/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_map.c #include "tr_local.h" /* Loads and prepares a map file for scene rendering. A single entry point: void RE_LoadWorldMap( const char *name ); */ static world_t s_worldData; static byte *fileBase; int c_subdivisions; int c_gridVerts; //=============================================================================== static void HSVtoRGB( float h, float s, float v, float rgb[3] ) { int i; float f; float p, q, t; h *= 5; i = floor( h ); f = h - i; p = v * ( 1 - s ); q = v * ( 1 - s * f ); t = v * ( 1 - s * ( 1 - f ) ); switch ( i ) { case 0: rgb[0] = v; rgb[1] = t; rgb[2] = p; break; case 1: rgb[0] = q; rgb[1] = v; rgb[2] = p; break; case 2: rgb[0] = p; rgb[1] = v; rgb[2] = t; break; case 3: rgb[0] = p; rgb[1] = q; rgb[2] = v; break; case 4: rgb[0] = t; rgb[1] = p; rgb[2] = v; break; case 5: rgb[0] = v; rgb[1] = p; rgb[2] = q; break; } } /* =============== R_ColorShiftLightingBytes =============== */ static void R_ColorShiftLightingBytes( byte in[4], byte out[4] ) { int shift, r, g, b; // shift the color data based on overbright range shift = r_mapOverBrightBits->integer - tr.overbrightBits; // shift the data based on overbright range r = in[0] << shift; g = in[1] << shift; b = in[2] << shift; // normalize by color instead of saturating to white if ( ( r | g | b ) > 255 ) { int max; max = r > g ? r : g; max = max > b ? max : b; r = r * 255 / max; g = g * 255 / max; b = b * 255 / max; } out[0] = r; out[1] = g; out[2] = b; out[3] = in[3]; } /* =============== R_LoadLightmaps =============== */ #define LIGHTMAP_SIZE 128 static void R_LoadLightmaps( lump_t *l ) { byte *buf, *buf_p; int len; MAC_STATIC byte image[LIGHTMAP_SIZE*LIGHTMAP_SIZE*4]; int i, j; float maxIntensity = 0; double sumIntensity = 0; len = l->filelen; if ( !len ) { return; } buf = fileBase + l->fileofs; // we are about to upload textures R_SyncRenderThread(); // create all the lightmaps tr.numLightmaps = len / (LIGHTMAP_SIZE * LIGHTMAP_SIZE * 3); if ( tr.numLightmaps == 1 ) { //FIXME: HACK: maps with only one lightmap turn up fullbright for some reason. //this avoids this, but isn't the correct solution. tr.numLightmaps++; } // if we are in r_vertexLight mode, we don't need the lightmaps at all if ( r_vertexLight->integer || glConfig.hardwareType == GLHW_PERMEDIA2 ) { return; } for ( i = 0 ; i < tr.numLightmaps ; i++ ) { // expand the 24 bit on-disk to 32 bit buf_p = buf + i * LIGHTMAP_SIZE*LIGHTMAP_SIZE * 3; if ( r_lightmap->integer == 2 ) { // color code by intensity as development tool (FIXME: check range) for ( j = 0; j < LIGHTMAP_SIZE * LIGHTMAP_SIZE; j++ ) { float r = buf_p[j*3+0]; float g = buf_p[j*3+1]; float b = buf_p[j*3+2]; float intensity; float out[3]; intensity = 0.33f * r + 0.685f * g + 0.063f * b; if ( intensity > 255 ) intensity = 1.0f; else intensity /= 255.0f; if ( intensity > maxIntensity ) maxIntensity = intensity; HSVtoRGB( intensity, 1.00, 0.50, out ); image[j*4+0] = out[0] * 255; image[j*4+1] = out[1] * 255; image[j*4+2] = out[2] * 255; image[j*4+3] = 255; sumIntensity += intensity; } } else { for ( j = 0 ; j < LIGHTMAP_SIZE * LIGHTMAP_SIZE; j++ ) { R_ColorShiftLightingBytes( &buf_p[j*3], &image[j*4] ); image[j*4+3] = 255; } } tr.lightmaps[i] = R_CreateImage( va("*lightmap%d",i), image, LIGHTMAP_SIZE, LIGHTMAP_SIZE, qfalse, qfalse, GL_CLAMP ); } if ( r_lightmap->integer == 2 ) { ri.Printf( PRINT_ALL, "Brightest lightmap value: %d\n", ( int ) ( maxIntensity * 255 ) ); } } /* ================= RE_SetWorldVisData This is called by the clipmodel subsystem so we can share the 1.8 megs of space in big maps... ================= */ void RE_SetWorldVisData( const byte *vis ) { tr.externalVisData = vis; } /* ================= R_LoadVisibility ================= */ static void R_LoadVisibility( lump_t *l ) { int len; byte *buf; len = ( s_worldData.numClusters + 63 ) & ~63; s_worldData.novis = ri.Hunk_Alloc( len, h_low ); Com_Memset( s_worldData.novis, 0xff, len ); len = l->filelen; if ( !len ) { return; } buf = fileBase + l->fileofs; s_worldData.numClusters = LittleLong( ((int *)buf)[0] ); s_worldData.clusterBytes = LittleLong( ((int *)buf)[1] ); // CM_Load should have given us the vis data to share, so // we don't need to allocate another copy if ( tr.externalVisData ) { s_worldData.vis = tr.externalVisData; } else { byte *dest; dest = ri.Hunk_Alloc( len - 8, h_low ); Com_Memcpy( dest, buf + 8, len - 8 ); s_worldData.vis = dest; } } //=============================================================================== /* =============== ShaderForShaderNum =============== */ static shader_t *ShaderForShaderNum( int shaderNum, int lightmapNum ) { shader_t *shader; dshader_t *dsh; shaderNum = LittleLong( shaderNum ); if ( shaderNum < 0 || shaderNum >= s_worldData.numShaders ) { ri.Error( ERR_DROP, "ShaderForShaderNum: bad num %i", shaderNum ); } dsh = &s_worldData.shaders[ shaderNum ]; if ( r_vertexLight->integer || glConfig.hardwareType == GLHW_PERMEDIA2 ) { lightmapNum = LIGHTMAP_BY_VERTEX; } if ( r_fullbright->integer ) { lightmapNum = LIGHTMAP_WHITEIMAGE; } shader = R_FindShader( dsh->shader, lightmapNum, qtrue ); // if the shader had errors, just use default shader if ( shader->defaultShader ) { return tr.defaultShader; } return shader; } /* =============== ParseFace =============== */ static void ParseFace( dsurface_t *ds, drawVert_t *verts, msurface_t *surf, int *indexes ) { int i, j; srfSurfaceFace_t *cv; int numPoints, numIndexes; int lightmapNum; int sfaceSize, ofsIndexes; lightmapNum = LittleLong( ds->lightmapNum ); // get fog volume surf->fogIndex = LittleLong( ds->fogNum ) + 1; // get shader value surf->shader = ShaderForShaderNum( ds->shaderNum, lightmapNum ); if ( r_singleShader->integer && !surf->shader->isSky ) { surf->shader = tr.defaultShader; } numPoints = LittleLong( ds->numVerts ); if (numPoints > MAX_FACE_POINTS) { ri.Printf( PRINT_WARNING, "WARNING: MAX_FACE_POINTS exceeded: %i\n", numPoints); numPoints = MAX_FACE_POINTS; surf->shader = tr.defaultShader; } numIndexes = LittleLong( ds->numIndexes ); // create the srfSurfaceFace_t sfaceSize = ( size_t ) &((srfSurfaceFace_t *)0)->points[numPoints]; ofsIndexes = sfaceSize; sfaceSize += sizeof( int ) * numIndexes; cv = ri.Hunk_Alloc( sfaceSize, h_low ); cv->surfaceType = SF_FACE; cv->numPoints = numPoints; cv->numIndices = numIndexes; cv->ofsIndices = ofsIndexes; verts += LittleLong( ds->firstVert ); for ( i = 0 ; i < numPoints ; i++ ) { for ( j = 0 ; j < 3 ; j++ ) { cv->points[i][j] = LittleFloat( verts[i].xyz[j] ); } for ( j = 0 ; j < 2 ; j++ ) { cv->points[i][3+j] = LittleFloat( verts[i].st[j] ); cv->points[i][5+j] = LittleFloat( verts[i].lightmap[j] ); } R_ColorShiftLightingBytes( verts[i].color, (byte *)&cv->points[i][7] ); } indexes += LittleLong( ds->firstIndex ); for ( i = 0 ; i < numIndexes ; i++ ) { ((int *)((byte *)cv + cv->ofsIndices ))[i] = LittleLong( indexes[ i ] ); } // take the plane information from the lightmap vector for ( i = 0 ; i < 3 ; i++ ) { cv->plane.normal[i] = LittleFloat( ds->lightmapVecs[2][i] ); } cv->plane.dist = DotProduct( cv->points[0], cv->plane.normal ); SetPlaneSignbits( &cv->plane ); cv->plane.type = PlaneTypeForNormal( cv->plane.normal ); surf->data = (surfaceType_t *)cv; } /* =============== ParseMesh =============== */ static void ParseMesh ( dsurface_t *ds, drawVert_t *verts, msurface_t *surf ) { srfGridMesh_t *grid; int i, j; int width, height, numPoints; MAC_STATIC drawVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE]; int lightmapNum; vec3_t bounds[2]; vec3_t tmpVec; static surfaceType_t skipData = SF_SKIP; lightmapNum = LittleLong( ds->lightmapNum ); // get fog volume surf->fogIndex = LittleLong( ds->fogNum ) + 1; // get shader value surf->shader = ShaderForShaderNum( ds->shaderNum, lightmapNum ); if ( r_singleShader->integer && !surf->shader->isSky ) { surf->shader = tr.defaultShader; } // we may have a nodraw surface, because they might still need to // be around for movement clipping if ( s_worldData.shaders[ LittleLong( ds->shaderNum ) ].surfaceFlags & SURF_NODRAW ) { surf->data = &skipData; return; } width = LittleLong( ds->patchWidth ); height = LittleLong( ds->patchHeight ); verts += LittleLong( ds->firstVert ); numPoints = width * height; for ( i = 0 ; i < numPoints ; i++ ) { for ( j = 0 ; j < 3 ; j++ ) { points[i].xyz[j] = LittleFloat( verts[i].xyz[j] ); points[i].normal[j] = LittleFloat( verts[i].normal[j] ); } for ( j = 0 ; j < 2 ; j++ ) { points[i].st[j] = LittleFloat( verts[i].st[j] ); points[i].lightmap[j] = LittleFloat( verts[i].lightmap[j] ); } R_ColorShiftLightingBytes( verts[i].color, points[i].color ); } // pre-tesseleate grid = R_SubdividePatchToGrid( width, height, points ); surf->data = (surfaceType_t *)grid; // copy the level of detail origin, which is the center // of the group of all curves that must subdivide the same // to avoid cracking for ( i = 0 ; i < 3 ; i++ ) { bounds[0][i] = LittleFloat( ds->lightmapVecs[0][i] ); bounds[1][i] = LittleFloat( ds->lightmapVecs[1][i] ); } VectorAdd( bounds[0], bounds[1], bounds[1] ); VectorScale( bounds[1], 0.5f, grid->lodOrigin ); VectorSubtract( bounds[0], grid->lodOrigin, tmpVec ); grid->lodRadius = VectorLength( tmpVec ); } /* =============== ParseTriSurf =============== */ static void ParseTriSurf( dsurface_t *ds, drawVert_t *verts, msurface_t *surf, int *indexes ) { srfTriangles_t *tri; int i, j; int numVerts, numIndexes; // get fog volume surf->fogIndex = LittleLong( ds->fogNum ) + 1; // get shader surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX ); if ( r_singleShader->integer && !surf->shader->isSky ) { surf->shader = tr.defaultShader; } numVerts = LittleLong( ds->numVerts ); numIndexes = LittleLong( ds->numIndexes ); tri = ri.Hunk_Alloc( sizeof( *tri ) + numVerts * sizeof( tri->verts[0] ) + numIndexes * sizeof( tri->indexes[0] ), h_low ); tri->surfaceType = SF_TRIANGLES; tri->numVerts = numVerts; tri->numIndexes = numIndexes; tri->verts = (drawVert_t *)(tri + 1); tri->indexes = (int *)(tri->verts + tri->numVerts ); surf->data = (surfaceType_t *)tri; // copy vertexes ClearBounds( tri->bounds[0], tri->bounds[1] ); verts += LittleLong( ds->firstVert ); for ( i = 0 ; i < numVerts ; i++ ) { for ( j = 0 ; j < 3 ; j++ ) { tri->verts[i].xyz[j] = LittleFloat( verts[i].xyz[j] ); tri->verts[i].normal[j] = LittleFloat( verts[i].normal[j] ); } AddPointToBounds( tri->verts[i].xyz, tri->bounds[0], tri->bounds[1] ); for ( j = 0 ; j < 2 ; j++ ) { tri->verts[i].st[j] = LittleFloat( verts[i].st[j] ); tri->verts[i].lightmap[j] = LittleFloat( verts[i].lightmap[j] ); } R_ColorShiftLightingBytes( verts[i].color, tri->verts[i].color ); } // copy indexes indexes += LittleLong( ds->firstIndex ); for ( i = 0 ; i < numIndexes ; i++ ) { tri->indexes[i] = LittleLong( indexes[i] ); if ( tri->indexes[i] < 0 || tri->indexes[i] >= numVerts ) { ri.Error( ERR_DROP, "Bad index in triangle surface" ); } } } /* =============== ParseFlare =============== */ static void ParseFlare( dsurface_t *ds, drawVert_t *verts, msurface_t *surf, int *indexes ) { srfFlare_t *flare; int i; // get fog volume surf->fogIndex = LittleLong( ds->fogNum ) + 1; // get shader surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX ); if ( r_singleShader->integer && !surf->shader->isSky ) { surf->shader = tr.defaultShader; } flare = ri.Hunk_Alloc( sizeof( *flare ), h_low ); flare->surfaceType = SF_FLARE; surf->data = (surfaceType_t *)flare; for ( i = 0 ; i < 3 ; i++ ) { flare->origin[i] = LittleFloat( ds->lightmapOrigin[i] ); flare->color[i] = LittleFloat( ds->lightmapVecs[0][i] ); flare->normal[i] = LittleFloat( ds->lightmapVecs[2][i] ); } } /* ================= R_MergedWidthPoints returns true if there are grid points merged on a width edge ================= */ int R_MergedWidthPoints(srfGridMesh_t *grid, int offset) { int i, j; for (i = 1; i < grid->width-1; i++) { for (j = i + 1; j < grid->width-1; j++) { if ( fabs(grid->verts[i + offset].xyz[0] - grid->verts[j + offset].xyz[0]) > .1) continue; if ( fabs(grid->verts[i + offset].xyz[1] - grid->verts[j + offset].xyz[1]) > .1) continue; if ( fabs(grid->verts[i + offset].xyz[2] - grid->verts[j + offset].xyz[2]) > .1) continue; return qtrue; } } return qfalse; } /* ================= R_MergedHeightPoints returns true if there are grid points merged on a height edge ================= */ int R_MergedHeightPoints(srfGridMesh_t *grid, int offset) { int i, j; for (i = 1; i < grid->height-1; i++) { for (j = i + 1; j < grid->height-1; j++) { if ( fabs(grid->verts[grid->width * i + offset].xyz[0] - grid->verts[grid->width * j + offset].xyz[0]) > .1) continue; if ( fabs(grid->verts[grid->width * i + offset].xyz[1] - grid->verts[grid->width * j + offset].xyz[1]) > .1) continue; if ( fabs(grid->verts[grid->width * i + offset].xyz[2] - grid->verts[grid->width * j + offset].xyz[2]) > .1) continue; return qtrue; } } return qfalse; } /* ================= R_FixSharedVertexLodError_r NOTE: never sync LoD through grid edges with merged points! FIXME: write generalized version that also avoids cracks between a patch and one that meets half way? ================= */ void R_FixSharedVertexLodError_r( int start, srfGridMesh_t *grid1 ) { int j, k, l, m, n, offset1, offset2, touch; srfGridMesh_t *grid2; for ( j = start; j < s_worldData.numsurfaces; j++ ) { // grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data; // if this surface is not a grid if ( grid2->surfaceType != SF_GRID ) continue; // if the LOD errors are already fixed for this patch if ( grid2->lodFixed == 2 ) continue; // grids in the same LOD group should have the exact same lod radius if ( grid1->lodRadius != grid2->lodRadius ) continue; // grids in the same LOD group should have the exact same lod origin if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue; if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue; if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue; // touch = qfalse; for (n = 0; n < 2; n++) { // if (n) offset1 = (grid1->height-1) * grid1->width; else offset1 = 0; if (R_MergedWidthPoints(grid1, offset1)) continue; for (k = 1; k < grid1->width-1; k++) { for (m = 0; m < 2; m++) { if (m) offset2 = (grid2->height-1) * grid2->width; else offset2 = 0; if (R_MergedWidthPoints(grid2, offset2)) continue; for ( l = 1; l < grid2->width-1; l++) { // if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue; if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue; if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue; // ok the points are equal and should have the same lod error grid2->widthLodError[l] = grid1->widthLodError[k]; touch = qtrue; } } for (m = 0; m < 2; m++) { if (m) offset2 = grid2->width-1; else offset2 = 0; if (R_MergedHeightPoints(grid2, offset2)) continue; for ( l = 1; l < grid2->height-1; l++) { // if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue; if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue; if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue; // ok the points are equal and should have the same lod error grid2->heightLodError[l] = grid1->widthLodError[k]; touch = qtrue; } } } } for (n = 0; n < 2; n++) { // if (n) offset1 = grid1->width-1; else offset1 = 0; if (R_MergedHeightPoints(grid1, offset1)) continue; for (k = 1; k < grid1->height-1; k++) { for (m = 0; m < 2; m++) { if (m) offset2 = (grid2->height-1) * grid2->width; else offset2 = 0; if (R_MergedWidthPoints(grid2, offset2)) continue; for ( l = 1; l < grid2->width-1; l++) { // if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue; if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue; if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue; // ok the points are equal and should have the same lod error grid2->widthLodError[l] = grid1->heightLodError[k]; touch = qtrue; } } for (m = 0; m < 2; m++) { if (m) offset2 = grid2->width-1; else offset2 = 0; if (R_MergedHeightPoints(grid2, offset2)) continue; for ( l = 1; l < grid2->height-1; l++) { // if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue; if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue; if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue; // ok the points are equal and should have the same lod error grid2->heightLodError[l] = grid1->heightLodError[k]; touch = qtrue; } } } } if (touch) { grid2->lodFixed = 2; R_FixSharedVertexLodError_r ( start, grid2 ); //NOTE: this would be correct but makes things really slow //grid2->lodFixed = 1; } } } /* ================= R_FixSharedVertexLodError This function assumes that all patches in one group are nicely stitched together for the highest LoD. If this is not the case this function will still do its job but won't fix the highest LoD cracks. ================= */ void R_FixSharedVertexLodError( void ) { int i; srfGridMesh_t *grid1; for ( i = 0; i < s_worldData.numsurfaces; i++ ) { // grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data; // if this surface is not a grid if ( grid1->surfaceType != SF_GRID ) continue; // if ( grid1->lodFixed ) continue; // grid1->lodFixed = 2; // recursively fix other patches in the same LOD group R_FixSharedVertexLodError_r( i + 1, grid1); } } /* =============== R_StitchPatches =============== */ int R_StitchPatches( int grid1num, int grid2num ) { float *v1, *v2; srfGridMesh_t *grid1, *grid2; int k, l, m, n, offset1, offset2, row, column; grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data; grid2 = (srfGridMesh_t *) s_worldData.surfaces[grid2num].data; for (n = 0; n < 2; n++) { // if (n) offset1 = (grid1->height-1) * grid1->width; else offset1 = 0; if (R_MergedWidthPoints(grid1, offset1)) continue; for (k = 0; k < grid1->width-2; k += 2) { for (m = 0; m < 2; m++) { if ( grid2->width >= MAX_GRID_SIZE ) break; if (m) offset2 = (grid2->height-1) * grid2->width; else offset2 = 0; for ( l = 0; l < grid2->width-1; l++) { // v1 = grid1->verts[k + offset1].xyz; v2 = grid2->verts[l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[k + 2 + offset1].xyz; v2 = grid2->verts[l + 1 + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[l + offset2].xyz; v2 = grid2->verts[l + 1 + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert column into grid2 right after after column l if (m) row = grid2->height-1; else row = 0; grid2 = R_GridInsertColumn( grid2, l+1, row, grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } for (m = 0; m < 2; m++) { if (grid2->height >= MAX_GRID_SIZE) break; if (m) offset2 = grid2->width-1; else offset2 = 0; for ( l = 0; l < grid2->height-1; l++) { // v1 = grid1->verts[k + offset1].xyz; v2 = grid2->verts[grid2->width * l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[k + 2 + offset1].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[grid2->width * l + offset2].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert row into grid2 right after after row l if (m) column = grid2->width-1; else column = 0; grid2 = R_GridInsertRow( grid2, l+1, column, grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } } } for (n = 0; n < 2; n++) { // if (n) offset1 = grid1->width-1; else offset1 = 0; if (R_MergedHeightPoints(grid1, offset1)) continue; for (k = 0; k < grid1->height-2; k += 2) { for (m = 0; m < 2; m++) { if ( grid2->width >= MAX_GRID_SIZE ) break; if (m) offset2 = (grid2->height-1) * grid2->width; else offset2 = 0; for ( l = 0; l < grid2->width-1; l++) { // v1 = grid1->verts[grid1->width * k + offset1].xyz; v2 = grid2->verts[l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz; v2 = grid2->verts[l + 1 + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[l + offset2].xyz; v2 = grid2->verts[(l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert column into grid2 right after after column l if (m) row = grid2->height-1; else row = 0; grid2 = R_GridInsertColumn( grid2, l+1, row, grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } for (m = 0; m < 2; m++) { if (grid2->height >= MAX_GRID_SIZE) break; if (m) offset2 = grid2->width-1; else offset2 = 0; for ( l = 0; l < grid2->height-1; l++) { // v1 = grid1->verts[grid1->width * k + offset1].xyz; v2 = grid2->verts[grid2->width * l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[grid2->width * l + offset2].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert row into grid2 right after after row l if (m) column = grid2->width-1; else column = 0; grid2 = R_GridInsertRow( grid2, l+1, column, grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } } } for (n = 0; n < 2; n++) { // if (n) offset1 = (grid1->height-1) * grid1->width; else offset1 = 0; if (R_MergedWidthPoints(grid1, offset1)) continue; for (k = grid1->width-1; k > 1; k -= 2) { for (m = 0; m < 2; m++) { if ( grid2->width >= MAX_GRID_SIZE ) break; if (m) offset2 = (grid2->height-1) * grid2->width; else offset2 = 0; for ( l = 0; l < grid2->width-1; l++) { // v1 = grid1->verts[k + offset1].xyz; v2 = grid2->verts[l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[k - 2 + offset1].xyz; v2 = grid2->verts[l + 1 + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[l + offset2].xyz; v2 = grid2->verts[(l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert column into grid2 right after after column l if (m) row = grid2->height-1; else row = 0; grid2 = R_GridInsertColumn( grid2, l+1, row, grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } for (m = 0; m < 2; m++) { if (grid2->height >= MAX_GRID_SIZE) break; if (m) offset2 = grid2->width-1; else offset2 = 0; for ( l = 0; l < grid2->height-1; l++) { // v1 = grid1->verts[k + offset1].xyz; v2 = grid2->verts[grid2->width * l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[k - 2 + offset1].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[grid2->width * l + offset2].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert row into grid2 right after after row l if (m) column = grid2->width-1; else column = 0; grid2 = R_GridInsertRow( grid2, l+1, column, grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]); if (!grid2) break; grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } } } for (n = 0; n < 2; n++) { // if (n) offset1 = grid1->width-1; else offset1 = 0; if (R_MergedHeightPoints(grid1, offset1)) continue; for (k = grid1->height-1; k > 1; k -= 2) { for (m = 0; m < 2; m++) { if ( grid2->width >= MAX_GRID_SIZE ) break; if (m) offset2 = (grid2->height-1) * grid2->width; else offset2 = 0; for ( l = 0; l < grid2->width-1; l++) { // v1 = grid1->verts[grid1->width * k + offset1].xyz; v2 = grid2->verts[l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz; v2 = grid2->verts[l + 1 + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[l + offset2].xyz; v2 = grid2->verts[(l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert column into grid2 right after after column l if (m) row = grid2->height-1; else row = 0; grid2 = R_GridInsertColumn( grid2, l+1, row, grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } for (m = 0; m < 2; m++) { if (grid2->height >= MAX_GRID_SIZE) break; if (m) offset2 = grid2->width-1; else offset2 = 0; for ( l = 0; l < grid2->height-1; l++) { // v1 = grid1->verts[grid1->width * k + offset1].xyz; v2 = grid2->verts[grid2->width * l + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) > .1) continue; if ( fabs(v1[1] - v2[1]) > .1) continue; if ( fabs(v1[2] - v2[2]) > .1) continue; // v1 = grid2->verts[grid2->width * l + offset2].xyz; v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz; if ( fabs(v1[0] - v2[0]) < .01 && fabs(v1[1] - v2[1]) < .01 && fabs(v1[2] - v2[2]) < .01) continue; // //ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" ); // insert row into grid2 right after after row l if (m) column = grid2->width-1; else column = 0; grid2 = R_GridInsertRow( grid2, l+1, column, grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]); grid2->lodStitched = qfalse; s_worldData.surfaces[grid2num].data = (void *) grid2; return qtrue; } } } } return qfalse; } /* =============== R_TryStitchPatch This function will try to stitch patches in the same LoD group together for the highest LoD. Only single missing vertice cracks will be fixed. Vertices will be joined at the patch side a crack is first found, at the other side of the patch (on the same row or column) the vertices will not be joined and cracks might still appear at that side. =============== */ int R_TryStitchingPatch( int grid1num ) { int j, numstitches; srfGridMesh_t *grid1, *grid2; numstitches = 0; grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data; for ( j = 0; j < s_worldData.numsurfaces; j++ ) { // grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data; // if this surface is not a grid if ( grid2->surfaceType != SF_GRID ) continue; // grids in the same LOD group should have the exact same lod radius if ( grid1->lodRadius != grid2->lodRadius ) continue; // grids in the same LOD group should have the exact same lod origin if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue; if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue; if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue; // while (R_StitchPatches(grid1num, j)) { numstitches++; } } return numstitches; } /* =============== R_StitchAllPatches =============== */ void R_StitchAllPatches( void ) { int i, stitched, numstitches; srfGridMesh_t *grid1; numstitches = 0; do { stitched = qfalse; for ( i = 0; i < s_worldData.numsurfaces; i++ ) { // grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data; // if this surface is not a grid if ( grid1->surfaceType != SF_GRID ) continue; // if ( grid1->lodStitched ) continue; // grid1->lodStitched = qtrue; stitched = qtrue; // numstitches += R_TryStitchingPatch( i ); } } while (stitched); ri.Printf( PRINT_ALL, "stitched %d LoD cracks\n", numstitches ); } /* =============== R_MovePatchSurfacesToHunk =============== */ void R_MovePatchSurfacesToHunk(void) { int i, size; srfGridMesh_t *grid, *hunkgrid; for ( i = 0; i < s_worldData.numsurfaces; i++ ) { // grid = (srfGridMesh_t *) s_worldData.surfaces[i].data; // if this surface is not a grid if ( grid->surfaceType != SF_GRID ) continue; // size = (grid->width * grid->height - 1) * sizeof( drawVert_t ) + sizeof( *grid ); hunkgrid = ri.Hunk_Alloc( size, h_low ); Com_Memcpy(hunkgrid, grid, size); hunkgrid->widthLodError = ri.Hunk_Alloc( grid->width * 4, h_low ); Com_Memcpy( hunkgrid->widthLodError, grid->widthLodError, grid->width * 4 ); hunkgrid->heightLodError = ri.Hunk_Alloc( grid->height * 4, h_low ); Com_Memcpy( grid->heightLodError, grid->heightLodError, grid->height * 4 ); R_FreeSurfaceGridMesh( grid ); s_worldData.surfaces[i].data = (void *) hunkgrid; } } /* =============== R_LoadSurfaces =============== */ static void R_LoadSurfaces( lump_t *surfs, lump_t *verts, lump_t *indexLump ) { dsurface_t *in; msurface_t *out; drawVert_t *dv; int *indexes; int count; int numFaces, numMeshes, numTriSurfs, numFlares; int i; numFaces = 0; numMeshes = 0; numTriSurfs = 0; numFlares = 0; in = (void *)(fileBase + surfs->fileofs); if (surfs->filelen % sizeof(*in)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); count = surfs->filelen / sizeof(*in); dv = (void *)(fileBase + verts->fileofs); if (verts->filelen % sizeof(*dv)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); indexes = (void *)(fileBase + indexLump->fileofs); if ( indexLump->filelen % sizeof(*indexes)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); out = ri.Hunk_Alloc ( count * sizeof(*out), h_low ); s_worldData.surfaces = out; s_worldData.numsurfaces = count; for ( i = 0 ; i < count ; i++, in++, out++ ) { switch ( LittleLong( in->surfaceType ) ) { case MST_PATCH: ParseMesh ( in, dv, out ); numMeshes++; break; case MST_TRIANGLE_SOUP: ParseTriSurf( in, dv, out, indexes ); numTriSurfs++; break; case MST_PLANAR: ParseFace( in, dv, out, indexes ); numFaces++; break; case MST_FLARE: ParseFlare( in, dv, out, indexes ); numFlares++; break; default: ri.Error( ERR_DROP, "Bad surfaceType" ); } } #ifdef PATCH_STITCHING R_StitchAllPatches(); #endif R_FixSharedVertexLodError(); #ifdef PATCH_STITCHING R_MovePatchSurfacesToHunk(); #endif ri.Printf( PRINT_ALL, "...loaded %d faces, %i meshes, %i trisurfs, %i flares\n", numFaces, numMeshes, numTriSurfs, numFlares ); } /* ================= R_LoadSubmodels ================= */ static void R_LoadSubmodels( lump_t *l ) { dmodel_t *in; bmodel_t *out; int i, j, count; in = (void *)(fileBase + l->fileofs); if (l->filelen % sizeof(*in)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); count = l->filelen / sizeof(*in); s_worldData.bmodels = out = ri.Hunk_Alloc( count * sizeof(*out), h_low ); for ( i=0 ; itype = MOD_BRUSH; model->bmodel = out; Com_sprintf( model->name, sizeof( model->name ), "*%d", i ); for (j=0 ; j<3 ; j++) { out->bounds[0][j] = LittleFloat (in->mins[j]); out->bounds[1][j] = LittleFloat (in->maxs[j]); } out->firstSurface = s_worldData.surfaces + LittleLong( in->firstSurface ); out->numSurfaces = LittleLong( in->numSurfaces ); } } //================================================================== /* ================= R_SetParent ================= */ static void R_SetParent (mnode_t *node, mnode_t *parent) { node->parent = parent; if (node->contents != -1) return; R_SetParent (node->children[0], node); R_SetParent (node->children[1], node); } /* ================= R_LoadNodesAndLeafs ================= */ static void R_LoadNodesAndLeafs (lump_t *nodeLump, lump_t *leafLump) { int i, j, p; dnode_t *in; dleaf_t *inLeaf; mnode_t *out; int numNodes, numLeafs; in = (void *)(fileBase + nodeLump->fileofs); if (nodeLump->filelen % sizeof(dnode_t) || leafLump->filelen % sizeof(dleaf_t) ) { ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); } numNodes = nodeLump->filelen / sizeof(dnode_t); numLeafs = leafLump->filelen / sizeof(dleaf_t); out = ri.Hunk_Alloc ( (numNodes + numLeafs) * sizeof(*out), h_low); s_worldData.nodes = out; s_worldData.numnodes = numNodes + numLeafs; s_worldData.numDecisionNodes = numNodes; // load nodes for ( i=0 ; imins[j] = LittleLong (in->mins[j]); out->maxs[j] = LittleLong (in->maxs[j]); } p = LittleLong(in->planeNum); out->plane = s_worldData.planes + p; out->contents = CONTENTS_NODE; // differentiate from leafs for (j=0 ; j<2 ; j++) { p = LittleLong (in->children[j]); if (p >= 0) out->children[j] = s_worldData.nodes + p; else out->children[j] = s_worldData.nodes + numNodes + (-1 - p); } } // load leafs inLeaf = (void *)(fileBase + leafLump->fileofs); for ( i=0 ; imins[j] = LittleLong (inLeaf->mins[j]); out->maxs[j] = LittleLong (inLeaf->maxs[j]); } out->cluster = LittleLong(inLeaf->cluster); out->area = LittleLong(inLeaf->area); if ( out->cluster >= s_worldData.numClusters ) { s_worldData.numClusters = out->cluster + 1; } out->firstmarksurface = s_worldData.marksurfaces + LittleLong(inLeaf->firstLeafSurface); out->nummarksurfaces = LittleLong(inLeaf->numLeafSurfaces); } // chain decendants R_SetParent (s_worldData.nodes, NULL); } //============================================================================= /* ================= R_LoadShaders ================= */ static void R_LoadShaders( lump_t *l ) { int i, count; dshader_t *in, *out; in = (void *)(fileBase + l->fileofs); if (l->filelen % sizeof(*in)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); count = l->filelen / sizeof(*in); out = ri.Hunk_Alloc ( count*sizeof(*out), h_low ); s_worldData.shaders = out; s_worldData.numShaders = count; Com_Memcpy( out, in, count*sizeof(*out) ); for ( i=0 ; ifileofs); if (l->filelen % sizeof(*in)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); count = l->filelen / sizeof(*in); out = ri.Hunk_Alloc ( count*sizeof(*out), h_low); s_worldData.marksurfaces = out; s_worldData.nummarksurfaces = count; for ( i=0 ; ifileofs); if (l->filelen % sizeof(*in)) ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); count = l->filelen / sizeof(*in); out = ri.Hunk_Alloc ( count*2*sizeof(*out), h_low); s_worldData.planes = out; s_worldData.numplanes = count; for ( i=0 ; inormal[j] = LittleFloat (in->normal[j]); if (out->normal[j] < 0) { bits |= 1<dist = LittleFloat (in->dist); out->type = PlaneTypeForNormal( out->normal ); out->signbits = bits; } } /* ================= R_LoadFogs ================= */ static void R_LoadFogs( lump_t *l, lump_t *brushesLump, lump_t *sidesLump ) { int i; fog_t *out; dfog_t *fogs; dbrush_t *brushes, *brush; dbrushside_t *sides; int count, brushesCount, sidesCount; int sideNum; int planeNum; shader_t *shader; float d; int firstSide; fogs = (void *)(fileBase + l->fileofs); if (l->filelen % sizeof(*fogs)) { ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); } count = l->filelen / sizeof(*fogs); // create fog strucutres for them s_worldData.numfogs = count + 1; s_worldData.fogs = ri.Hunk_Alloc ( s_worldData.numfogs*sizeof(*out), h_low); out = s_worldData.fogs + 1; if ( !count ) { return; } brushes = (void *)(fileBase + brushesLump->fileofs); if (brushesLump->filelen % sizeof(*brushes)) { ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); } brushesCount = brushesLump->filelen / sizeof(*brushes); sides = (void *)(fileBase + sidesLump->fileofs); if (sidesLump->filelen % sizeof(*sides)) { ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name); } sidesCount = sidesLump->filelen / sizeof(*sides); for ( i=0 ; ioriginalBrushNumber = LittleLong( fogs->brushNum ); if ( (unsigned)out->originalBrushNumber >= brushesCount ) { ri.Error( ERR_DROP, "fog brushNumber out of range" ); } brush = brushes + out->originalBrushNumber; firstSide = LittleLong( brush->firstSide ); if ( (unsigned)firstSide > sidesCount - 6 ) { ri.Error( ERR_DROP, "fog brush sideNumber out of range" ); } // brushes are always sorted with the axial sides first sideNum = firstSide + 0; planeNum = LittleLong( sides[ sideNum ].planeNum ); out->bounds[0][0] = -s_worldData.planes[ planeNum ].dist; sideNum = firstSide + 1; planeNum = LittleLong( sides[ sideNum ].planeNum ); out->bounds[1][0] = s_worldData.planes[ planeNum ].dist; sideNum = firstSide + 2; planeNum = LittleLong( sides[ sideNum ].planeNum ); out->bounds[0][1] = -s_worldData.planes[ planeNum ].dist; sideNum = firstSide + 3; planeNum = LittleLong( sides[ sideNum ].planeNum ); out->bounds[1][1] = s_worldData.planes[ planeNum ].dist; sideNum = firstSide + 4; planeNum = LittleLong( sides[ sideNum ].planeNum ); out->bounds[0][2] = -s_worldData.planes[ planeNum ].dist; sideNum = firstSide + 5; planeNum = LittleLong( sides[ sideNum ].planeNum ); out->bounds[1][2] = s_worldData.planes[ planeNum ].dist; // get information from the shader for fog parameters shader = R_FindShader( fogs->shader, LIGHTMAP_NONE, qtrue ); out->parms = shader->fogParms; out->colorInt = ColorBytes4 ( shader->fogParms.color[0] * tr.identityLight, shader->fogParms.color[1] * tr.identityLight, shader->fogParms.color[2] * tr.identityLight, 1.0 ); d = shader->fogParms.depthForOpaque < 1 ? 1 : shader->fogParms.depthForOpaque; out->tcScale = 1.0f / ( d * 8 ); // set the gradient vector sideNum = LittleLong( fogs->visibleSide ); if ( sideNum == -1 ) { out->hasSurface = qfalse; } else { out->hasSurface = qtrue; planeNum = LittleLong( sides[ firstSide + sideNum ].planeNum ); VectorSubtract( vec3_origin, s_worldData.planes[ planeNum ].normal, out->surface ); out->surface[3] = -s_worldData.planes[ planeNum ].dist; } out++; } } /* ================ R_LoadLightGrid ================ */ void R_LoadLightGrid( lump_t *l ) { int i; vec3_t maxs; int numGridPoints; world_t *w; float *wMins, *wMaxs; w = &s_worldData; w->lightGridInverseSize[0] = 1.0f / w->lightGridSize[0]; w->lightGridInverseSize[1] = 1.0f / w->lightGridSize[1]; w->lightGridInverseSize[2] = 1.0f / w->lightGridSize[2]; wMins = w->bmodels[0].bounds[0]; wMaxs = w->bmodels[0].bounds[1]; for ( i = 0 ; i < 3 ; i++ ) { w->lightGridOrigin[i] = w->lightGridSize[i] * ceil( wMins[i] / w->lightGridSize[i] ); maxs[i] = w->lightGridSize[i] * floor( wMaxs[i] / w->lightGridSize[i] ); w->lightGridBounds[i] = (maxs[i] - w->lightGridOrigin[i])/w->lightGridSize[i] + 1; } numGridPoints = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2]; if ( l->filelen != numGridPoints * 8 ) { ri.Printf( PRINT_WARNING, "WARNING: light grid mismatch\n" ); w->lightGridData = NULL; return; } w->lightGridData = ri.Hunk_Alloc( l->filelen, h_low ); Com_Memcpy( w->lightGridData, (void *)(fileBase + l->fileofs), l->filelen ); // deal with overbright bits for ( i = 0 ; i < numGridPoints ; i++ ) { R_ColorShiftLightingBytes( &w->lightGridData[i*8], &w->lightGridData[i*8] ); R_ColorShiftLightingBytes( &w->lightGridData[i*8+3], &w->lightGridData[i*8+3] ); } } /* ================ R_LoadEntities ================ */ void R_LoadEntities( lump_t *l ) { char *p, *token, *s; char keyname[MAX_TOKEN_CHARS]; char value[MAX_TOKEN_CHARS]; world_t *w; w = &s_worldData; w->lightGridSize[0] = 64; w->lightGridSize[1] = 64; w->lightGridSize[2] = 128; p = (char *)(fileBase + l->fileofs); // store for reference by the cgame w->entityString = ri.Hunk_Alloc( l->filelen + 1, h_low ); strcpy( w->entityString, p ); w->entityParsePoint = w->entityString; token = COM_ParseExt( &p, qtrue ); if (!*token || *token != '{') { return; } // only parse the world spawn while ( 1 ) { // parse key token = COM_ParseExt( &p, qtrue ); if ( !*token || *token == '}' ) { break; } Q_strncpyz(keyname, token, sizeof(keyname)); // parse value token = COM_ParseExt( &p, qtrue ); if ( !*token || *token == '}' ) { break; } Q_strncpyz(value, token, sizeof(value)); // check for remapping of shaders for vertex lighting s = "vertexremapshader"; if (!Q_strncmp(keyname, s, strlen(s)) ) { s = strchr(value, ';'); if (!s) { ri.Printf( PRINT_WARNING, "WARNING: no semi colon in vertexshaderremap '%s'\n", value ); break; } *s++ = 0; if (r_vertexLight->integer) { R_RemapShader(value, s, "0"); } continue; } // check for remapping of shaders s = "remapshader"; if (!Q_strncmp(keyname, s, strlen(s)) ) { s = strchr(value, ';'); if (!s) { ri.Printf( PRINT_WARNING, "WARNING: no semi colon in shaderremap '%s'\n", value ); break; } *s++ = 0; R_RemapShader(value, s, "0"); continue; } // check for a different grid size if (!Q_stricmp(keyname, "gridsize")) { sscanf(value, "%f %f %f", &w->lightGridSize[0], &w->lightGridSize[1], &w->lightGridSize[2] ); continue; } } } /* ================= R_GetEntityToken ================= */ qboolean R_GetEntityToken( char *buffer, int size ) { const char *s; s = COM_Parse( &s_worldData.entityParsePoint ); Q_strncpyz( buffer, s, size ); if ( !s_worldData.entityParsePoint || !s[0] ) { s_worldData.entityParsePoint = s_worldData.entityString; return qfalse; } else { return qtrue; } } /* ================= RE_LoadWorldMap Called directly from cgame ================= */ void RE_LoadWorldMap( const char *name ) { int i; dheader_t *header; byte *buffer; byte *startMarker; if ( tr.worldMapLoaded ) { ri.Error( ERR_DROP, "ERROR: attempted to redundantly load world map\n" ); } // set default sun direction to be used if it isn't // overridden by a shader tr.sunDirection[0] = 0.45f; tr.sunDirection[1] = 0.3f; tr.sunDirection[2] = 0.9f; VectorNormalize( tr.sunDirection ); tr.worldMapLoaded = qtrue; // load it ri.FS_ReadFile( name, (void **)&buffer ); if ( !buffer ) { ri.Error (ERR_DROP, "RE_LoadWorldMap: %s not found", name); } // clear tr.world so if the level fails to load, the next // try will not look at the partially loaded version tr.world = NULL; Com_Memset( &s_worldData, 0, sizeof( s_worldData ) ); Q_strncpyz( s_worldData.name, name, sizeof( s_worldData.name ) ); Q_strncpyz( s_worldData.baseName, COM_SkipPath( s_worldData.name ), sizeof( s_worldData.name ) ); COM_StripExtension( s_worldData.baseName, s_worldData.baseName ); startMarker = ri.Hunk_Alloc(0, h_low); c_gridVerts = 0; header = (dheader_t *)buffer; fileBase = (byte *)header; i = LittleLong (header->version); if ( i != BSP_VERSION ) { ri.Error (ERR_DROP, "RE_LoadWorldMap: %s has wrong version number (%i should be %i)", name, i, BSP_VERSION); } // swap all the lumps for (i=0 ; ilumps[LUMP_SHADERS] ); R_LoadLightmaps( &header->lumps[LUMP_LIGHTMAPS] ); R_LoadPlanes (&header->lumps[LUMP_PLANES]); R_LoadFogs( &header->lumps[LUMP_FOGS], &header->lumps[LUMP_BRUSHES], &header->lumps[LUMP_BRUSHSIDES] ); R_LoadSurfaces( &header->lumps[LUMP_SURFACES], &header->lumps[LUMP_DRAWVERTS], &header->lumps[LUMP_DRAWINDEXES] ); R_LoadMarksurfaces (&header->lumps[LUMP_LEAFSURFACES]); R_LoadNodesAndLeafs (&header->lumps[LUMP_NODES], &header->lumps[LUMP_LEAFS]); R_LoadSubmodels (&header->lumps[LUMP_MODELS]); R_LoadVisibility( &header->lumps[LUMP_VISIBILITY] ); R_LoadEntities( &header->lumps[LUMP_ENTITIES] ); R_LoadLightGrid( &header->lumps[LUMP_LIGHTGRID] ); s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker; // only set tr.world now that we know the entire level has loaded properly tr.world = &s_worldData; ri.FS_FreeFile( buffer ); }