/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // mathlib.c -- math primitives #include "l_cmd.h" #include "l_math.h" vec3_t vec3_origin = {0,0,0}; void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } /* ================= RadiusFromBounds ================= */ float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) { int i; vec3_t corner; float a, b; for (i=0 ; i<3 ; i++) { a = fabs( mins[i] ); b = fabs( maxs[i] ); corner[i] = a > b ? a : b; } return VectorLength (corner); } /* ================ R_ConcatRotations ================ */ void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void AxisClear( vec3_t axis[3] ) { axis[0][0] = 1; axis[0][1] = 0; axis[0][2] = 0; axis[1][0] = 0; axis[1][1] = 1; axis[1][2] = 0; axis[2][0] = 0; axis[2][1] = 0; axis[2][2] = 1; } float VectorLengthSquared(vec3_t v) { return DotProduct(v, v); } double VectorLength(vec3_t v) { int i; double length; length = 0; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = sqrt (length); // FIXME return length; } qboolean VectorCompare (vec3_t v1, vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON) return false; return true; } vec_t Q_rint (vec_t in) { return floor(in + 0.5); } void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } void _VectorMA (vec3_t va, double scale, vec3_t vb, vec3_t vc) { vc[0] = va[0] + scale*vb[0]; vc[1] = va[1] + scale*vb[1]; vc[2] = va[2] + scale*vb[2]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]-vb[0]; out[1] = va[1]-vb[1]; out[2] = va[2]-vb[2]; } void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void _VectorScale (vec3_t v, vec_t scale, vec3_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; } vec_t VectorNormalize(vec3_t inout) { vec_t length, ilength; length = sqrt (inout[0]*inout[0] + inout[1]*inout[1] + inout[2]*inout[2]); if (length == 0) { VectorClear (inout); return 0; } ilength = 1.0/length; inout[0] = inout[0]*ilength; inout[1] = inout[1]*ilength; inout[2] = inout[2]*ilength; return length; } vec_t VectorNormalize2(const vec3_t in, vec3_t out) { vec_t length, ilength; length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]); if (length == 0) { VectorClear (out); return 0; } ilength = 1.0/length; out[0] = in[0]*ilength; out[1] = in[1]*ilength; out[2] = in[2]*ilength; return length; } vec_t ColorNormalize (vec3_t in, vec3_t out) { float max, scale; max = in[0]; if (in[1] > max) max = in[1]; if (in[2] > max) max = in[2]; if (max == 0) return 0; scale = 1.0 / max; VectorScale (in, scale, out); return max; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void ClearBounds(vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds(const vec3_t v, vec3_t mins, vec3_t maxs) { int i; vec_t val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } }