## Countability 1. Group the following sets according to their cardinality: a. $\mathbb{N} = \{ 1,2,3,4,\dots \}$ - $\mathbb{Z} = \{ \dots, -2, -1,0,1,2, \dots \}$ - $\mathbb{N} \times \mathbb{N}$ - $\mathbb{Q}$ = Set of all fractions $\frac{n}{m}$ where $n,m \in \mathbb{Z}$ - $\mathbb{R}$ - The open interval $(0,1)$ - The closed interval $[0,1]$ - $2^{\mathbb{N}}$ = Set of all subsets of $\mathbb{N}$. - $2^{\mathbb{R}}$ = Set of all subsets of $\mathbb{R}$. - $\mathbb{R}^{\mathbb{R}}$ = Set of all functions from $\mathbb{R}$ to itself. Cook up other examples and post them on the wiki! 2. Let $X$ be any set. Show that the cardinality of $2^{X}$ is larger than the cardinality of $X$. (Hint: Let $f: X \to 2^X$ be a bijection. Consider the set of all elements $x \in X$ such that $x$ is not an element of $f(x)$.) ## Fourier Series 1. Compute the Fourier Series of the following functions. Do both the exponential and sin/cos expansions. a. $f(x) = \sin^3(3x)\cos^2(4x)$ - $g(x) = x(x-2\pi)$ (Hint: Use integration by parts) 2. Show that $$\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$$ (Hint: write out the exponential fourier expansion of $\sin^4(x)$.) 3. Compute the exponential Fourier coefficients of $\sin^2(x)$: $$a_n = \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-inx} dx$$ and use this to verify that $$\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$$ # Solutions 2. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, $$\begin{array}{ccl} \sin^4 x &=& \frac{{( e^{ix}-e^{-ix} )}^4}{16} \\ &=& \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}. \end{array} $$ If we express any periodic function $f(x)$ as $$f(x) = \sum a_n f_n(x),$$ where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$ and $f_0(x) = \frac{1}{\sqrt{2\pi}}$, then the Fourier coefficients for the above functions are: $$\begin{array}{rcl} a_{-4} = a_{4} &=& \sqrt{2\pi} \times 1/16, \\ a_{-2} = a_{2} &=& - \sqrt{2\pi} \times 4/16 \\ a_0 &=& \sqrt{2\pi} \times 6/16 \end{array} $$ Since $a_m = < f_m, f >$ and setting $f(x) = \sin^4(x)$, $$ \begin{array}{ccl} \int_0^{2\pi} \sin^4(x) dx = <1, f> &=& \sqrt{2\pi} \times < f_0, f > \\ &=& \sqrt{2\pi} \times a_0 \\ &=& \frac{3 \pi}{4} \end{array} $$ 3. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, we have $\sin^2 x = \frac{e^{i 2x}+e^{-i 2x}-2}{4}$. Therefore, $$ \begin{array}{ccl} a_m &=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-imx} dx \\ &=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{i 2x}+e^{-i 2x}-2}{4} e^{-imx} dx \\ &=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{-i (m-2)x}+e^{-i (m+2)x}-2e^{-imx}}{4} dx. \end{array} $$ Because $\int_0^{2\pi} e^{inx} dx = 2\pi$ for $n = 0$ and $\int_0^{2\pi} e^{inx} dx = 0$ for $n \neq 0$, we have $$a_2 = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\ pi}/4,$$ $$a_0 = \frac{1}{4 \sqrt{2\pi}} \times 2\pi \times (-2) = - \frac{\sqrt{2\pi}}{2},$$ and $$a_{-2} = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \frac{\sqrt{2\pi}}{4}.$$ It follows that $$\sum |a_n|^2 = {(\sqrt{2\pi}/4)}^2 + {(- \sqrt{2\pi}/2)}^2 + {(\sqrt{2\pi}/4)}^2 = \frac{3 \pi}{4}$$. It was shown in Prob 2 that $\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$, so therefore, $$\int_0^{2\pi} \sin^4(x) dx = \sum |a_n|^2 = \frac{3 \pi}{4}$$ ## Cardinality Cardinality of the natural numbers (countable): $\mathbf{N}$,$\mathbf{Z}$ Cardinality of the real numbers (continuum): $\mathbf{R}$ Proofs: - $\mathbf{Z}=\mathbf{N}$ under the bijection $n \mapsto 2n+1$ for nonnegative $n$ and $n \mapsto 2|n|$ for negative $n$. For example, $\{-2,-1,0,1,2\} \mapsto \{4,2,1,3,5\}$.