mat[0].z * a[2].y, mat[0].x * a[0].z + mat[0].y * a[1].z + mat[0].z * a[2].z, mat[1].x * a[0].x + mat[1].y * a[1].x + mat[1].z * a[2].x, mat[1].x * a[0].y + mat[1].y * a[1].y + mat[1].z * a[2].y, mat[1].x * a[0].z + mat[1].y * a[1].z + mat[1].z * a[2].z, mat[2].x * a[0].x + mat[2].y * a[1].x + mat[2].z * a[2].x, mat[2].x * a[0].y + mat[2].y * a[1].y + mat[2].z * a[2].y, mat[2].x * a[0].z + mat[2].y * a[1].z + mat[2].z * a[2].z ); } ID_INLINE mat3_t mat3_t::operator*( float a ) const { return mat3_t( mat[0].x * a, mat[0].y * a, mat[0].z * a, mat[1].x * a, mat[1].y * a, mat[1].z * a, mat[2].x * a, mat[2].y * a, mat[2].z * a ); } ID_INLINE mat3_t mat3_t::operator+( mat3_t const &a ) const { return mat3_t( mat[0].x + a[0].x, mat[0].y + a[0].y, mat[0].z + a[0].z, mat[1].x + a[1].x, mat[1].y + a[1].y, mat[1].z + a[1].z, mat[2].x + a[2].x, mat[2].y + a[2].y, mat[2].z + a[2].z ); } ID_INLINE mat3_t mat3_t::operator-( mat3_t const &a ) const { return mat3_t( mat[0].x - a[0].x, mat[0].y - a[0].y, mat[0].z - a[0].z, mat[1].x - a[1].x, mat[1].y - a[1].y, mat[1].z - a[1].z, mat[2].x - a[2].x, mat[2].y - a[2].y, mat[2].z - a[2].z ); } ID_INLINE idVec3_t operator*( const idVec3_t &vec, const mat3_t &mat ) { return idVec3_t( mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z, mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z, mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z ); } ID_INLINE mat3_t operator*( float a, mat3_t const &b ) { return mat3_t( b[0].x * a, b[0].y * a, b[0].z * a, b[1].x * a, b[1].y * a, b[1].z * a, b[2].x * a, b[2].y * a, b[2].z * a ); } ID_INLINE mat3_t &mat3_t::operator*=( float a ) { mat[0].x *= a; mat[0].y *= a; mat[0].z *= a; mat[1].x *= a; mat[1].y *= a; mat[1].z *= a; mat[2].x *= a; mat[2].y *= a; mat[2].z *= a; return *this; } ID_INLINE mat3_t &mat3_t::operator+=( mat3_t const &a ) { mat[0].x += a[0].x; mat[0].y += a[0].y; mat[0].z += a[0].z; mat[1].x += a[1].x; mat[1].y += a[1].y; mat[1].z += a[1].z; mat[2].x += a[2].x; mat[2].y += a[2].y; mat[2].z += a[2].z; return *this; } ID_INLINE mat3_t &mat3_t::operator-=( mat3_t const &a ) { mat[0].x -= a[0].x; mat[0].y -= a[0].y; mat[0].z -= a[0].z; mat[1].x -= a[1].x; mat[1].y -= a[1].y; mat[1].z -= a[1].z; mat[2].x -= a[2].x; mat[2].y -= a[2].y; mat[2].z -= a[2].z; return *this; } ID_INLINE void mat3_t::OrthoNormalize( void ) { mat[ 0 ].Normalize(); mat[ 2 ].Cross( mat[ 0 ], mat[ 1 ] ); mat[ 2 ].Normalize(); mat[ 1 ].Cross( mat[ 2 ], mat[ 0 ] ); mat[ 1 ].Normalize(); } ID_INLINE void mat3_t::Identity( void ) { mat[ 0 ].x = 1.f; mat[ 0 ].y = 0.f; mat[ 0 ].z = 0.f; mat[ 1 ].x = 0.f; mat[ 1 ].y = 1.f; mat[ 1 ].z = 0.f; mat[ 2 ].x = 0.f; mat[ 2 ].y = 0.f; mat[ 2 ].z = 1.f; } ID_INLINE void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst ) { dst[0].x = inv[0].x * b[0].x + inv[1].x * b[1].x + inv[2].x * b[2].x; dst[0].y = inv[0].x * b[0].y + inv[1].x * b[1].y + inv[2].x * b[2].y; dst[0].z = inv[0].x * b[0].z + inv[1].x * b[1].z + inv[2].x * b[2].z; dst[1].x = inv[0].y * b[0].x + inv[1].y * b[1].x + inv[2].y * b[2].x; dst[1].y = inv[0].y * b[0].y + inv[1].y * b[1].y + inv[2].y * b[2].y; dst[1].z = inv[0].y * b[0].z + inv[1].y * b[1].z + inv[2].y * b[2].z; dst[2].x = inv[0].z * b[0].x + inv[1].z * b[1].x + inv[2].z * b[2].x; dst[2].y = inv[0].z * b[0].y + inv[1].z * b[1].y + inv[2].z * b[2].y; dst[2].z = inv[0].z * b[0].z + inv[1].z * b[1].z + inv[2].z * b[2].z; } ID_INLINE mat3_t SkewSymmetric( idVec3_t const &src ) { return mat3_t( 0.0f, -src.z, src.y, src.z, 0.0f, -src.x, -src.y, src.x, 0.0f ); } extern mat3_t mat3_default; #endif /* !__MATH_MATRIX_H__ */